

Multi-messenger characterization of Mrk501 during historically low X-ray and gamma-ray activity

Lea Heckmann, David Paneque, Sargis Gasparyan, Matteo Cerruti, Narek Sahakyan

universität innsbruck

MAX-PLANCK-INSTITUT FÜR PHYSIK

```
Lea Heckmann
```

Gamma 2022

2022-07-07

- Mrk501 is one of our closest & brightest blazars
- It can be studied in detail in both during flaring and quiescent states

- Mrk501 is one of our closest & brightest blazars
- It can be studied in detail in both during flaring and quiescent states
- Regular MWL monitoring is organized to disentangle its complex behavior

- Mrk501 is one of our closest & brightest blazars
- It can be studied in detail in both during flaring and quiescent states
- Regular MWL monitoring is organized to disentangle its complex behavior
- 4 years of very low activity from 2017 to 2020

- Mrk501 is one of our closest & brightest blazars
- It can be studied in detail in both during flaring and quiescent states
- Regular MWL monitoring is organized to disentangle its complex behavior
- 4 years of very low activity from 2017 to 2020
- 2 years of historically low X-ray activity
 - Is it a sort of **baseline**?

Mrk501 - low activity

• 2 years of historically low X-ray

Mrk501 - low activity

• 2 years of historically low X-ray and gamma-ray (>0.2 TeV) activity

Mrk501 - low activity

• 2 years of historically low X-ray and gamma-ray (>0.2 TeV) activity

- Identified by a Bayesian block algorithm applied to the MAGIC lightcurve
- From mid of 2017 to mid of 2019
- VHE flux constant at ~5% that of the Crab
- Simultaneous low activity in X-rays

MWL correlations - 4year (2017 - 2020)

Lea Heckmann

MWL correlations - 4year (2017 - 2020)

• MAGIC and *Swift*-XRT at 0 time lag for the first time significant (> 3σ) during low activity states

MWL correlations - 4year (2017 - 2020)

- MAGIC and *Swift*-XRT at 0 time lag for the first time significant (> 3σ) during low activity states
- Correlation over an extended period of time -12 years (2008-2020)

MWL correlations - 4year (2017 - 2020)

- MAGIC and *Swift*-XRT at 0 time lag for the first time significant (> 3σ) during low activity states
- Correlation over an extended period of time -12 years (2008-2020)
 - Fermi-LAT & OVRO at -100 to 200 days

MWL correlations - 4year (2017 - 2020)

- MAGIC and *Swift*-XRT at 0 time lag for the first time significant (> 3σ) during low activity states
- Correlation over an extended period of time -12 years (2008-2020)
 - Fermi-LAT & OVRO at -100 to 200 days
 - Fermi-LAT & Swift-XRT at 0 time for the first time significant (> 3σ) lag on both long

2022-07-07

MWL correlations - 4year (2017 - 2020)

- MAGIC and *Swift*-XRT at 0 time lag for the first time significant (> 3σ) during low activity states
- Correlation over an extended period of time -12 years (2008-2020)
 - Fermi-LAT & OVRO at -100 to 200 days
 - Fermi-LAT & Swift-XRT at 0 time for the first time significant (> 3σ) lag on both long and short time scales

- Constant flux at VHE
- As usual little variability in lower energy bands

- Constant flux at VHE
- As usual little variability in lower energy bands
 - \rightarrow SED with good MWL coverage
 - Average spectra during the 2year period of extremely low activity ("baseline")

- Constant flux at VHE
- As usual little variability in lower energy bands
 - \rightarrow SED with good MWL coverage
 - Average spectra during the 2year period of extremely low activity ("baseline")
 - Min. & Max. variations displayed for the optical/UV and X-ray data (not significant for gamma-ray data)

- Constant flux at VHE
- As usual little variability in lower energy bands
 - \rightarrow SED with good MWL coverage
 - Average spectra during the 2year period of extremely low activity ("baseline")
 - Min. & Max. variations displayed for the optical/UV and X-ray data (not significant for gamma-ray data)
 - → Averaged SED very well suited to investigate the nature of this extremely low-state emission (baseline)

Gamma 2022

2022-07-07

- Constant flux at VHE
- As usual little variability in lower energy bands
 - \rightarrow SED with good MWL coverage
 - Average spectra during the 2year period of extremely low activity ("baseline")
 - Min. & Max. variations displayed for the optical/UV and X-ray data (not significant for gamma-ray data)
 - → Averaged SED very well suited to investigate the nature of this extremely low-state emission (baseline)

2022-07-07

Gamma 2022

- Standard one-zone SSC model
- Two independent frameworks

Standard one-zone SSC model

- Two independent frameworks
 - Modified naima framework using a MCMC sampler by S. Gasparyan

Standard one-zone SSC model

- Two independent frameworks
 - Modified naima framework using a MCMC sampler by S. Gasparyan
 - Public jetset framework using a minuit minimization result as a prior for a MCMC sampler by A. Tramacere

Standard one-zone SSC model

- Two independent frameworks
 - Modified naima framework using a MCMC sampler by S. Gasparyan
 - Public jetset framework using a minuit minimization result as a prior for a MCMC sampler by A. Tramacere

→ Both frameworks **describe the low state SED well** with **standard model parameters**

(see e.g. Abdo et al. 2011)

	L _e [erg/s]	α_1	$\gamma_{ m br}'$	$\gamma'_{ m max}$
Modified Naima	7.7×10^{43}	2.57	$2.0 \times 10^{5*}$	1.2×10^{6}
Jetset	8.4×10^{43}	2.59	$2.0 \times 10^{5*}$	1.2×10^{6}

 5.7×10^{-4}

*Fixed to the cooling break

Broken power law used with $\alpha_2 = \alpha_1 + 1$, $\gamma_{\min} = 1000$, $R = 1.1 \times 10^{17}$ cm, $\delta = 11$, z = 0.034, Franceschini EBL

Lea Heckmann

Gamma 2022

23

 2.5×10^{-5}

 9.6×10^{43}

 Frameworks using the LeHa (Cerruti et al. 2015) and SORPANO (Gasparyan et al. 2022) codes

- Frameworks using the LeHa (Cerruti et al. 2015) and SORPANO (Gasparyan et al. 2022) codes
 - → Describes the low-state SED reasonably well

 Frameworks using the LeHa (Cerruti et al. 2015) and SORPANO (Gasparyan et al. 2022) codes

\rightarrow Describes the low-state SED reasonably well

 with standard model parameters and low variability

 Frameworks using the LeHa (Cerruti et al. 2015) and SORPANO (Gasparyan et al. 2022) codes

\rightarrow Describes the low-state SED reasonably well

 with standard model parameters and low variability

in agreement with the IceCube ULs

Neutrino rates per year: Expected by the model: 1e-5 IceCube best fit number: 10.3/10

Gamma 2022

Additional NuSTAR observations
 → Evaluation of the SED evolution

Lea Heckmann

2022-07-07

a)	Model	for	NuSTAR-1	with a	magnetic	field o	of <i>B</i> ′	=0.01 G
----	-------	-----	----------	--------	----------	---------	---------------	----------

	L _e [erg/s]	α_1	$\gamma_{ m br}'$	$\gamma'_{\rm max}$	
Modified Naima	1.1×10^{44}	2.30	$6.6 \times 10^{5*}$	7.2×10^{6}	
Jetset	1.1×10^{44}	2.29	$6.6 \times 10^{5*}$	7.3×10^{6}	

-,	L_{e} [erg/s]	α_1	$\gamma'_{\rm br}$	$\gamma'_{\rm max}$
Modified Naima	7.8×10^{43}	2.52	$1.9 \times 10^{5*}$	1.5×10^{6}
Jetset	8.2×10^{43}	2.55	$1.9 \times 10^{5*}$	1.6×10^{6}

b) Model for NuSTAP 2 with a magnetic field of R' = 0.025 G

*Fixed to the cooling break

Broken power law used with $\alpha_2 = \alpha_1 + 1$, $\gamma_{\min} = 1000$, $R = 1.1 \times 10^{17}$ cm, $\delta = 11$, z = 0.034, Franceschini EBL

Lea Heckmann

Gamma 2022

• Assumption:

- Assumption:
 - Stable & always present baseline emission
 - \rightarrow use our low state model

• Assumption:

• Stable & always present baseline emission

 \rightarrow use our low state model

 Usually outshone by a more dominant and variable region

• Assumption:

• Stable & always present baseline emission

 \rightarrow use our low state model

 Usually outshone by a more dominant and variable region

→ Combination reproduces the observed blazar emission

• Assumption:

• Stable & always present baseline emission

 \rightarrow use our low state model

 Usually outshone by a more dominant and variable region

→ Combination reproduces the observed blazar emission

- Applied to the SED evolution (NuSTAR1 – low-state)
- Applied to the typical state of Mrk501 (Abdo et al. 2011)

1015

Gamma 2022

10⁻¹³

1012

1021

1024

 10^{18}

ν [Hz]

10²⁷

Summary

- During the period from mid-2017 to mid-2019, Mrk501 showed **historically low** activity in X-rays and VHE gamma rays
- Variability & correlations hint towards a leptonic origin of the variable part of the blazar emission
 - For the first time, we find **correlation between X-rays and VHE** at more than 3σ significance **during low activity states**
 - Radio lags behind the γ -rays by more than 100 days \rightarrow location γ -ray emission upstream of radio bright regions
 - Additionally, *Fermi*-LAT and *Swift*-XRT show a correlation at more than 3σ level
- We demonstrated how this extremely low state (baseline emission ?) can be explained by both standard leptonic and hadronic scenarios in agreement with additional multi-messenger data
- These studies can be used to evaluate the **potential existence of a steady baseline component** in the blazar emission, which is often **outshone by the emission of more variable and active region**
- For details wait for the upcoming publication

Thank you for your attention!