#### Gamma 2022 - Barcelona

# **PWNe beyond the free expansion**

Authors: Rino Bandiera, Niccolò Bucciantini, Jonatan Martín (speaker), Barbara Olmi Diego F. Torres

# **First publication of a series**

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **499**, 2051–2062 (2020) Advance Access publication 2020 September 28

#### doi:10.1093/mnras/staa2956

#### **Reverberation of pulsar wind nebulae (I): impact of the medium properties and other parameters upon the extent of the compression**

R. Bandiera<sup>10</sup>, <sup>1\*</sup> N. Bucciantini, <sup>1,2,3</sup> J. Martín<sup>10</sup>, <sup>4,5</sup>\* B. Olmi<sup>10</sup>, <sup>1,4</sup> and D. F. Torres<sup>4,5,6</sup>\* <sup>†</sup> <sup>1</sup>INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy <sup>2</sup>Dipartamento de Fisica e Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, I-50019 Sesto F. no (Firenze), Italy <sup>3</sup>INFN – Sezione di Firenze, Via G. Sansone 1, I-50019 Sesto F. no (Firenze), Italy <sup>4</sup>Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans s/n, E-08193 Barcelona, Spain <sup>5</sup>Institut d'Estudis Espacials de Catalunya (IEEC), Gran Capità 2-4, E-08034 Barcelona, Spain <sup>6</sup>Institució Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain

# Stay tuned for next papers!



# **Estimations regarding PWN detectability**

- It is expected that PWNe will be the dominant gamma-ray sources detected by CTA (de Oña-Wilhelmi et al. 2013, Klepser et al. 2013, Abdalla et al. 2018)
- Current number of detected PWNe: ~34 (*TeVCat, <u>http://tevcat.uchicago.edu/</u>*)
- Estimated number in the first CTA Galactic Plane Survey: ~200. Most of them have entered in the reverberation phase (*Fiori et al. 2022*)
- Most of the current radiative models in the literature simulate only the free expansion phase

# **Estimations regarding PWN detectability**

- It is expected that PWNe will be the dominant gamma-ray sources detected by CTA (de Oña-Wilhelmi et al. 2013, Klepser et al. 2013, Abdalla et al. 2018)
- Current number of detected PWNe: ~34 (TeVCat, <u>http://tevcat.uchicago.edu/</u>)
- Estimated number in the first CTA Galactic Plane Survey: ~200. Most of them have entered in the reverberation phase (*Fiori et al. 2022*)
- Most of the current radiative models in the literature simulate only the free expansion phase

We need a better understanding and modelling of the reverberation phase to characterise the PWN population correctly.

# **Estimations regarding PWN detectability**

- It is expected that PWNe will be the dominant gamma-ray sources detected by CTA (de Oña-Wilhelmi et al. 2013, Klepser et al. 2013, Abdalla et al. 2018)
- Current number of detected PWNe: ~34 (TeVCat, <u>http://tevcat.uchicago.edu/</u>)
- Estimated number in the first CTA Galactic Plane Survey: ~200. Most of them have entered in the reverberation phase (*Fiori et al. 2022*)
- Most of the current radiative models in the literature simulate only the free expansion phase

We need a better understanding and modelling of the reverberation phase to characterise the PWN population correctly.

What is the impact of the ejecta profiles on the compression of the PWN?

#### **Evolution equations**

$$\begin{split} &\frac{dR}{dt} = v(t) \\ &\frac{dM}{dt} = 4\pi R^2(t)\rho_{ej}(R,t)\left[v(t) - v_{ej}(R,t)\right] \\ &\frac{d}{dt}[M(t)v(t)] = F(t) \text{ being } F(t) = 4\pi R^2(t)[P_{\text{pwn}}(t) - P_{\text{ej}}(R,t)] + \frac{dM}{dt}v_{\text{ej}}(R,t) \end{split}$$

The internal energy  $E_{pwn}$  is calculated by integrating the electron-positron distribution function in energy and the pressure is given by

$$P_{\rm pwn}(t) = \frac{3(\gamma_{\rm ad} - 1)E_{\rm pwn}}{4\pi R_{\rm pwn}^3(t)}$$

#### **Evolution equations**

$$\begin{aligned} \frac{dR}{dt} &= v(t) \\ \frac{dM}{dt} &= 4\pi R^2(t) \underbrace{\rho_{ej}(R,t)}[v(t) - \underbrace{v_{ej}(R,t)}] \\ \frac{d}{dt}[M(t)v(t)] &= F(t) \text{ being } F(t) = 4\pi R^2(t) [P_{\text{pwn}}(t) - \underbrace{P_{\text{ej}}(R,t)}] \\ + \frac{dM}{dt} v_{\text{ej}}(R,t) \end{aligned}$$

The internal energy  $E_{pwn}$  is calculated by integrating the electron-positron distribution function in energy and the pressure is given by

$$P_{\rm pwn}(t) = \frac{3(\gamma_{\rm ad} - 1)E_{\rm pwn}}{4\pi R_{\rm pwn}^3(t)}$$

# **SNR** profiles

Forward and reverse shock trajectories (Truelove & McKee 1999)

Updated version in Bandiera et al. 2022, MNRAS, 508, 3194

Unshocked profiles (Blondin et al. 2001)

$$v_{\rm ej}(r,t) = \frac{r}{t} \qquad P_{\rm ej}(r,t) = 0$$
$$\rho_{\rm ej}(r,t) = \begin{cases} A/t^3, & \text{if } r < v_t t \\ A(v_t/r)^{\omega} t^{\omega-3}, & \text{if } v_t t < r < R_{\rm rs} \end{cases}$$

Shocked profiles (Bandiera 1984)



# **SNR** profiles

Forward and reverse shock trajectories (Truelove & McKee 1999)

Updated version in Bandiera et al. 2022, MNRAS, 508, 3194

 $\begin{array}{l} \text{Unshocked profiles (Blondin et al. 2001)} \\ v_{\rm ej}(r,t) = \displaystyle \frac{r}{t} \\ \rho_{\rm ej}(r,t) = \left\{ \begin{array}{l} A/t^3, \\ A(v_t/r)^{\omega_t\omega-3}, \end{array} \right. \text{if } r < v_t \end{array} \begin{array}{l} \text{SNR} \\ \text{envelope} \\ \text{density index} \end{array} \right. \\ \end{array}$ 

Shocked profiles (Bandiera 1984)



#### **Simulation parameters**

The equations are solved by using TIDE (Martin et al. 2012, Torres et al. 2014, Martin et al. 2016)

| Parameter                                     | Symbol        | Crab Nebula        | J1834.9-0846          |
|-----------------------------------------------|---------------|--------------------|-----------------------|
| Braking index                                 | п             | 2.51               | 2.2                   |
| Initial spin-down age (yr)                    | $	au_0$       | 758                | 280                   |
| Initial spin-down luminosity (erg $s^{-1}$ )  | $L_0$         | $3 \times 10^{39}$ | $1.74 \times 10^{38}$ |
| SNR ejected mass $(M_{\odot})$                | $M_{\rm ej}$  | 9                  | 11.3                  |
| Far-infrared temperature (K)                  | $T_{\rm fir}$ | 70                 | 25                    |
| Far-infrared energy density ( $eV cm^{-3}$ )  | $w_{ m fir}$  | 0.1                | 0.5                   |
| Near-infrared temperature (K)                 | $T_{\rm nir}$ | 5000               | 3000                  |
| Near-infrared energy density ( $eV cm^{-3}$ ) | $w_{ m nir}$  | 0.3                | 1                     |
| Energy break                                  | γb            | $9\cdot 10^5$      | $10^{7}$              |
| Low energy index                              | $\alpha_l$    | 1.5                | 1                     |
| High energy index                             | $\alpha_h$    | 2.54               | 2.1                   |
| Containment factor                            | $\epsilon$    | 0.27               | 0.6                   |
| Magnetic fraction                             | η             | 0.02               | 0.045                 |
|                                               |               |                    |                       |

# **CF** with the SNR envelope density index



Compression factor $CF = \frac{R_{\max}}{2}$ 

$$F = \frac{R_{\max}}{R_{\min}}$$

|                       | w = 0 | w = 6 | w = 7 | w = 9 | w = 12 |
|-----------------------|-------|-------|-------|-------|--------|
| Crab Nebula           | a     |       |       |       |        |
| R <sub>max</sub> (pc) | 5.912 | 6.281 | 6.177 | 6.329 | 6.816  |
| R <sub>min</sub> (pc) | 1.499 | 0.551 | 1.106 | 1.793 | 1.626  |
| CF                    | 3.944 | 11.40 | 5.585 | 3.530 | 4.192  |
| 1834.9-08             | 46    |       |       |       |        |
| R <sub>max</sub> (pc) | 5.041 | 4.765 | 4.902 | 5.270 | 5.676  |
| R <sub>min</sub> (pc) | 0.005 | 0.004 | 0.005 | 0.005 | 0.004  |
| CF                    | 1008  | 1191  | 980.4 | 1054  | 1419   |
|                       |       |       |       |       |        |

# CF with the SNR envelope density index



Compression factor

| CF - | $R_{\rm max}$ |  |
|------|---------------|--|
| CF = | $R_{\min}$    |  |

No-monotonic behaviour of the CF. Complex physics behind need to be studied deeper (Bandiera et al. 2022, in prep.)

|                       | w = 0 | w = 6 | w = 7 | w = 9 | w = 12 |
|-----------------------|-------|-------|-------|-------|--------|
| Crab Nebula           |       |       |       |       |        |
| R <sub>max</sub> (pc) | 5.912 | 6.281 | 6.177 | 6.329 | 6.816  |
| R <sub>min</sub> (pc) | 1.499 | 0.551 | 1.106 | 1.793 | 1.626  |
| CF                    | 3.944 | 11.40 | 5.585 | 3.530 | 4.192  |
| 1834.9-084            | 6     |       |       |       |        |
| R <sub>max</sub> (pc) | 5.041 | 4.765 | 4.902 | 5.270 | 5.676  |
| R <sub>min</sub> (pc) | 0.005 | 0.004 | 0.005 | 0.005 | 0.004  |
| CF                    | 1008  | 1191  | 980.4 | 1054  | 1419   |
|                       |       |       |       |       |        |

#### Shocked ejecta pressure is a key parameter



We manually modify the density, velocity and pressure profiles to see their influence in the evolution of the radius.

For density, small differences in Crab-like and imperceptible in J1834-like PWNe

#### Shocked ejecta pressure is a key parameter



#### Shocked ejecta pressure is a key parameter



## Same effects in the mass of the PWN shell



$$\omega = 9$$

#### Same effects in the mass of the PWN shell



## Same effects in the mass of the PWN shell



## Radiative vs. Non-radiative models



$$\omega = 9$$

Green line: equations from Chevalier et al. 2005

|                    | Radiative | Chevalier | No losses |
|--------------------|-----------|-----------|-----------|
| Crab Nebula        |           |           |           |
| $R_{\rm max}$ (pc) | 6.329     | 6.274     | 6.274     |
| $R_{\min}$ (pc)    | 1.793     | 2.204     | 2.313     |
| CF                 | 3.530     | 2.847     | 2.712     |
| J1834.9-0846       |           |           |           |
| $R_{\max}$ (pc)    | 5.270     | 6.121     | 6.137     |
| $R_{\min}$ (pc)    | 0.005     | 0.028     | 0.076     |
| CF                 | 1054      | 218.6     | 80.75     |
|                    |           |           |           |

## Radiative vs. Non-radiative models



| $\omega = 9$       |           |           |           |
|--------------------|-----------|-----------|-----------|
|                    | Radiative | Chevalier | No losses |
| Crab Nebula        |           |           |           |
| $R_{\rm max}$ (pc) | 6.329     | 6.274     | 6.274     |
| $R_{\min}$ (pc)    | 1.793     | 2.204     | 2.313     |
| CF                 | 3.530     | 2.847     | 2.712     |
| J1834.9-0846       |           |           |           |
| $R_{\rm max}$ (pc) | 5.270     | 6.121     | 6.137     |
| $R_{\min}$ (pc)    | 0.005     | 0.028     | 0.076     |
| CF                 | 1054      | 218.6     | 80.75     |

CF increases significantly when we take into account radiative losses

## Conclusions

- PWN radius evolution is very sensitive to the ejecta pressure profile. The same happens with the mass of the shell
- The consideration of radiation losses increases the CF significantly. In low spin-down luminosity cases there can be large differences (factors ~10)
- It is crucial to find a good representation of the ejecta pressure in order to get radiative models compatible with the results obtained in HD simulations
- We showed that the assumption of the bounding SNR to be in a relaxed Sedov state must be handled with care. A more appropriate description of the SNR properties will be discussed in the forthcoming papers of the same series