Search for Dark Matter annihilation with a combined analysis of dwarf spheroidal galaxies from Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS

7th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy (γ-2022) Barcelona, 7th July 2022

<u>Daniel Kerszberg</u> (IFAE-BIST), Céline Armand, Eric Charles, Mattia di Mauro, Chiara Giuri, J. Patrick Harding, Tjark Miener, Emmanuel Moulin, Louise Oakes, Vincent Poireau, Elisa Pueschel, Javier Rico, Lucia Rinchiuso, Daniel Salazar-Gallegos, Kirsen Tollefson, Benjamin Zitzer for the Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS collaborations

Dark Matter indirect searches

- Looking for DM particles self-annihilating into SM particles
- Gamma-rays are not deflected by magnetic fields and trace back to original source
 - → Critical to identify the (physical) origin of the signal and study DM spatial distribution
- Classical targets for gamma-ray experiments include among others:
 - The Galactic Center (high DM content with high uncertainties)
 - Dwarf spheroidal galaxies (lower DM content with smaller uncertainties)
- Here we will focus on dwarf spheroidal galaxies for which:
 - The expected astrophysical gamma-ray emission is negligible
 - Large data sets have been already collected
 - → Combining data from existing experiments allows to maximize the sensitivity to potential DM signals by increasing the statistics without requesting more observation time

Involved experiments

- Initiative by 5 gamma-ray experiments to combine their observations of dwarf galaxies:
 - Fermi-LAT
 - HAWC
 - H.E.S.S.
 - MAGIC
 - VERITAS

Fermi-LAT

- Satellite in operation since 2008
- Energy range:20 MeV above 300 GeV
- Field of view ~20% of the sky
- Scan the whole sky every
 ~3 hours

Fermi-LAT: in orbit at 550 km

HAWC

 Array of water Cherenkov detectors in operation since 2013

Energy range:300 GeV - 100 TeV

Field of view ~15% of the sky

HAWC: Puebla, Mexico, 4100 m

H.E.S.S.

Array of five Cherenkov telescopes

- Phase I with 4 telescopes of
 12 m diameter since 2003
- Phase II with the addition of a telescope of 28 m diameter since 2012
- Energy range:30 GeV 100 TeV
- Field of view of 5°

HESS: Khomas Highland, Namibia, 1800 m

MAGIC

- MAGIC consists of two 17 m diameter Cherenkov telescopes
 - First telescope since 2004
 - Second telescope since 2009

Energy range:50 GeV - 50 TeV

Field of view of ~3.5°

MAGIC: La Palma, Spain, 2200 m

VERITAS

 Array of four 12 m diameter Cherenkov telescopes since 2007

Energy range:100 GeV - 30 TeV

Field of view of 3.5°

VERITAS: Arizona, USA, 1300 m

List of targets

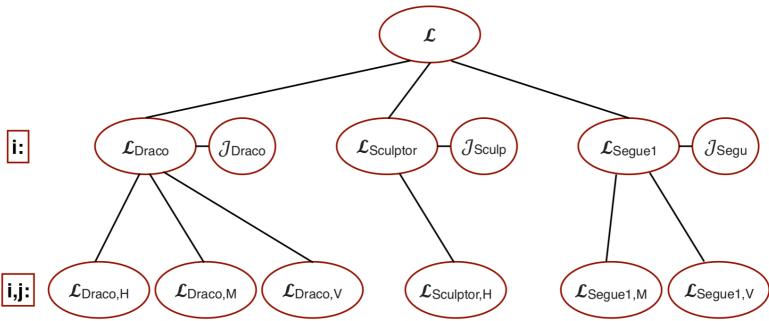
 In this project we use a list of 20 dwarf galaxies for which individual collaborations already published results

 In total, 45 different data sets used

		Fermi-LAT	HAWC	H.E.S.S, MAGIC, VERITAS		
	Source name	Exposure (10^{11} s m^2)	$ \Delta\theta $ (°)	IACT	Zenith (°)	Exposure (h)
	Boötes I	2.6	4.5	VERITAS	15 - 30	14.0
	Canes Venatici I	2.9	14.6	_	_	_
	Canes Venatici II	2.9	15.3	_	_	_
	Carina	3.1		H.E.S.S.	27 - 46	23.7
	Coma Berenices	2.7	4.9	H.E.S.S.	-47 - 49	11.4
	Coma Bereinces	Onia Bereinces 2.1		MAGIC	5 - 37	49.5
	Draco	Draco 3.8	38.1	MAGIC	29 - 45	52.1
	Diaco			VERITAS	25 - 40	49.8
	Fornax			H.E.S.S.	11 - 25	6.8
	Hercules	2.8	6.3	_	_	_
	Leo I	2.4	6.7	_	_	_
	Leo II	2.6	3.1	_	_	_
	Leo IV	2.4	19.5	_	_	_
	Leo V	2.4	-	_	_	_
	Leo T	2.6	_	_	_	_
	Sculptor	2.7	L	H.E.S.S.	10 - 46	11.8
	Segue I	Segue I 2.5	2.9	MAGIC	$\bar{13} - \bar{37}$	-158.0
				VERITAS	15 - 35	92.0
	Segue II		_	_	_	_
	Sextans	2.4	20.6	_	_	_
	Ursa Major I	3.4	32.9	_	_	_
	Ursa Major II	4.0	44.1	MAGIC	35 - 45	94.8
	Ursa Minor	4.1	_	VERITAS	35 - 45	60.4

Combined likelihood analysis

Expected gamma-ray flux from DM annihilation:

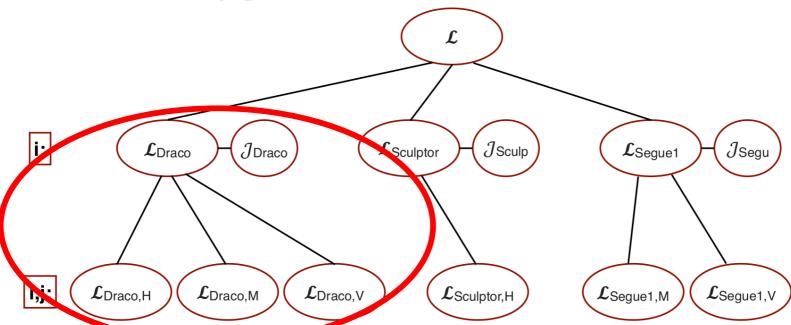

$$\frac{\mathrm{d}^2\Phi\left(\langle\sigma v\rangle,J\right)}{\mathrm{d}E\mathrm{d}\Omega} = \frac{1}{4\pi} \times \frac{\langle\sigma v\rangle}{2m_{\mathrm{DM}}^2} \sum_f \mathrm{BR}_f \frac{\mathrm{d}N_f}{\mathrm{d}E} \times \frac{\mathrm{d}J}{\mathrm{d}\Omega}$$

- Using as many common ingredients as possible:
 - Common range of channels and DM masses:
 - From 5 GeV to 100 TeV using the DM spectra from Cirelli et al. [JCAP 1103:051, 2011]
 - Studied 7 annihilation channels in total
 - Same J-factor values and statistical uncertainties
- Individual experiments shared likelihood profile for each dSph/channel/mass combination for a fixed value of the J-factor
 - statistical uncertainties on the J-factor are taken into account (the J-factor being a nuisance parameter in the combined likelihood)

Combined likelihood analysis

Combined likelihood:

$$\mathcal{L}\left(\langle \sigma v \rangle; \boldsymbol{\nu} \mid \boldsymbol{\mathcal{D}}_{\text{dSphs}}\right) = \prod_{l=1}^{N_{\text{dSphs}}} \mathcal{L}_{\text{dSph},l}\left(\langle \sigma v \rangle; J_{l}, \boldsymbol{\nu_{l}} \mid \boldsymbol{\mathcal{D}}_{\boldsymbol{l},\text{measured}}\right) \times \mathcal{J}_{l}\left(J_{l} \mid J_{l,\text{obs}}, \sigma_{\log J_{l}}\right)$$



- The combination was performed with two independent softwares:
 - glike: https://doi.org/10.5281/zenodo.4028908
 - LklCombiner: https://doi.org/10.5281/zenodo.4450884

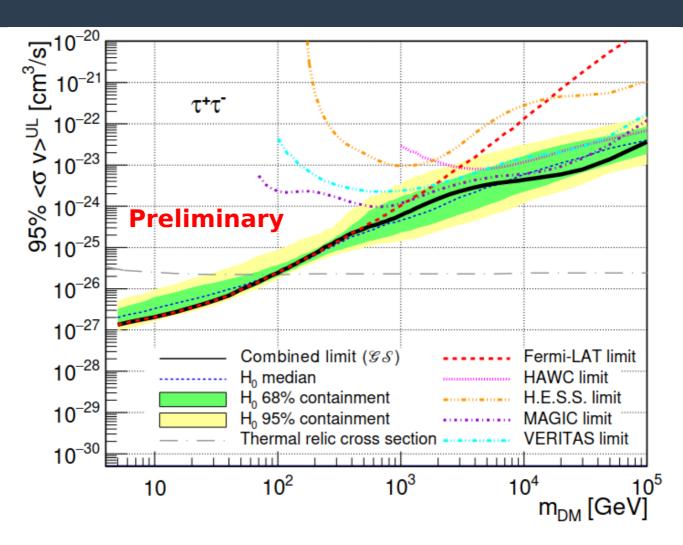
Combined likelihood analysis

Combined likelihood:

$$\mathcal{L}\left(\langle \sigma v \rangle; \boldsymbol{\nu} \mid \boldsymbol{\mathcal{D}}_{\text{dSphs}}\right) = \prod_{l=1}^{N_{\text{dSphs}}} \mathcal{L}_{\text{dSph},l}\left(\langle \sigma v \rangle; J_{l}, \boldsymbol{\nu_{l}} \mid \boldsymbol{\mathcal{D}}_{\boldsymbol{l},\text{measured}}\right) \times \mathcal{J}_{l}\left(J_{l} \mid J_{l,\text{obs}}, \sigma_{\log J_{l}}\right)$$

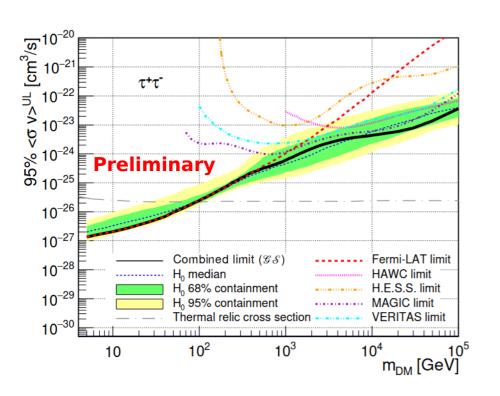
- The combination was performed with two independent softwares:
 - glike: https://doi.org/10.5281/zenodo.4028908
 - LklCombiner: https://doi.org/10.5281/zenodo.4450884

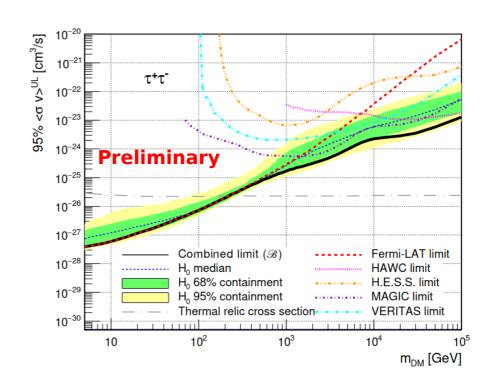
Combined likelihood analysis: an example for one dSph


The total likelihood combines the likelihood of the 20 targets!

Uncertainty on the DM content

- The J-factor estimation is the largest source of uncertainty in this analysis
- We used 2 sets of J-factors to compare the effect on the final results
 - From A. Geringer-Sameth et al.
 [APJ 801:74, 2015]
 - From V. Bonnivard et al. [MNRAS 446:3002, 2015 and MNRAS 453:849, 2015]
- Some dSphs are marginally affected but some are very affected


	Name	$\log_{10} J \left(\mathcal{GS} \text{ set} \right)$ $\log_{10} (\text{GeV}^2 \text{cm}^{-5} \text{sr})$	$\log_{10} J \left(\mathcal{B} \text{ set} \right) $ $\log_{10} (\text{GeV}^2 \text{cm}^{-5} \text{sr})$
	Boötes I	18.24 ^{+0.40} _{-0.37}	18.85 ^{+1.10} _{-0.61}
	Canes Venatici I	$17.44^{+0.37}_{-0.28}$	$17.63^{+0.50}_{-0.20}$
	Canes Venatici II	$17.65^{+0.45}_{-0.43}$	$18.67^{+1.54}_{-0.97}$
	Carina	$17.92^{+0.19}_{-0.11}$	$18.02^{+0.36}_{-0.15}$
	Coma Berenices	$19.02^{+0.37}_{-0.41}$	$20.13^{+1.56}_{-1.08}$
	Draco	$19.05^{+0.22}_{-0.21}$	$19.42^{+0.92}_{-0.47}$
	Fornax	$17.84^{+0.11}_{-0.06}$	$17.85^{+0.11}_{-0.08}$
	Hercules	$16.86^{+0.74}_{-0.68}$	$17.70^{+1.08}_{-0.73}$
	Leo I	$17.84^{+0.20}_{-0.16}$	$17.93^{+0.65}_{-0.25}$
	Leo II	$17.97^{+0.20}_{-0.18}$	$18.11^{+0.71}_{-0.25}$
	Leo IV	$16.32^{+1.06}_{-1.70}$	$16.36^{+1.44}_{-1.65}$
	Leo V	$16.37^{+0.94}_{-0.87}$	$16.30^{+1.33}_{-1.16}$
	Leo T	$17.11^{+0.44}_{-0.39}$	$17.67^{+1.01}_{-0.56}$
	Sculptor	$18.57^{+0.07}_{-0.05}$	$18.63^{+0.14}_{-0.08}$
	Segue I	$19.36^{+0.32}_{-0.35}$	$17.52^{+2.54}_{-2.65}$
	Segue II	$16.21^{+1.06}_{-0.98}$	$19.50^{+1.82}_{-1.48}$
	Sextans	$17.92^{+0.35}_{-0.29}$	$18.04^{+0.50}_{-0.28}$
	Ursa Major I	$17.87^{+0.56}_{-0.33}$	$18.84^{+0.97}_{-0.43}$
	Ursa Major II	$19.42^{+0.44}_{-0.42}$	$20.60^{+1.46}_{-0.95}$
:	Ursa Minor	$18.95^{+0.26}_{-0.18}$	$19.08^{+0.21}_{-0.13}$


Combined limits

Combined limits are up to a factor 2-3 more constraining

Comparison of the limits using two different sets of J-factors

"Bonnivard" provides better limits than "Geringer-Sameth" by a factor 2-6

Conclusion

- This analysis framework allows us to perform multi-instrument and multi-target analysis
- No significant DM signal was observed
- Combined limits range from 5 GeV to 100 TeV and improve individual limits up to a factor 2 to 3
- Using 2 different sets of J-factors we were able to study the systematic impact on the results:
 - limits can vary by a factor of 2 to 6
 - combining many targets allows to minimize the importance of single dSphs, particularly relevant when their J-factor is (very) uncertain
- Publication under preparation will include in total 7 annihilation channels
- Combination including other messengers such as neutrinos is possible!