ray Space Telescope

Periodic Variability in gamma-ray Emitting Blazars with Fermi-LAT

Pablo Peñil Marco Ajello Sara Buson Alberto Domínguez on behalf of the *Fermi*-LAT collaboration

Clemson University (SC, USA)

7th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy 7-4-2022

Introduction

- Blazars: variability in the overall electromagnetic spectrum:
 - Different timescales:
 - Long-term variations
 - Short variations
- Pattern \rightarrow **Periodicity**
- Astrophysical nature: <u>single or a binary SMBH</u>
- Find a sample with γ -ray periodic-emission

Previous Results

START AGNFile.txt 3FGL+2FHL+3FHL LSP + Discard AGN False **Power-Law Fitting** False blazars (351) True Removing **Read AGN properties** REDFIT True **Upper Limits** < 50% upper-limits DFT (Welch) -Selection Telescope time: \bullet END Candidate Criteria Aug. 2008-Sep. 2017 PDM -Save Candidate Save GLSP + Bootstrap False False Low-Significance Data Reduction: Candidate **MCMC** Sine Fitting Flux integrated ≥ 1 GeV False SP + Simulated LCs True True True 28-days binning **Bayesian QPO** Selection Candidate High-Significance Candidate wwz Constraints Candidate Criteria Methods: uneven Constraints Periodicity detection: 10 even Significance estimation: 4

Peñil et al. 2020

Previous Results

- 11 High-significance candidates
 (≥4σ)
 - 9 New detections
- 13 Low-significance candidates (>2.5σ)
 - 9 New detections
- 6 objects previously reported in the literature:
 - 5 with the same period
 - S5 0716+ 714 (2.9 yr)
- False-positive detection rate: 1 detection

- 24 periodicity candidates from previous work Peñil et al., 2020
- Light curves:
 - Telescope time: August 2008-December 2020
 - Extended with 3 extra years \rightarrow total of 12 years
- Data reduction:
 - Flux integrated ≥100 MeV (Reduction of upper-limits)
 - 28-days binning

Extended Pipeline

- Full Width Half Maximum (FWHM)
- ARIMA/ARFIMA analysis
 - Robust against stochastic noise (Feigelson et al., 2018)
- Power Spectral Index (β):
 - Power Spectrum Response method (Uttley et al. 2002)
- Flux Distribution:
 - Log-Normal & Normal
 - Shapiro-Wilk Test & MLE

Results: 6 Blazars $\geq 5\sigma$ (local) periodicity detection

Results: 6 Blazars $\geq 5\sigma$ (local) periodicity detection

Results

- Genuine periodicity: larger number of cycles, increase the significance (Vaughan, et al. 2015)
 - 14 blazars increase their significance
 - 4 blazars same significance
 - 6 blazars decrease their significance
- Power Spectral Index:
 - β=[0.9-1.5]
 - Jet modulations are likely coupled to the disk modulations (e.g, Abdo, et al. 2010)
- Flux Distribution:
 - Log-normal distribution
 - Fluctuations in the accretion disk to produce an aggregate multiplicative effect transmitted to the jet (e.g., Shah, et al., 2018)

Global Significance

- Local Significance (pipeline techniques)
- Look-elsewhere effect:
 - PGlobal=1-(1-PLocal)^N
 - N: trial factor
- N =Nblazars*indep. frequencies:
 Nblazars: 351

- Indep. frequencies:
 - Bottom-limit: 11 (# points in LC, samples/year)
 - Upper-limit: 100 (# frequencies in the periodograms)
 - Monte-Carlo simulations \rightarrow indep. frequencies=35
 - \circ 5 $\sigma \rightarrow$ 3.5 σ

- Calibrated the significance of the methods:
 - Calculate the number of $X\sigma$ detections with artificial LCs
 - LCs with same PSD and PDF (Emmanoulopoulos, D., et al. 2013)
 - ∆*o* = [8%-15%]
 - LCs based on a power-law [β - Δ , β , β + Δ] (Timmer and Koenig, 1995)

 $\Delta \sigma = [9\%-25\%]$

- Evaluation of the method's detection against the noise:
 - Sinusoidal signal:
 - Different periods [1.5-4.5] yrs
 - Contaminated with noise :
 - white, pink, red
 - Methods more robust against pink\red noise: detection in [25%-65%]

- We confirm the evidence of periodicity in 18 blazars:
 - We find 6 blazars with periodicity detected with 3.5σ (global significance)

- Future Work:
 - Multiwavelength and cross-correlation study of the 24 blazars
 - New periodicity analysis of all blazars in 4FGL catalogue: ~3000 blazars