A multiwavelength look at the 2017 flare of OJ 287

<u>Olivier Hervet</u> (1), Stephan O' Brien (2), on behalf of the VERITAS collaboration

(1) UC Santa Cruz(2) Mc Gill University

Gamma 2022 Conference July 4-8 2022, Barcelona

A bit of background

- **OJ 287:** IBL blazar at redshift z = 0.306
- Started showing strong signs of activity in UV/X-ray from mid 2016 (Grupe et al. Atel 9629, 2016)
- VERITAS observed it for months until a large X-ray flare happened in Feb. 2017
 → led to its first VHE detection (*Mukherjee et al., Atel 10051,2017*).
- Preliminary results of the VERITAS campaign shown at ICRC 2017 (O'Brien 35th ICRC Proc. 2017)

O. Hervet

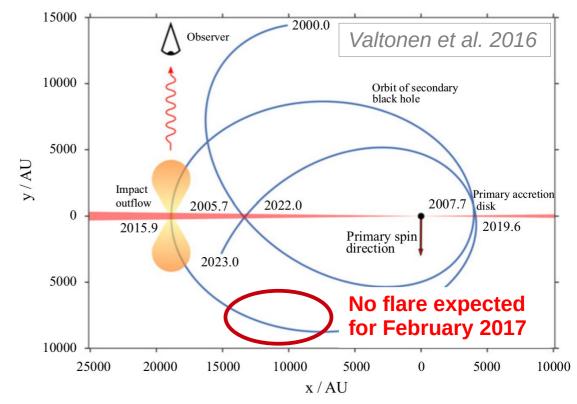
Gamma 2022, July 2022

What did happen in OJ 287 in Feb 2017?

→ Complex event from a complex target, aka 'The Rosetta stone of blazars' (*Title firstly used by L. O. Takalo (1994)*)

To attempt a reply, we need to review the following aspects of OJ 287:

- SMBH binary system
- Strong jet precession
- Complex radio-VLBI jet kinematics
- Mpc X-ray extended jet
- 'Orphan-like' flares



An exceptional SMBH binary system

- Archival optical observations dating back to 1890 have revealed a ~12 year outburst cycle. (Sillanpaa et al. 1988)
- Optical variability suggests a binary system

 $\begin{array}{ll} {\rm BH_1} = 1.8 \times 10^{10} \ M_\odot & {\rm BH_1} \\ {\rm BH_2} = 1.3 \times 10^8 \ M_\odot & {\rm BH_2} \\ (\textit{Valtonen et al. 2011}) \end{array} \quad \begin{array}{l} {\rm BH_2} \\ \end{array} \sim 100 \end{array}$

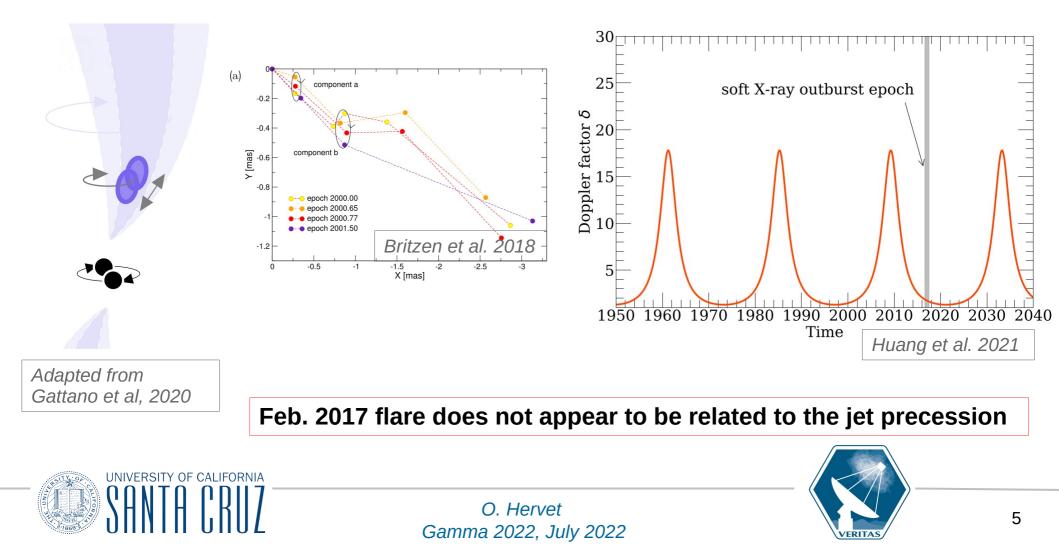
Definitive confirmation of a SMBH system from a flare prediction in 2019, July 31 by Spitzer.
 'the Eddington flare arrived within 4 hours of the predicted time' (Seppo Laine et al 2020)

Feb. 2017 flare does not appear to be related to the secondary SMBH

O. Hervet

Gamma 2022, July 2022

Closer look at the binary SMBHs



O. Hervet Gamma 2022, July 2022 Credit: NASA/1PL-Caltech/R_Hurt (IPAC)

Jet precession

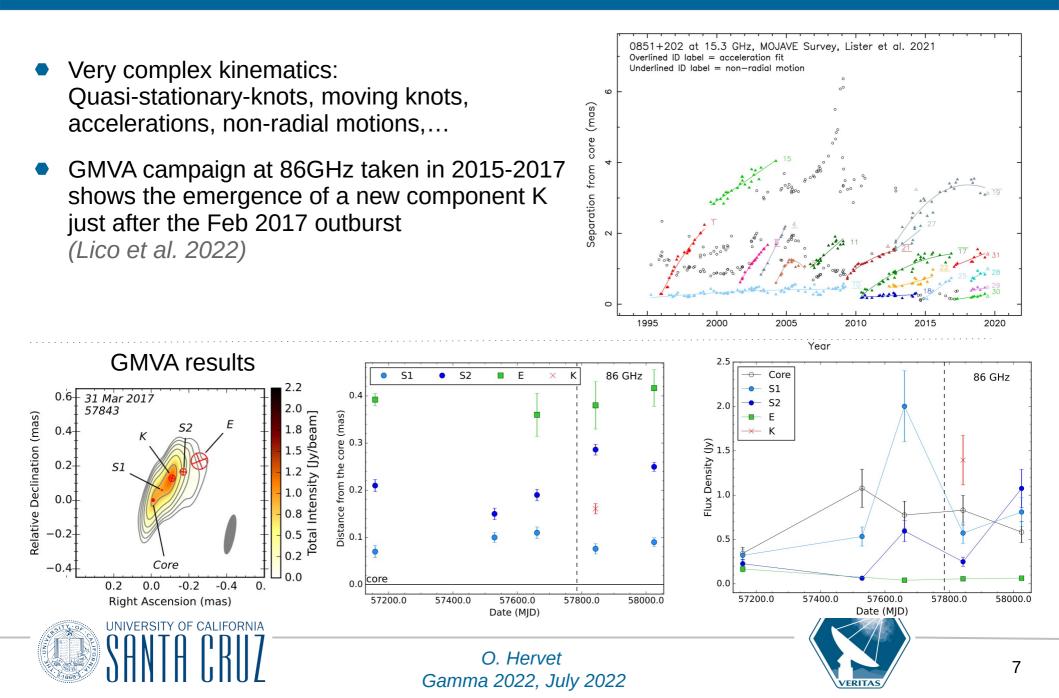
A jet precession periodicity of~22 yr (~ twice optical periodicity time-scale) has been deduced from radio VLBI observations (*Britzen et al. 2018*).

Large scale X-ray jet

- X-ray extended jets mostly seen in FSRQs, and in some LBLs/IBLs : http://hea-www.harvard.edu/XJET/
- Total deprojected jet size >~ 1 Mpc
- Size of X-ray knots ~ [2 13] kpc

 → Apparently inconsistent with the variability of
 ~1 day observed during Feb 2017

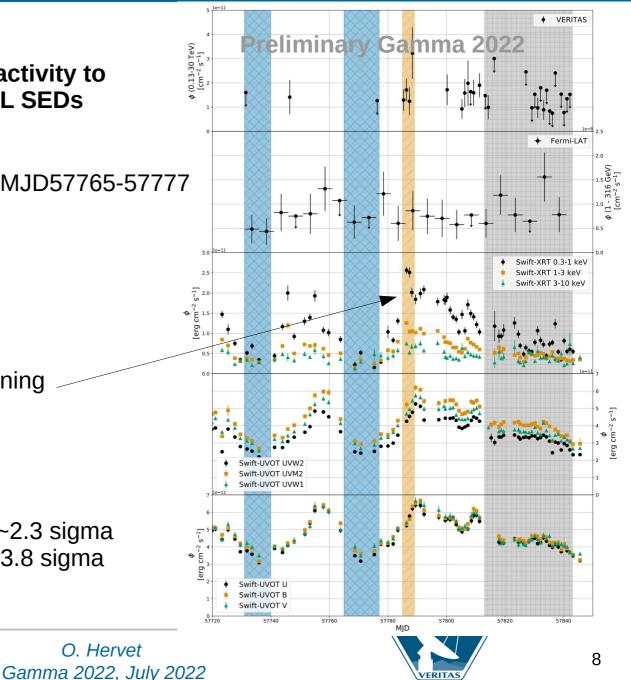
O. Hervet


Gamma 2022, July 2022

Radio VLBI jet kinematics, new insights

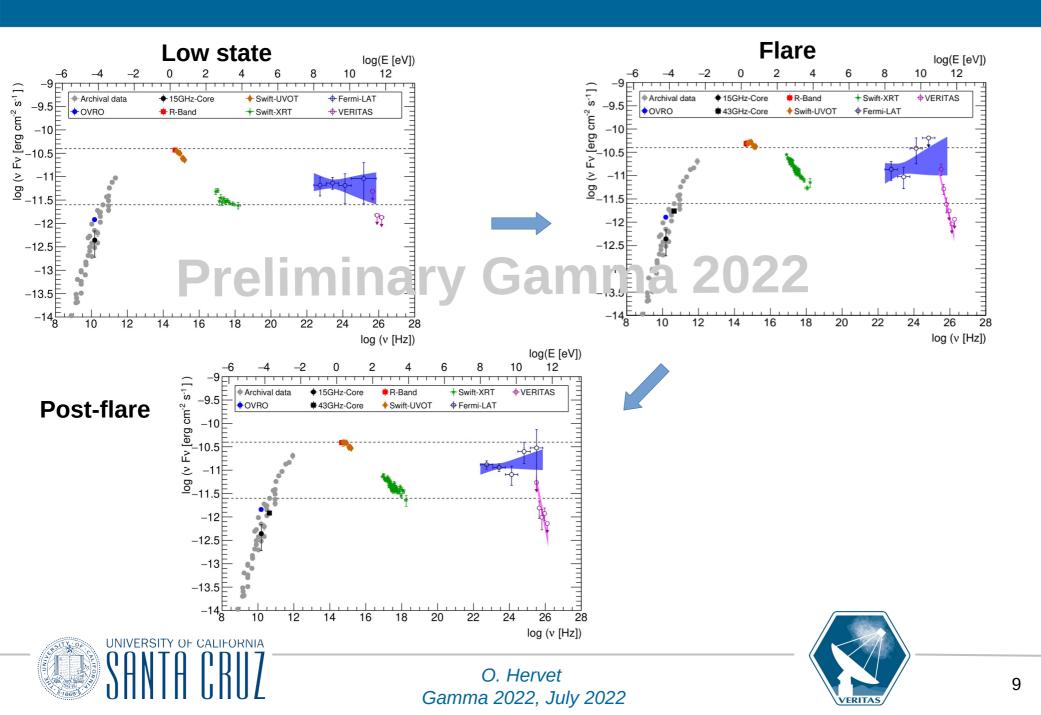
Multiwavelength lightcurve

We defined three states of activity to investigate and build MWL SEDs

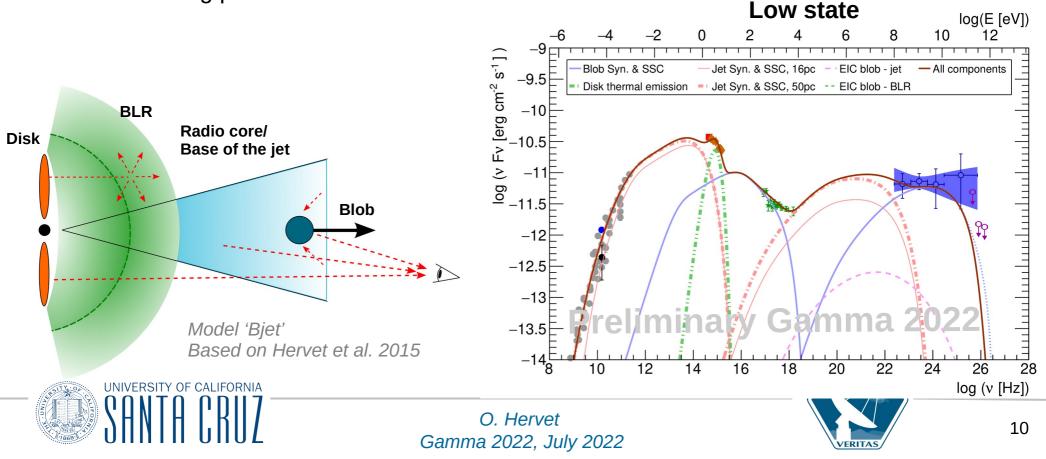

- Low state: MJD 57731-57740 & MJD57765-57777
- Flare: MJD 57785-57789
- Post-flare: MJD 57813-57843

Quite unusual flare happening mostly in soft X-ray

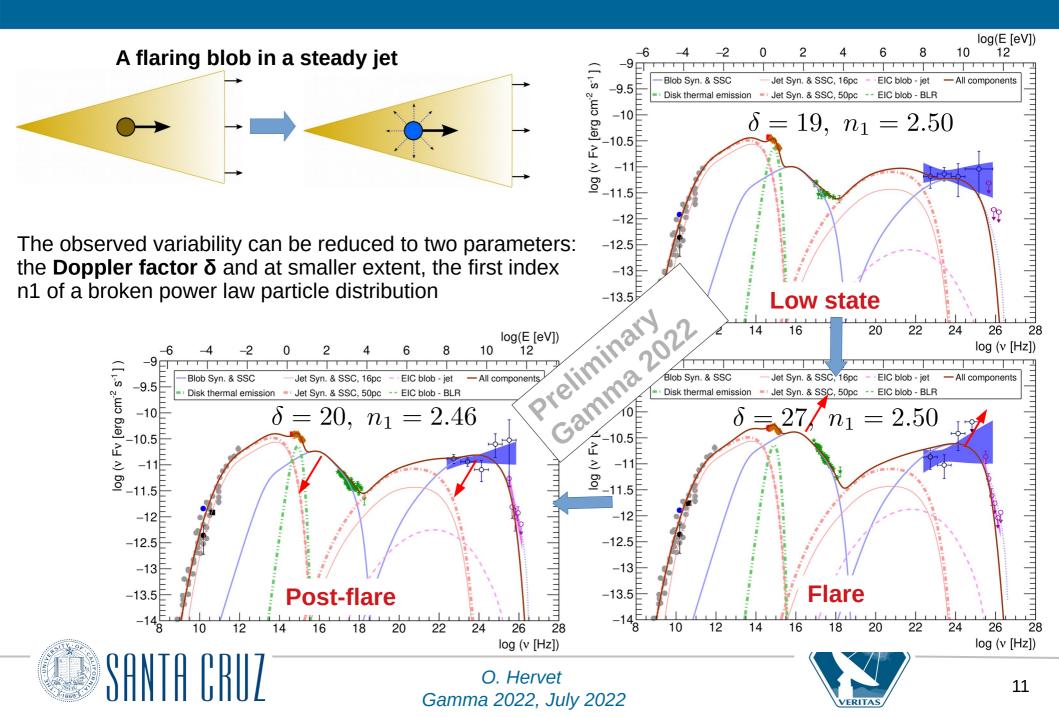
Hint for multiple components:


Correlation VERITAS / Hard-Xray ~2.3 sigma Correlation VERITAS / Soft-Xray ~3.8 sigma

O. Hervet

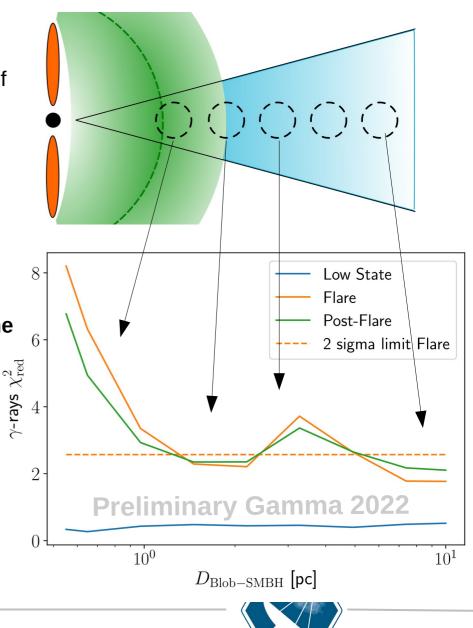


Broadband SEDs



Broadband modeling – Blob in jet

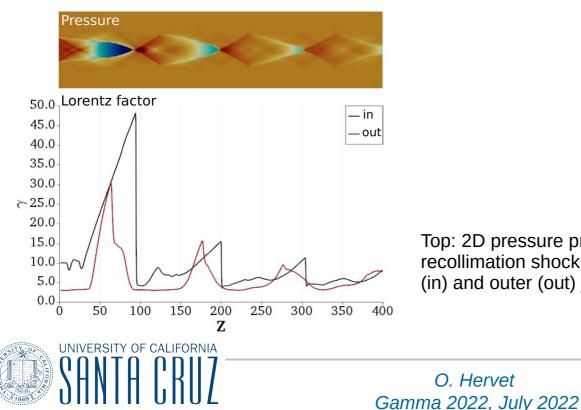
- Doppler factor and angle with the line of sight deduced from fastest motions in radio VLBI jet (Hervet et al. 2016)
- Minimal variability ~ 1day
- The size of the jet base is adjusted to match the observed radio core extension, with its flux constrained by radio core observations at 22GHz and 43GHz.
- The modeling parameters are within canonical blazar values.



Broadband modeling – three states

Location of the emission zone

- Estimation of the reduced Chi2 of the model on Fermi+VERITAS spectra changing only the distance of the blob from the SMBH (1 free parameter)
- The flare state SED is the one providing the most constraint on the location of the emission zone
- Dashed orange line show the 2-sigma limit of the a given distance being worse than the best one (for the flare state SED)
- The data favors a model with low photon-photon opacity and weak external IC → likely downsteam the BLR and the radio core (>~ 6pc)
- Only 1 free parameter here, so the result is verystrongly model dependant and cannot be seen as hard evidence of the blob's distance


O. Hervet Gamma 2022, July 2022

A strong shock in the 1rst radio knot?

- Recent observations of a brightening of the 1st radio knot (S1) before the Feb 2017 flare, and a new radio knot downstream afterwards strongly suggests a flare happening in S1 (~10pc from the core)
- Our multi-zone model favours an emission zone downstream of the radio core
- Our model suggests that most of the variability can be explained by an abrupt change of the blob's Doppler factor (19 \rightarrow 27)

This effect is actually expected when considering S1 as a strong recollimation shock

O. Hervet

Top: 2D pressure profile of a 2-flow jet with a strong first recollimation shock. Bottom: associated Lorentz factor of the inner (in) and outer (out) jets. Adapted from Hervet et al. 2017

Outlook

Besides the binary system and the jet precession, OJ 287 shares several features with other known TeV IBLs/LBLs such as:

- an hybrid VLBI jet kinematics (Hervet et al. 2016)
- an X-ray extended jet (e.g. Ap Lib)
- flares happening mostly in X-ray and VHE (e.g. BL Lac, VER J0521+211)

IBLs/LBLs are slowly making their way in becoming a fundamental distinct blazar class, not just along a smooth continuum between HBLs and FSRQs *(e.g. Hervet et al. 2017)*

O. Hervet

Gamma 2022, July 2022

Thanks !

Annex – model parameters

Parameter	Low state	Flare	Post-flare	Unit
θ	2.0	_	-	deg
Blob				
δ	19	27	20	
$N_e^{(1)}$	2.0×10^5	_		cm^{-3}
n_1	2.50	_	2.46	<u></u>
n_2	3.8	_	_	—
$\gamma_{ m min}$	$1.0 imes 10^3$	_		_
$\gamma_{ m max}$	$1.9 imes 10^5$	_		-
$\gamma_{ m brk}$	$2.3 imes 10^4$	_	_	_
B	2.5×10^{-1}	_		G
R	1.75×10^{16}		—	cm
D_{BH}^{*}	8.0			\mathbf{pc}
Nucleus				
L_{disk}	$7.0 imes 10^{45}$	_	—	$\rm erg~s^{-1}$
T_{disk}	1.3×10^4		-	Κ
Jet				
δ	8	_		
$N_e^{(1)}$	3.0×10^4		_	cm^{-3}
n	2.5	_		_
$\gamma_{ m min}$	2.5×10^2	_	_	_
$\gamma_{ m max}$	1.0×10^4	_	_	_
B_1	2.0×10^{-1}	_		G
R_1	7.5×10^{16}	-		\mathbf{cm}
L^*	5.0×10^1	—		\mathbf{pc}
$\alpha/2^*$	5.1×10^{-1}	_		deg

* Host galaxy frame.

15

O. Hervet Gamma 2022, July 2022