

TeV halo candidate surrounding PSR J0359+5414 detected with the HAWC observatory

on behalf of HAWC collaboration

7th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy (γ -2022) July 5th, 2022

Sara Coutiño de León University of Wisconsin-Madison

Introduction

TeV halos are extended gamma-ray emission found around middle-aged pulsars.

Name	RA 🔺	Dec	Type Tags	Distance	Catalog
HAWC J0543+233	05 43 07.2	+23 24 00	Gal,TeVHalo	z=0.0	Newly Announced
LHAASO J0621+3	06 21 52.8	+37 55 12	Gal,PWN,T	z=0.0	Default Catalog
Geminga	06 32 28	+17 22 00	Gal,SNR,P	0.25 kpc	Default Catalog
HAWC J0635+070	06 34 50.4	+07 00 00	UNID,TeVH	z=0.0	Newly Announced
2HWC J0700+143	07 00 28.8	+14 19 12	Gal,TeVHalo	z=0.0	Default Catalog
Vela X	08 35 00	-45 36 00	Gal,SNR,P	0.29 kpc	Default Catalog
HESS J1825-137	18 25 49	-13 46 35	Gal,SNR,P	3.9 kpc	Default Catalog

TeV halo list from the TeVCat: http://tevcat2.uchicago.edu/

TeV halo detections are important to:

- constrain the halo production mechanism,
- and to determine if this a generic feature of middle-age pulsars.

ion

Introduction

- PSR J0359+5414 is a radio-quiet pulsar
- Spin-down power $\dot{E} = 1.3 \times 10^{36}$ erg/s.
- Distance d = 3.45 kpc.
- Age = 75 kyr.
- The PWN associated to this source has been observed in X-rays with a ~ 30 arcsec size (Zyuzin et al. 2018).
- Detected by Fermi-LAT
- At VHE has not been detected before by any IACT or EAS experiment.
- HAWC detects an excess above 6σ in the 15-78 TeV energy range.

We performed spectral and spatial fits using a maximum likelihood technique Spectral models: Spatial models:

2.
$$\frac{1}{dE} = N_0 \left(\frac{1}{E_0}\right)$$
 —> log-parabola
(LOGP)

3.
$$\frac{dN}{dE} = N_0 \left(\frac{E}{E_0}\right)^{-\alpha} \times \exp\left(\frac{-E}{E_c}\right) \longrightarrow \text{power law}$$

with exponential energy cutoff (PL+CO)

- **Point-like**
- 2. Extended -> Symmetric Gaussian

 N_0, α, β, E_c left free in the fit Pivot energy E_0 fixed at 30 TeV to minimize correlations with the other parameters

Results

Model	TS	$\Delta \mathrm{BIC}$	Extension	N_0	lpha	eta	E_c
			[0]	$[\times 10^{-16} {\rm TeV^{-1} cm^{-2} s^{-1}}]$			[TeV]
PL, point-like	37.86	12	0.0	$1.34\substack{+0.34 \\ -0.27}$	2.60 ± 0.16	-	-
LOGP, point-like	39.18	1	0.0	$1.6\substack{+0.5 \\ -0.4}$	2.80 ± 0.23	0.14 ± 0.12	-
PL+CO, point-like	37.98	0	0.0	4^{+50}_{-4}	2.5 ± 1.2	-	10^{8}
PL, extended	40.27	12	0.2 ± 0.1	$2.0\substack{+0.8 \\ -0.6}$	2.52 ± 0.16	-	-
LOGP, extended	41.72	1.2	0.2 ± 0.1	$2.6^{+1.5}_{-1.0}$	2.71 ± 0.22	0.14 ± 0.13	-
PL+CO, extended	40.48	0	0.23 ± 0.10	14^{+5}_{-4}	2.40 ± 0.19	-	270^{+240}_{-130}

NOTE— Δ BIC is obtained from the comparison with the model with the highest BIC, which from both spatial models is the PL+CO spectral model.

Results

Model	TS	$\Delta \mathrm{BIC}$	Extension	N_0	lpha	eta	E_c
			[0]	$[\times 10^{-16} {\rm TeV^{-1} cm^{-2} s^{-1}}]$			[TeV]
PL, point-like	37.86	12	0.0	$1.34\substack{+0.34 \\ -0.27}$	2.60 ± 0.16	-	-
LOGP, point-like	39.18	1	0.0	$1.6\substack{+0.5 \\ -0.4}$	2.80 ± 0.23	0.14 ± 0.12	-
PL+CO, point-like	37.98	0	0.0	4^{+50}_{-4}	2.5 ± 1.2	-	10^{8}
PL, extended	40.27	12	0.2 ± 0.1	$2.0\substack{+0.8 \\ -0.6}$	2.52 ± 0.16	-	-
LOGP, extended	41.72	1.2	0.2 ± 0.1	$2.6^{+1.5}_{-1.0}$	2.71 ± 0.22	0.14 ± 0.13	-
PL+CO, extended	40.48	0	0.23 ± 0.10	14^{+5}_{-4}	2.40 ± 0.19	-	270^{+240}_{-130}

NOTE— Δ BIC is obtained from the comparison with the model with the highest BIC, which from both spatial models is the PL+CO spectral model.

PL & point-like model

Model

Results

Residuals

PL & extended model

Model

Results

Residuals

J0359 spectral energy distribution

to PSR J0359+5414.

$L_{VHE} = 1.8 \times 10^{31} \,\mathrm{erg \, s^{-1}} > L_X = 2 \times 10^{30} \,\mathrm{erg \, s^{-1}}$

-> VHE emission might be from a different nature compared to the nebula, and is probably more extended than the X-ray PWN.

So, considering the luminosity and extension, the VHE excess is likely a TeV halo associated

Upper limits on the diffusion coefficient

electron cooling time of ~10 kys.

(Abeysekara et al. 2017).

Taking 95% upper limits on J0359's extension (0.41°), the diffusion coefficient is $D = 3.7 \times 10^{27}$ cm²/s, for an electron energy of ~100 TeV and

This value is very similar to one found for Geminga, $D = 4.5 \times 10^{27}$ cm²/s

PSR B0355+54

Radio-loud pulsar very close (5'.5) to J0359.

B0355 has not been detected at high and very-high energies (Benbow et al. 2021).

Due to the HAWC's angular resolution we can not discard a contribution from B0355.

However, the upper limits set by VERITAS are lower by ~2-3 times than the extrapolation of the HAWC's flux at 10 TeV. -> the excess emission is likely associated with J0359

dN/dE

PSR B0355+54

Spatial model	TS	$\Delta \mathrm{BIC}$	Extension	N_0	lpha
			[0]	${ m TeV^{-1}~cm^{-2}~s^{-1}}$	
Point-like	35.86	1.9	0.0	$(1.28^{+0.34}_{-0.27}) imes 10^{-16}$	2.56 ± 0.17
Extended	41.83	1.5	0.22 ± 0.09	$(2.0^{+0.7}_{-0.5}) imes 10^{-16}$	2.51 ± 0.15

Two-source model	Source	TS	$\Delta \mathrm{BIC}$	Extension	N_0	α
				[o]	${ m TeV^{-1}\ cm^{-2}\ s^{-1}}$	
	J0359	2.32		0.0	$(1.0^{+0.5}_{-0.9}) \times 10^{-16}$	$2.63\substack{+0.6 \\ -0.20}$
Model A	B0355	0.32	24	0.0	$(0.00034^{+6}_{-0.00024}) \times 10^{-13}$	$2.4^{+1.3}_{-5}$
	J0359	8.73		$1.500\substack{+0.18\\-0.004}$	$(3.3^{+1.5}_{-3.3}) imes10^{-16}$	$2.2^{+0.4}_{-1.3}$
Model B	B0355	10.29	26	$0.14\substack{+0.08\\-0.15}$	$(1.5^{+0.5}_{-0.4}) imes10^{-16}$	2.56 ± 0.20
	J0359	13.02		1.5000 ± 0.0010	$(0.04^{+4}_{-0.04}) imes 10^{-14}$	2.2 ± 2.8
Model C	B0355	8.62	26 / 15	0.0	$(3.2^{+3.0}_{-1.5}) imes 10^{-16}$	2.60 ± 0.28

B0355 scenario

 ΔBIC is obtained comparing the BIC value with the best spectral model fit for both spatial models assuming that the emission is coming from J0359

J0359 + B0355 scenario

Model A -> two point-like sources Model B -> two extended sources Model C -> J0359 extended & B0355 point-like

 ΔBIC is obtained comparing the BIC value with the best spectral model fit for both spatial models assuming that the emission is coming from J0359

Conclusions

- not crowded that is likely associated to the radio-quiet pulsar PSR J0359+5414.
- This TeV halo candidate shares similar characteristics to others, pulsars.
- finding.

• We detect a TeV halo candidate near the Galactic plane in a region that is

suggesting that TeV halos could be a general feature of middle-age

• It is important to perform multi-wavelength observations to confirm the

Thank you scoutino@icecube.wisc.edu

Backup

TeV halo candidate list from the Third HAWC Catalog (3HWC, Albert et al. 2020) for a 1523-day data set (November 2014, June 2019)

HAWC	<i>l</i> (°)	b (°)	Pulsar	Age (kyr)	\dot{E} (erg s ⁻¹)	Distance (kpc)	Separation (°)	TeVCat
3HWC J0540+228	184.58	-4.13	B0540+23	253.0	4.09e+34	1.56	0.83	HAWC J0543+233
3HWC J0543+231	184.67	-3.52	B0540+23	253.0	4.09e+34	1.56	0.36	HAWC J0543+233
3HWC J0631+169	195.63	3.45	J0633+1746	342.0	3.25e+34	0.19	0.95	Geminga
3HWC J0634+180	195.00	4.62	J0633+1746	342.0	3.25e+34	0.19	0.38	Geminga Pulsar
3HWC J0659+147	200.60	8.40	B0656+14	111.0	3.8e+34	0.29	0.51	2HWC J0700+143
3HWC J0702+147	200.91	9.01	B0656+14	111.0	3.8e+34	0.29	0.77	2HWC J0700+143
3HWC J1739+099	33.89	20.34	J1740+1000	114.0	2.32e+35	1.23	0.13	
3HWC J1831-095	22.13	0.02	J1831-0952	128.0	1.08e + 36	3.68	0.27	HESS J1831-098
3HWC J1912+103	44.50	0.15	J1913+1011	169.0	2.87e+36	4.61	0.31	HESS J1912+101
3HWC J1923+169	51.58	0.89	J1925+1720	115.0	9.54e+35	5.06	0.67	
3HWC J1928+178	52.93	0.20	J1925+1720	115.0	9.54e+35	5.06	0.85	2HWC J1928+177
3HWC J2031+415	80.21	1.14	J2032+4127	201.0	1.52e+35	1.33	0.11	TeV J2032+4130

Note. The age of the pulsar in kyr and the spin-down luminosity, \dot{E} , in erg s⁻¹ are also given. The Separation column indicates the angular distance between the HAWC source and the ATNF pulsar (Manchester et al. 2005). The TeVCat column lists the previously detected TeV counterpart of each source.

Analysis method

likelihood ratio tests statistics (TS) as

$$TS = 2\ln\frac{\mathscr{L}_{S+B}}{\mathscr{L}_{B}}$$

on the spectral and spatial parameters assumed to describe the data.

 \mathscr{L}_{R} —> maximum likelihood of the background-only hypothesis.

- Maximum likelihood analysis using the Multi-Mission Maximum Likelihood (3ML) framework (Vianello et al. 2015) with the HAWC Accelerated Likelihood (HAL) plugin.
- In order to know which model best describes the observations, we use the

- \mathscr{L}_{S+B} —> maximum likelihood of the signal plus background model that depends

Analysis method

When we compare two models, the difference in the BIC value, ΔBIC , quantifies the evidence against the model with a higher BIC value.

 $\Delta BIC > 10.$

- The Bayesian Information Criterion (BIC) is used to determine which model is preferred, which takes into account the number of free parameters in the fit.
- According to Kass & Raftery (1995), if ΔBIC is between 0 and 2 it is not clear which model is preferred; however if ΔBIC is between 2 and 6 the model with the smallest BIC value is preferred; even more, when

Diffusion model

Positrons and electrons diffuse away from the pulsar and is described by:

$$\frac{dN}{d\Omega} = \frac{1.22}{\pi^{3/2}\theta_{\rm d}(E)(\theta + 0.06\theta_{\rm d}(E))} \times \exp\left[-\frac{\theta^2}{\theta_{\rm d}(E)^2}\right],$$

where Ω denotes the solid angle, θ is angle from the s diffusion radius $R_{\rm diff}$ by,

$$\theta_{\rm d}$$
 =

where $d_{\rm src}$ is the distance to the source from Earth. This way the diffusion radius is defined as:

$$R_{\rm diff}$$
 =

where D is the diffusion coefficient for electrons at energy $E_{\rm e}$ and $t_{\rm e}$ is electron cooling time (Abeysekara et al. 2017).

where Ω denotes the solid angle, heta is angle from the source and $heta_{
m d}$ is the diffusion angle and is related to the

$$=\frac{180}{\pi}\frac{R_{\rm diff}}{d_{\rm src}},$$

$$= 2\sqrt{D(E_{\rm e})t_{\rm e}},$$