

Shear Acceleration in Large-scale Jets

Jieshuang Wang (jswang@mpi-hd.mpg.de) Max-Planck-Institut für Kernphysik, Heidelberg

Brian Reville (MPIK), Yosuke Mizuno (TDLI, SJTU), Frank Rieger (Uni-Heidelberg), Felix Aharonian (DIAS,MPIK), Ruoyu Liu (NJU)

4 July @ Gamma 2022 - Universitat de Barcelona

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

- Brief introduction of kpc-scale jets (P. 3-7)
- Shear acceleration: theory and application (P. 8-15)
 - FR I jet: Centaurus A
 - FR II jet: 3C 273
 - Acceleration of Cosmic rays
- RMHD simulations (P.16)
- Summary (P.17)

Outline

AGN jets in all scales

Mass and Energy transfer from < sub-pc scale to ~Mpc scale

Blandford R., Meier D., Readhead A., 2019, ARA&A, 57, 467

Harris D. E., Krawczynski H., 2006, ARA&A, 44, 463

X-ray jet: accelerators

Generic Name	R.A. (J2000) hh:mm:ss.s	Dec. (J2000) dd:mm:ss.s	z	<u>Class</u>	<u>X-ray</u> <u>Features</u>	Assoc. optical
<u>3C6.1</u>	00:16:31.1	+79:16:49.9	0.8404	FRII RG	both HS	?
<u>3C9</u>	00:20:25.2	+15:40:54.7	2.012	LDQ	jet, CL	?
3 <u>C15</u>	00:37:04.1	-01:09:08.5	0.0730	FRI RG	knot, lobes	yes
<u>3C17</u>	00:38:20.5	-02:07:40.7	0.22	FR2 RG	knot	yes
NGC315	00:57:48.9	+30:21:08.8	0.0165	FRI RG	inner jet knots	?
<u>3C31</u>	01:07:24.9	+32:25:45.0	0.0167	FRI RG	inner 8" jet	yes
0106+013	01:08:38.8	+01:35:0.317	2.099	CDQ	knot	?
3C33	01:08:52.9	+13:20:13.8	0.0597	FRII RG	both hotspots	yes
<u>3C47</u>	01:36:24.4	+20:57:27.4	0.425	LDQ	hsS	no
4C+35.03	02:09:38.6	+35:47:50.9	0.0369	FRI RG	inner jet	no
PKS0208-512	02:10:46.3	-51:01:02.9	0.999	CDQ	jet/knot	no
3C66B	02:23:11.4	+43:00:31.2	0.0215	FRI RG	inner 8" jet	jet
0234+285	02:37:52.4	+28:48:08.9	1.213	CDQ	jet	?
0 <u>313-192</u>	03:15:52.1	-19:06:44.3	0.067	FRI RG	inner jet	?
3C83.1	03:18:15.7	+41:51:27.9	0.0251	FRI RG	E and W knots	??
PKS0405-12	04:07:48.4	-12:11:36.6	0.574	CDQ	hs	same as X-ray
<u>3C109</u>	04:13:40.4	+11:12:13.8	0.3056	FRII RG	hsS	no
PKS0413-21	04:16:04.4	-20:56:27.5	0.808	CDQ	jet/knot	no
3C111	04:18:21.3	+38:01:35.8	0.0491	FRII RG	knots	?
3 <u>C120</u>	04:33:11.1	+05:21:15.6	0.0330	Sy I	inner jet; 4"knot; 25"knot; 80"knot	some
<u>3C123</u>	04:37:04.4	+29:40:13.7	0.2177	FRII RG	hsE, hsW	no
<u>3C129</u>	04:49:09.1	+45:00:39.3	0.0208	FRI RG	two inner knots	no
<u>0454-463</u>	04:55:50.8	-46:15:58.7	0.858	CDQ	knot	?
PictorA	05-19-49 7	-45-46-44 5	0.0350	FRIIRG	linear iet. Wihs. CL.	W hs

>100 sources @ https://hea-www.harvard.edu/XJET/#morph

Fanaroff–Riley (FR) classification of jets

- Radio morphology:
 - FR I: low power & the brightest emission near the radio cores
 - FR II: high power & the brightest emission at outer extremities (hotspots)
- SED for FR I jets: X-rays can be explained by synchrotron radiation

FR II jets: synchrotron for X-rays

-12 · IC/CMB (?) s_ X-ray flux -13 log v F_v [erg cm⁻² Fermi observed synchrotron -14 second synchrotron (?) -15 -10 15 25 20 log Frequency [Hz]

> Fermi observation rules out IC/CMB for PKS 0637-752

two populations of electrons

Georganopoulos M., Meyer E., Perlman E., 2016, Galaxies, 4, 65

Particle (re-)acceleration

- Synchrotron origin of X-rays requires sub-PeV electrons: $E_{\rm syn} = 2(E_e/0.1 {\rm PeV})^2 (B/10 \mu {\rm G}) {\rm keV}$
- Cooling time of sub-PeV electrons: $\tau_c = 1.2 \times 10^3 (B/10\mu G)^{-2} (E_{\rho}/0.1 \text{PeV})^{-1} \text{ yrs } \longrightarrow c\tau_c = 0.37 \text{ kpc}$
- For jet length >> kpc, particles accelerated by the jet head shock will cool down immediately after the shock passes (standing shocks may exist in specific locations)
- *In-situ* (re-)acceleration mechanisms required for large-scale X-ray jet Shear acceleration

Shear acceleration

Formulation of shear acceleration

• Fokker–Planck description for energy-space diffusion equation

$$\frac{\partial n(\gamma, t)}{\partial t} = \frac{1}{2} \frac{\partial}{\partial \gamma} \left[\left\langle \frac{\Delta \gamma^2}{\Delta t} \right\rangle_{\text{Acceleration}} \right] \\ \left\langle \frac{\Delta \gamma^2}{\Delta t} \right\rangle_{\text{sh}} \simeq D_{\text{sh}} \gamma^2 \tau_{\text{sc}} \equiv A_1 \gamma^{4-q} \\ \left\langle \frac{\Delta \gamma^2}{\Delta t} \right\rangle_{\text{sh}} \simeq D_{\text{sh}} \gamma^2 \tau_{\text{sc}} \equiv A_1 \gamma^{4-q} \\ \left\langle D_{\text{sh}} = \frac{1}{15} \Gamma_{\text{j}}^4(r) c^2 \left(\frac{\partial \beta_{\text{j}}(r)}{\partial r} \right)^2 \\ \left\langle \tau_{\text{sc}} = \xi_1^{-1} \left(\frac{r_{\text{L}}}{\Lambda_{\text{max}}} \right)^{1-q} \frac{r_{\text{L}}}{c} \equiv A_0 \gamma^{2-q} \\ \xi_1 = \delta B^2 / B_0^2 \\ \end{array}$$
Liu R.-Y., Rieger F. M

I., Aharonian F. A., 2017, ApJ, 842, 39

Steady-state solution

• Steady state: can be solved analytically and exactly

$$z\frac{d^2 j_{\pm}}{dz^2} + (b_{\pm} - z)\frac{d j_{\pm}}{dz} - a_{\pm} j_{\pm} = 0$$

• The exact solution:

$$n(\gamma) = C_+ \gamma^{S_+} F_+(\gamma, q) + 0$$

Kummer's confluent hypergeometric function: $F_{\pm}(\gamma, q) = {}_{1}F_{1}\left[\frac{2}{c}\right]$

 $\gamma \ll \gamma_{\rm m}$

Wang et al., 2021, MNRAS, 505, 1334

y and exactly $\partial n(\gamma, t) / \partial t = 0$ $n(\gamma) \propto \gamma^{s} j$ $z = -\frac{6-q}{q-1}(\gamma/\gamma_{max})^{q-1}$ $b_{\pm} = 2s_{\pm}/(q-1)$ $a_{\pm} = (2+s_{\pm})/(q-1)$ $\gamma_{max} = \left(\frac{6-q}{2}\frac{A_{1}}{A_{2}}\right)^{1/(q-1)}$ $C_{-}\gamma^{s-}F_{-}(\gamma, q)$

$$\frac{2+s_{\pm}}{q-1}, \frac{2s_{\pm}}{q-1}; -\frac{6-q}{q-1}\left(\frac{\gamma}{\gamma_{\max}}\right)^{q-1}\right]$$

$$\max, F_{\pm} \approx 1$$

Exact solutions for shear acceleration:

$$n(\gamma) = C_{+}\gamma^{s_{+}}F_{+}(\gamma, q) + C_{-}\gamma^{s_{-}}F_{-}(\gamma, q)$$

$$s_{\pm} = \frac{q-1}{2} \pm \sqrt{\frac{(5-q)^{2}}{4} + w}$$

$$n \to 0 \text{ for } \gamma \to \infty$$

- Kolmogorov turbulence: q=5/3 •
- Assume a linear decreasing profile •

$$w = 40 \ln^{-2} \frac{(1+\beta_0)}{(1-\beta_0)}$$

Ö

Application to Centaurus A (FR I) IC and Syn from one population of electrons Radio and TeV gamma-ray An examplary fitting with code NAIMA 0.45 Centaurus A 0.40 IC/dustlight Total IC/CMB Synchrotron IC/starlight 0.35 10⁻¹² -2 0.30 0.25 A.U. 10^{-13} erg - 0.20 E²dN/dE 0.15 10^{-14} - 0.10 0.05 10^{-15} 10^{-7} 10^{11} 10^{8} 10^{-4} 10² 10^{-1} 10⁵ 0.00 48.00s 24.00s 13h25m00.00s 12.00s 36.00s Energy [eV] RA (J2000) Wang et al., 2021, MNRAS, 505, 1334

H. E. S. S. Collaboration et al., 2020, Nature, 582, 356

uncooled	component	She
	· · · · · · · · · · · · · · · · · · ·	

Source name	Low-energy component $(E_{\min,1}, E_b, \alpha_1)$	High-energy component $(E_{\min,2}, w, B, \Delta r_{j,2})$	Jet power in units of erg/s and L_{Edd}
Centaurus A	0.2 GeV, 0.75 TeV, -2.31	-, 15.0, 17.1 μG, 1	3.7×10^{42} erg/s, $5.4 \times 10^{-4} L_{\text{Edd, CenA}}$
3C 273 - Knots A+B1	1.5 GeV, 1.1 TeV, -2.28	2.5 TeV, 4.7, 2.8 μG, 10	2.7×10^{45} erg/s, $3.2 \times 10^{-3} L_{\text{Edd}, 3\text{C}273}$
3C 273 - Knot C2	1.5 GeV, 1.6 TeV, -2.52	1.9 TeV, 6.8, 2.2 μG, 10	1.3×10^{46} erg/s, $1.5 \times 10^{-2} L_{\text{Edd}, 3\text{C}273}$

- Shear acceleration accounts for the population of high-energy electrons
- Consistent with General picture: FR I low-power jets / FR II high-power jets

Wang et al., 2021, MNRAS, 505, 1334

ear acceleration

oulation of high-energy electrons ow-power jets / FR II high-power jets

Shear acceleration of UHECRs

മ

Hillas, 1984, ARAA, 22, 425; Kotera & Olinto, 2011, ARAA, 49, 119

RMHD simulations with PLUTO

Short Summary

- Shear acceleration can produce cut-off power-law spectra
- Multi-wavelength SED of FR I/II jets can be explained
- >10 Z EeV CRs can be achieved
- More to come: RMHD simulations + test particle simulations
- The SED difference between FR I and II jets remains to be answered

