# GSGRAN SASSO<br/>SCIENCE INSTITUTESISCHOOL OF ADVANCED STUDIES<br/>Scuola Universitaria Superiore

## High energy neutrinos from GRBs Gor Oganesyan

Francesco Lucarelli, T. Montaruli, M. Branchesi, F. Brighenti, A. Mei, S. Ronchini

All drawings by S. Ronchini



Istituto Nazionale di Fisica Nucleare



### Prompt emission



### Internal shocks



Narayan et al. 1992, Rees & Mészáros 1994

3

### **Radiation mediated shocks**

RAPIATION MEDIATED SHOCK

Jet axis



### Mészáros & Rees 2000, see review by Levinson & Nakar 2019

### Reconnection

### PISSIPATION MEDIATED BY MAGNETIC RECONNECTION





Lyutikov & Blandford 2003

### Briggs et al. 1999





### Waxman and Bahcall 1997



### see review by Kimura 2022

 $\mathbf{2}$ 2 $E_{\nu,b} \approx 60 \,\mathrm{TeV}\,\Gamma_2^2 \mathrm{E}_{\gamma,\mathrm{peak},300}^{-1}$ 1 + z



### Zhang and Kumar 2013



Pitik, Tamborra, Petropoulou 2021

### **IceCube results**



Aarsten et al. 2017

Abbasi et al. 2022 (stacking analysis)

### Our approach

**(B) X-ray flares** 

(C) X-ray plateau emission

 $E_{\nu_{\mu}}^{2}\phi_{\nu_{\mu}} = \frac{1}{8}\xi_{p}f_{p}f_{p\gamma}f_{\pi}^{syn}f_{\mu}^{syn}S_{iso}$ 

 $f_{p\gamma} \approx 2\chi(\alpha,\beta) \left(\frac{2}{1+z}\right) \frac{L_{iso,52}}{\Gamma_2^2 R_{14}} E_{\gamma,peak,300\text{keV}}^{-1}$ 





### (sources with known z)





13



## (A) Prompt emission: stacking search with physical weights (Considering all sources)



### (Considering all sources)



Nava et al. 2012

 $E_{\nu_{\mu}}^{2}\phi_{\nu_{\mu}} \approx 0.04\chi(\alpha,\beta)\frac{S_{iso}}{E_{\gamma,peak,300}^{1.6}}$ 



### (Considering all sources)

$$\frac{1s}{\delta t_{obs}} \frac{1}{(1+z)^{0.6}} \left[ \frac{\xi_p}{\ln(E_{p,max}/E_{p,min})} \right]$$

### Fermi/GBM sample

17

### (A) Prompt emission: stacking search with physical weights (Considering all sources)

 $\xi_p = ln(E_{p,max}/E_{p,min})$ 



$$\delta t_{obs} = 0.1s \qquad z = 1$$



## (A) Prompt emission: stacking search with physical weights (Considering all sources)



### (A) Prompt emission: stacking search with physical weights (Considering all sources)



## (A) Prompt emission: stacking search with physical weights (Considering all sources)



### (B)-(C) X-ray plateau and X-ray flares





### **High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves**

Shigeo S. Kimura<sup>1,2,3</sup>, Kohta Murase<sup>1,2,3,4</sup>, Peter Mészáros<sup>1,2,3</sup>, and Kenta Kiuchi<sup>4</sup>



### (B) X-ray flares





### (C) X-ray plateaux







| Stacking Search, all GRBs |            |              |              |                                                        |             |                   |                                                        |
|---------------------------|------------|--------------|--------------|--------------------------------------------------------|-------------|-------------------|--------------------------------------------------------|
| Catalog                   | Hemisphere | $\gamma = 1$ |              |                                                        | $\gamma=2$  |                   |                                                        |
| Curaro <sub>8</sub>       |            | $\hat{n}_s$  | $p_{ m loc}$ | $\phi_{90\%}^{ m Stack}$                               | $\hat{n}_s$ | $p_{ m loc}$      | $\phi_{90\%}^{ m Stack}$                               |
|                           |            |              |              | $[\text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}]$ |             |                   | $[\text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}]$ |
| Prompt                    | North      | _            | _            | $2.2 	imes 10^{-14}$                                   | 0.9         | $3.7	imes10^{-2}$ | $3.5	imes10^{-11}$                                     |
|                           | South      | —            | —            | $8.0 	imes 10^{-15}$                                   | —           | —                 | $1.2 	imes 10^{-10}$                                   |
| Plateau                   | North      | _            | _            | $8.6	imes10^{-14}$                                     | _           | _                 | $5.1 	imes 10^{-11}$                                   |
|                           | South      | —            | —            | $2.0 	imes 10^{-14}$                                   | —           | —                 | $4.1 	imes 10^{-10}$                                   |
| Flare                     | North      | _            | _            | $7.0	imes10^{-15}$                                     | _           | _                 | $4.1 	imes 10^{-11}$                                   |
|                           | South      | _            |              | $1.7 \times 10^{-14}$                                  | _           |                   | $3.5 	imes 10^{-10}$                                   |

F. Lucarelli et al., in preparation





F. Lucarelli et al., in preparation

27



- Weighting GRBs is important
- X-ray flares/ Soft EE are promising
- GRB jets either are highly magnetised and/or are not able to accelerate protons to HEs
- GeV neutrinos (difficult) or TeV with IceCube 2