7th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy

Contribution ID: 262

Type: Contributed talk

Shear acceleration in AGN jets

Monday, 4 July 2022 15:00 (15 minutes)

X-ray observations of kilo-parsec scale jets indicate that a synchrotron origin of the sustained non-thermal emission is likely. This requires distributed acceleration of electrons up to near PeV energies along the jet. The underlying acceleration mechanism is still unclear. Shear acceleration is a promising candidate. We studied the details of shear acceleration by solving the steady-state Fokker-Planck-type equation and provide a simple general solution for trans-relativistic jets for a range of magnetohydrodynamic turbulent power-law spectra. In general, the accelerated particle population is a power-law spectrum with an exponential-like cut-off, where the power-law index is determined by the turbulence spectrum and the balance of escape and acceleration of particles. We find that in this framework the multi-wavelength spectral energy distribution of X-ray jets, such as Centaurus A and 3C 273, can be well explained and protons can be accelerated up to \sim EeV. Relativistic MHD simulations using PLUTO have been performed to physically motivate the shear profile and turbulence spectrum.

Primary authors: WANG, Jieshuang (Max-Planck-Institut für Kernphysik); Dr REVILLE, Brian; Prof. RIEGER, Frank; LIU, Ruo-Yu (DESY); Prof. AHARONIAN, Felix (MPIK, DIAS, NASRA)

Presenter: WANG, Jieshuang (Max-Planck-Institut für Kernphysik)

Session Classification: Contributed Talks