1ES 0647+250: 10 years of multiwavelength observations

Jorge Otero-Santos D. Morcuende, V. Fallah Ramazani, D. Dorner & D. Paneque on behalf of the MAGIC and *Fermi*-LAT Collaborations

7th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy (Gamma2022)

Universidad de La Laguna

erenkov Telescopes

BL Lac object 1ES 0647+250

• <u>1ES 0647+250</u> : HBL (high synchrotron peaked) BL	z ⁵ 3000
Lac object	2000
 Redshift unknown (several previous measurements) 	1500
	1000
• $z = 0.41 \pm 0.06$ from Kotilainen et al. (2011)	500
 Lower limit z > 0.29 from Paiano et al. (2017) 	(
	N ^{events} 500
 Detected during low and flaring states after high 	2 000
X-ray emission with MAGIC	400
	300
 Multiwavelength (MWL) data needed to understand 	200
these events — MAGIC + MWL analysis	100

ţs

MAGIC **Major Atmospheric** Gamma Imaging Cerenkov Telescopes

γ-2022 (Barcelona)

- Long-term correlations:
 - Correlated <u>optical-y-ray</u> emission with <u>no significant time lag</u>
 - Correlated <u>radio-optical</u> and <u>radio-y-ray</u> emission with <u>long</u> delay (~400 days)
- Slow long-term variability —> slow decrease of the correlation

γ-2022 (Barcelona)

- Long-term correlations:
 - Correlated <u>optical-y-ray</u> emission with <u>no significant time lag</u>
 - Correlated <u>radio-optical</u> and <u>radio-y-ray</u> emission with <u>long</u> delay (~400 days)
- Slow long-term variability —> slow decrease of the correlation

Detrending of the data to evaluate shorter time scales

γ-2022 (Barcelona)

- No unique detrending method —> approach from Lindfors et al. (2016)
- Detrending by pairs of light curves with a percentage of common emission
 - Radio-optical: 51%
 - Radio-γ rays: 24%
 - Optical-γ rays: 22%

- No unique detrending method —> approach from Lindfors et al. (2016)
- Detrending by pairs of light curves with a percentage of common emission
 - Radio-optical: 51%
 - Radio-γ rays: 24%
 - Optical-γ rays: 22%

No correlation in shorter time scales

VHE γ-ray spectra

γ-2022 (Barcelona)

Encoh	Fit	f_0	E ₀	Spectral index	Curvature	2/1
Epocn	Model*	$[10^{-10} \cdot \text{TeV}^{-1} \cdot \text{cm}^{-2} \cdot \text{s}^{-1}]$	[GeV]	α	β	<i>χ</i> -/d.
E1	PL	0.29 ± 0.07	190	3.12 ± 0.37	_	1.2
E2	PL	4.40 ± 1.63	100	3.25 ± 0.74	_	2.1
E3	PL	12.0 ± 2.2	100	3.73 ± 0.58	_	2.2
E4	PL	16.9 ± 1.0	100	3.70 ± 0.10	_	18.1
E4	LogP	18.9 ± 1.6	100	3.16 ± 0.21	1.91 ± 0.68	5.3

- No harder-(softer)-when-brighter trend (large errors)
- **Power law** functions for **E1**, **E2** and **E3**
- Log-parabola tested for <u>E4</u> -> <u>3 σ preference</u> of log-parabola over power law

VHE γ-ray spectra

γ-2022 (Barcelona)

X-ray and HE gamma-ray spectral variability

Harder-when-brighter **Saturation during the brightest flare?**

VHE γ-ray spectra

y-2022 (Barcelona)

X-ray and HE gamma-ray spectral variability

Joint HE+VHE γ-ray spectrum

Empirical redshift determination method from Prandini et al. (2011)

- Difference between <u>**HE**</u> and <u>**VHE**</u> spectrum -> <u>**EBL**</u>
- **Deabsorbed specrtum —> Upper limit z***
- **<u>z</u>*** related to **<u>true </u>***z* through **<u>empirical relation</u>**

Estimated redshift z _{est}	z*
0.45 ± 0.05	0.75 ± 0.11

MAGIC Major Atmospheric

γ-2022 (Barcelona)

One-zone SSC model

Tavecchio+98

γ-2022 (Barcelona)

Tavecchio+11

SED modeling

SED modeling

- **One-zone:** electron distribution and population changes and B for 2019, close to equipartition (except for 2020)
- **Two-zone:** electron population and distribution, and blob's Lorentz factor changes
 - **<u>Core</u>:** dominated by magnetic energy density
 - **Blob:** close to equipartition

(1)	(2)	(3)	(4)	(5)
Epoch	Model	$\gamma_{ m min}$	$\gamma_{ m b}$	$\gamma_{ m max}$
	(region)	$(\times 10^3)$	$(\times 10^4)$	$(\times 10^5)$
	one-comp	5.8	2.1	6.5
E1	2-comp (blob)	4.5	1.9	5.5
	2-comp (core)	0.2	2.2	0.4
	one-comp	7.0	6.3	3.4
E2	2-comp (blob)	5.0	6.5	3.1
	2-comp (core)	0.18	2.2	0.4
	one-comp	4.0	9.4	3.9
E3	2-comp (blob)	9.5	9.5	5.7
	2-comp (core)	0.21	2.2	0.4
	one-comp	2.5	4.7	5.0
E4	2-comp (blob)	9.5	5.5	6.7
	2-comp (core)	0.19	2.2	0.4

Conclusions

- Distant BL Lac detected in both low and flaring states
- Variable, specially in long time scales, increasing trend observed in the MWL emission
- **Correlation** in the long-term emission
 - Optical-γ rays: no delay
 - Radio-optical and radio-γ rays: several hundred days. **Distance** of the radio emitting region: d = 3.5 +/- 0.4 pc
- Harder-when-brighter in X-rays
- **Redshift estimation** yields z = 0.45 + -0.05
- **Broadband SED** well-modeled with **one-zone** and **two-component** models

γ-2022 (Barcelona)

Thank you for your attention

Questions?

Image credit: IPAC-Caltech

