Modelling Wind Dynamics and Gamma-Ray Emission from LS 5039

7th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy Universitat de Barcelona

Ralf Kissmann, David Huber, Philipp Gschwandtner

Modelling the Stellar Winds of LS 5039

 γ 2022

Stellar Wind

- Stellar gas outflow
- Mass-loss rate $\sim 2 \times 10^{-8} M_{\odot} \mathrm{yr}^{-1}$ $\rightarrow 2.5 \times 10^{27} \mathrm{W}$
- $\bullet\,$ Wind speed 2000 km/s
- $\rightarrow~$ 3D hydrodynamics

A Stellar-Wind Bow Shock

(Image credit: NASA)

Stellar Wind

- Stellar gas outflow
- Mass-loss rate $\sim 2 \times 10^{-8} M_{\odot} \mathrm{yr}^{-1}$ $\rightarrow 2.5 \times 10^{27} \mathrm{W}$
- Wind speed 2000 km/s
- ightarrow 3D hydrodynamics

Pulsar Wind

- Pair-plasma outflow
- Spin-down luminosity: $7.55 \times 10^{28} \mathrm{W}$
- \bullet Wind speed: 99% c
- ightarrow 3D relativistic(!) hydrodynamics

Relativistic Stellar Winds

 γ 2022

Stellar Winds

Relativistic HD

 $\frac{\partial D}{\partial t} + \nabla \cdot \left(\frac{1}{\gamma} D \mathbf{u}\right) = 0$ $\frac{\partial \mathbf{m}}{\partial t} + \nabla \cdot \left(\frac{1}{\gamma} \mathbf{m} \otimes \mathbf{u} + p \mathbb{1}\right) = \mathbf{f}$ $\frac{\partial \tau}{\partial t} + \nabla \cdot \left((\tau + p)\frac{1}{\gamma}\mathbf{u}\right) = S_{\tau}$

Relativistic Hydrodyamics

Equation of state

$$h = h(\rho, p) = 1 + \frac{\Gamma}{\Gamma - 1} \frac{p}{\rho}$$

Relativistic Stellar Winds

 $\gamma 2\overline{022}$

Stellar Winds

- Relativistic HD
- Conserved Quantities
 - $\bullet \ \, {\rm Density} \ \, D=\gamma\rho$
 - Momentum

$$m^j = \gamma \rho h u^j = \gamma^2 \rho h v^j$$

• Energy density $\tau=\gamma^2\rho h-p-D$

Relativistic Hydrodyamics $\frac{\partial D}{\partial t} + \nabla \cdot \left(\frac{1}{\gamma} D \mathbf{u}\right) = 0$ $\frac{\partial \mathbf{m}}{\partial t} + \nabla \cdot \left(\frac{1}{\gamma} \mathbf{m} \otimes \mathbf{u} + p \mathbb{1}\right) = \mathbf{f}$ $\frac{\partial \tau}{\partial t} + \nabla \cdot \left((\tau + p) \frac{1}{\gamma} \mathbf{u}\right) = S_{\tau}$

Equation of state

$$h = h(\rho, p) = 1 + \frac{\Gamma}{\Gamma - 1} \frac{p}{\rho}$$

Relativistic Stellar Winds

 $\gamma 2\overline{022}$

Stellar Winds

- Relativistic HD
- Conserved Quantities
 - $\bullet \ \ {\rm Density} \ D=\gamma\rho$
 - Momentum

$$m^j = \gamma \rho h u^j = \gamma^2 \rho h v^j$$

- Energy density $\tau=\gamma^2\rho h-p-D$
- \bullet Solver: Cronos MHD / RHD code

Equation of state

$$h = h(\rho, p) = 1 + \frac{\Gamma}{\Gamma - 1} \frac{p}{\rho}$$

Relativistic Hydrodyamics $\frac{\partial D}{\partial t} + \nabla \cdot \left(\frac{1}{\gamma} D \mathbf{u}\right) = 0$ $\frac{\partial \mathbf{m}}{\partial t} + \nabla \cdot \left(\frac{1}{\gamma} \mathbf{m} \otimes \mathbf{u} + p \mathbb{1}\right) = \mathbf{f}$ $\frac{\partial \tau}{\partial t} + \nabla \cdot \left((\tau + p) \frac{1}{\gamma} \mathbf{u}\right) = S_{\tau}$

 γ 2022

Transport Equation

$$\nabla_{\mu} \left(u^{\mu} \mathcal{N}' \right) + \frac{\partial}{\partial \gamma'} \left\{ \left(-\frac{\gamma'}{3} \nabla_{\mu} u^{\mu} + \dot{\gamma}'_{rad} \right) N' \right\} = 0$$

- Inject spectrum at shocks
 - Maxwellian
 - Power law
- Transport with fluid flow
- Spatial diffusion
- Energy losses

 γ 2022

Transport Equation $\nabla_{\mu} \left(u^{\mu} \mathcal{N}' \right) + \frac{\partial}{\partial \gamma'} \left\{ \left(-\frac{\gamma'}{3} \nabla_{\mu} u^{\mu} + \dot{\gamma}'_{rad} \right) N' \right\} = 0$

- Inject spectrum at shocks
 - Maxwellian
 - Power law
- Transport with fluid flow
- Spatial diffusion
- Energy losses

 γ 2022

Transport Equation

$$\nabla_{\mu} \left(u^{\mu} \mathcal{N}' \right) + \frac{\partial}{\partial \gamma'} \left\{ \left(-\frac{\gamma'}{3} \nabla_{\mu} u^{\mu} + \dot{\gamma}'_{rad} \right) N' \right\} = 0$$

Energy loss processes

- Adiabatic losses
- Synchrotron
- Inverse Compton

- Inject spectrum at shocks
 - Maxwellian
 - Power law
- Transport with fluid flow
- Spatial diffusion
- Energy losses

 γ 2022

Transport Equation

$$\nabla_{\mu} \left(u^{\mu} \mathcal{N}' \right) + \frac{\partial}{\partial \gamma'} \left\{ \left(-\frac{\gamma'}{3} \nabla_{\mu} u^{\mu} + \dot{\gamma}'_{rad} \right) N' \right\} = 0$$

Energy loss processes

- Adiabatic losses
- Synchrotron
- Inverse Compton

Results

- Position- & energy-dependent particle flux \rightarrow 4D problem
- ightarrow Can compute non-thermal emission

- Inject spectrum at shocks
 - Maxwellian
 - Power law
- Transport with fluid flow
- Spatial diffusion
- Energy losses

Numerical Model

Simulation Setup

- Numerical domain: 2.5×2×1 AU
- Spatial resolution: 640×512×256 cells
- 50 logarithmic energy bins
- Co-rotating frame
- Semi-major axis: a = 0.145 AU, excentricity: e = 0.35
- Orbital timescale: 3.9 d
- Timestep: $\sim 1 s$
- 1000 core first-generation Epyc system

Wind Interaction

Gas Density

Wind Interaction

Gas Density

Energetic Particles

Energetic Particles

Energetic Particles

Preliminary: New Simulations (PRACE)

Stellar-Wind Interaction

Preliminary: New Simulations (PRACE)

Stellar-Wind Interaction

Preliminary: New Simulations (PRACE)

γ 2022

Stellar-Wind Interaction

Improved Simulation Parameters

- Larger domain $4 \times 3 \times 2$ AU
- Spatial resolution: 2048×1536×1024
 → 40× increase (~ 3 billion cells)
- Simulation of 3 full orbits (nearly 1 million steps per orbit)

PRACE Application

- System: Joliot-Curie Rome
- $\bullet\,$ Typical 10^4 cores per simulation
- Wind-only simulations
 - 200 GB raw data per step
 - 10.5×10^6 core hours
- Simulations with particles
 - 920 GB raw data per step
 - 12.2×10^6 core hours

(Huber et al. (2021))

 γ 2022

Gas Density

Dynamics of Stellar Winds (Corotating Frame) γ 2022

Conclusion

Energetic Particles

Current Status

- Coupled RHD plus transport
- Pulsar-wind scenario
- Currently: higher-resolution model
 - Post processing
 - Analysis of RHD winds
- Future: Magnetic field!

Emission Projections

x [AU]