$\gamma\,2022$ | Contribution ID : 365

Assessing	[]
the flaring behaviour	
of the Crab pulsar wind nebula system	
in high-energy ranges	

Michelle Tsirou Investigations conducted with B. Reville, E. de Oňa-Wilhelmi, G. Giacinti, J. Kirk

Tsirou et al – **γ 2022**

7th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy

 γ 22, Universitat de Barcelona

07.07.2022

Assessing the flaring behaviour of the Crab PWN system in HE ranges | ID 365

The Crab system : multi-wavelength emission

Newtor

NASA

/ CXC/ SAC

02 / 17

Assessing the flaring behaviour of the Crab PWN system in HE ranges | ID 365

X-ray

Fermi-Large Area Telescope : decade-long monitoring

Fermi Gamma-ray Space Telescope

Fermi-LAT public available photon data and spacecraft files, analysed with Fermitools & fermipy:

Configuration	Selection			
Event time range	August 4 th 2008 – August 4 th 2021			
Energy	50 MeV – 500GeV 10 bins / decade			
FoV	20° x 20° around the Crab			
ROI	Fitting all sources within 10°			
Filter	(DATA_QUAL>0) && (LAT_CONFIG==1) + Energy dispersion correction			
Zenith angle	90° max (to account for Earth's limb)			
Event class	128 (type : 3, front + back events)			
IRFs	P8R3_SOURCE_V2			
Catalogue	4FGL-8yr			
Templates	Galactic diffuse + isotropic			

 \rightarrow **13-yr** monitoring!

→ dominant radiation process **turn-over** range

Month-long energy-stacked raw event sky map

 \rightarrow spectro-morphological model for the Crab with **3** components (1 pulsar + **2 nebular**)

Fermi-Large Area Telescope : decade-long monitoring

Fermi-LAT public available photon data and spacecraft files, analysed with Fermitools & fermipy.

BUT

Bright HE pulsar emission is dominant w.r.t

synchrotron (SYN) and inverse Compton (IC) nebular components,

especially for < 10 GeV ranges

 \rightarrow need to "gate" the pulsar emission

by selecting the events that are in the $``\mathsf{OFF}''$ pulsar phase

Public Jodrell-Bank Observatory ephemerides

- \rightarrow tempo2 time analysis
- + account for both {pre & post} pulsar glitching epochs

Pulsar rotational energy ↓ steadily due to braking BUT sudden powerful ↑ have been observed :

- 31 glitches in the JB catalogue for the Crab
 - \rightarrow 6 during our Fermi-LAT observation span

We proceed by selecting (conservatively) ONLY the events in the (0.53 – 0.87) pulsar phase range → pulsar emission negligible

Time-averaged spectral energy distribution

Time-averaged SED

+ 1-month binning

TS > 9 else 95%ULs

IC component set to best-fit value from t-averaged SED & SYN component thawed

Bayesian-block analysis applied on {1;3;5;7;14;30;365} day-bin LCs

(7 flares from Mayer+15, Rudy+15)

 \rightarrow also in agreement with Yeung+19, Arakawa+20, Huang+21

Crab flare studies

- median $\Phi_{\rm F}$ ~ 3.3 10⁻⁴ MeV. cm⁻².s⁻¹

Flare characterisation : light curve

Tsirou et al – **γ 2022**

Assessing the flaring behaviour of the Crab PWN system in HE ranges | ID 365

pre-flare epoch : < 1

Assessing the flaring behaviour of the Crab PWN system in HE ranges | ID 365

flare epoch : **II**

Assessing the flaring behaviour of the Crab PWN system in HE ranges | ID 365

flare epoch : **III**

Assessing the flaring behaviour of the Crab PWN system in HE ranges \mid ID 365

--- Best-fit for complete t-averaged SED

flare epoch : **IV**

Assessing the flaring behaviour of the Crab PWN system in HE ranges \mid ID 365

flare epoch : V

Assessing the flaring behaviour of the Crab PWN system in HE ranges | ID 365

Tsirou et al – **γ 2022**

flare epoch : **VI**

Assessing the flaring behaviour of the Crab PWN system in HE ranges | ID 365

Post-flare epoch : VII

--- Best-fit for complete t-averaged SED

Tsirou et al – **γ 2022**

Assessing the flaring behaviour of the Crab PWN system in HE ranges | ID 365

Bright flares : March 2013 aftermath

Flare characterisation : energy distribution

Flare	features	rise	peak	decay	E _{max, φ}	E _{max, e±} (B = 0.15mG)	Best-fit for complete t-averaged SED	Investigations for (here 7) flaring windows
Feb09	1	~ 1 week	3 days	~ 5 days	~ 500 MeV	~ 7.2 PeV	+ SEDs with SYN PL assumption	Differences for :
Sep10	~ 1?	-	3 days	-	~ 1 GeV	~ 10 PeV	during flaring windows (pre-2015)	
Apr11	~ 2 at least	~ 3 days	< 1 day ~ 2 days	~ 2 days	> 1 GeV	> 10 PeV		- Pre and post flaring epochs show trends
Jul 12	~1?	-	1 week	-	~ 800 MeV	~ 9.5 PeV		- Duration of flaring event
Mar13	~]	> ~ 5 days	> 1 week	5 days	~ 700 MeV	~ 8.4 PeV		- Variability scale
Oct13	2	> 1 week	~ 3 days 5 days	~ 5 days	~ 650 MeV	~ 8 PeV	- radiated	- Features within a given flare window : "flare sub-structures"
Aug14	~1?	> ~ 1 week	~ 3 days	~ 1 week	~ 400 MeV	~ 6.4 PeV	L max, φ L SYN, burn-off	

Timescales

13 / 17

 $\begin{array}{l|l} \mbox{Vertical lines} \rightarrow \mbox{the Hillas criterion} \\ \mbox{.....:: for } R_{_{PWN}} \ (1-2\ pc) \\ \mbox{shades}: \mbox{for } R_{_{PW}} \ ^* \\ & \mbox{`(estimated by balancing wind ram pressure P}_{_{PW}} \\ \mbox{with the nebula pressure P}_{_{PWN}}) \end{array}$

For "low" B : $e^{\pm} \sim \text{TeV range} \rightarrow E_{\max, \varphi} << \text{MeV}$

For very high B : synchrotron losses would dominate

Timescales

Frequency domain

Power spectrum for the complete 13-yr dataset LCs

- Using Fourier space to investigate emerging scales for several sub-samples
- Noise
 - \rightarrow filter signal (low-pass)
 - \rightarrow white (ν^{-0}) +

•

Could the flares be a signature of ...

- highly efficient acceleration in the PW
 - nebular emission process ?

SYN + IC

State selection :

 $\Phi_{\rm F}$ < 2e-4 MeV.cm⁻².s⁻¹ (< 1/2 mean flux)

High :

 Φ_{r} > 6e-4 MeV.cm⁻².s⁻¹ (> 3/2 mean flux)

Intermediate : $\Phi_{\rm F}$ < 6e-4 MeV.cm⁻².s⁻¹ (< 3/2 mean flux)

Time-averaged SED : synchrotron emission states

Open questions :

- o Origin of the flares? Universality ?
- o Acceleration site
- (light-cylinder vicinity, inner-knot, close to TS, shock interface?) o Which mechanism at play for the short-timescale variability?

Models rely on system conditions

(B-field strength, bulk Lorentz factor, topology, anisotropy, ...)

? Inductive acceleration model *Kirk & Giacinti 2017*

- Drop in ρ_{e} with R
- \rightarrow possible origin
 - of "inductive" spikes via low-density pockets injected radially as a beam by the PW into the <u>PWN</u>

Paper in prep

Study based on the 13-year-long monitoring of

Crab PWN emission detected

- in (50 MeV 500 GeV) :
- Gated pulsar emission with observed glitches taken into account
- Spectro-morphological model of both nebular components
- Investigation for day-week-month timescales via Bayesian analysis
- Power spectra examination for selected flux-level samples

& samples of candidate flaring epochs

~ 34 candidate flaring windows (2008 - 2021)

Flaring behaviour: Not driven by a single mechanism?

→ flare characteristics pointing to different observational signatures!

Interpretation relying on the observed energy-dependence and time variability of the synchrotron associated emission

 \rightarrow intense flaring contributes to the unabridged Crab PWN spectrum ?

 \rightarrow possible nebular origin of the flares ?

 $(\rightarrow$ acceleration ~ TS and anisotropic injection then cooling in the PWN?)

Back-up slides

Study based on the 13-year-long monitoring of Crab PWN emission detected in (50 MeV – 500 GeV) :

Bayesian analysis + screening yield \rightarrow

\sim 34 candidate flaring windows (2008 - 2021) with :

- -7/7 pre-reported \leftarrow Mayer+15, Rudy+15 and ref therein (pre-2015)
- 6 / 7* small-flares \leftarrow Arakawa+20 (pre-2015)
- 7 / 8* flares ← Huang+21 (pre-mid 2019)
- -7 / 7 dimming-states \leftarrow Yeung & Horn 2019 (pre-mid 2018)

Interpretation relying on the observed

energy-dependence and time variability of the synchrotron associated emission

... / ...

Light curve : time-dependence

Fermi-Large Area Telescope : decade-long monitoring

Fermi

Gamma-ray Space Telescope

Fermi-LAT public available photon data and spacecraft files :

Some technical notes Event time range : from August $4^{th} 2008 - August 4^{th} 2021 \rightarrow 13$ -year monitoring!

FoV : 20 deg x 20 deg around Energy binning : 10 bins / decade **3 spectro-morphological components for the Crab** (1 for PSR + 2 for PWN) Pass 8 data : P8R3

Event class : 128 (and type : 3, front + back events) IRFs : P8R3_SOURCE_V2 Apparent zenith : 90° max (selection to account for the Earth's limb) Filtering : (DATA_QUAL>0) && (LAT_CONFIG==1) Energy dispersion correction enabled One of the aims of our study : "characterise the e-dependence of the synchrotron Crab flares"

Illustration of the point spread function (PSF) dependence with energy \rightarrow

Fermitools : v1.2.23 fermipy : v0.19.0 tempo2 : core code with fermi plugin

Galactic diffuse emission template : gll_iem_v07.fits lsotropic spectral template : iso_P8R3_SOURCE_V2_v1.txt

4FGL -8yr catalogue

: gll_psc_v21.fit

(hyperlinks to material of interest

PWN with detected emission ranging from ~ tens of MHz up to PeV photons!

In the last two decades, γ-ray experiments have contributed to the discovery of exciting and surprising features from the Crab!

E.g :

In the high-energy range (**HE**) (~ tens MeV to ~ hundreds GeV) → Fermi-LAT, AGILE

Very high energy range (VHE) (hundreds of GeV to ~ tens of TeV) → H.E.S.S., MAGIC, VERITAS, HAWC, Tibet As-y, LHAASO

→ dawn of the ultra-high-energy range (UHE) (~ hundreds TeV - ~ PeV) era?

"Wisps" : systematic brightness variability in radio, optical and X-ray bands \rightarrow propagating plasma waves?

X-rays (Chandra) and optical light (Hubble) Credits: NASA/CXC/ASU/J.Hester et al. and NASA/HST/ASU/J.Hester et al.

Observations : (Nov 2000 - April 2001)

scale : inner ring ~ 0.3 pc

The Crab system : a unique source in the Milky Way

2004; (d) <u>Mineo et al. 2006; (</u>e) Kuiper et al. 2001; (f) ÉGRET, Kuiper et al. 2001; (g) This paper; (h) Áliu et al. 2008

• With a central young and energetic pulsar B0531+21 (or 4FGL J0534.5+2200)

- estimated distance ~ 2 kpc
- age ~ 1 kyr
- spin-down power $\approx 4.5 \times 10^{38} \text{ erg.s}^{-1}$
- period ~33ms

-
$$B_{light-cylinder} \sim 10^6 \text{ G}$$

with firmly discovered pulsations seen in the radio band and all the way up to VHE ranges!

Hear the pulsation!

Fermi-LAT collaboration et al, 2010 (+ references therein)

Time-averaged SED comparison

Time-averaged SED comparison

