

Intergalactic magnetic field studies by means of γ -ray emission from GRB 190114C

Paolo Da Vela, Guillem Martí-Devesa*, Antonio Stamerra, Peter Veres*, Francesco Saturni and Francesco Longo*

* on behalf of the Fermi-LAT Collaboration

Summary

- » Physical process
- » Proper choice of the VHE primary spectrum
- » CRPropa simulations for different IGMF settings
- » Comparison between the simulated SEDs and lightcurve with the Fermi/LAT results

Summary of a TeV γ -ray's life absent any other process...

Summary of a TeV $\gamma\text{-ray}\text{'s}$ life with an IGMF

"Delayed" cascade emission

Primary spectrum

» We used the GRB 190114C model in the MAGIC band (200 GeV<E<10 TeV) in the first temporal bin (68 – 110 s) approximated it with a log-parabola:

$$\frac{dN}{dE} \propto \left(\frac{E}{0.4TeV}\right)^{-2.5 - 0.2 * \log(E/0.4TeV)}$$

 We extrapolated the flux up to the first 6 s after prompt emission

CRPROPA simulations: settings

»Source:

- Point source
- z=0.42
- Logparabola spectrum between 200 GeV and 10 TeV, 10⁶ primary photons
- Minimum energy of cascade photons: 0.05 GeV

»Magnetic Field:

- Turbulent magnetic field with a Kolmogorov spectrum and different B_{rms}
- Correlation length: \geq 1 Mpc

»Observer:

• Sphere with radius 1.6 Gpc with the source at the centre

Starting time

» In order not to look for the echo emission in a time window where the GRB is still ongoing in the *Fermi* band we started counting the cascade photons from $T-T_0=2\times10^4$ s

SEDs vs observation time: 15 days

SEDs vs observation time: 1 month

universität innsbruck

SEDs vs observation time: 3 months

SEDs vs observation time: 9 months

universität innsbruck

SEDs vs observation time: 24 months

Lightcurves 1 GeV<E<100 GeV

Conclusions

- » We simulated the cascade delayed emission from GRB 190114C for different IGMF settings and using, as VHE primary spectrum, the GRB model published by MAGIC coll.
- » We performed the *Fermi*/LAT analysis from the end of the GRB up to 24 months
- » Comparing the simulated SEDs and light curve with the *Fermi*/LAT no constraints can be placed on the IGMF strength

Back up

Probing the "weakest" IGMF through pair echoes from GRBs

» Since the pairs are deviated, the cascade emission is also delayed (Neronov et al. 2009):

$$\lambda_{\rm B} >> \mathsf{D}_{\rm e} \qquad T_{delay} \simeq 7 \times 10^5 (1 - \tau^{-1}) (1 + z)^{-5} \left[\frac{E}{0.1 TeV} \right]^{-5/2} \left[\frac{B}{10^{-18} G} \right]^2 \ s \\ \lambda_{\rm B} << \mathsf{D}_{\rm e} \qquad T_{delay} \simeq 10^4 (1 - \tau^{-1}) (1 + z)^{-2} \left[\frac{E}{0.1 TeV} \right]^{-2} \left[\frac{B}{10^{-18} G} \right]^2 \left[\frac{\lambda_{B0}}{1 kpc} \right] \ s$$

$$F_{delay} \sim \frac{T}{T_{delay} + T} F_0$$

» The delayed emission is strongly diluted...

From simulation to physical units

» To convert the simulations units to physical units we followed this procedure

$$F_E = \frac{F(E > 200 GeV)}{\Delta N_{sim}} \frac{\Delta T_{activity}}{\Delta T} \frac{\Delta N_{cascade}}{\Delta E} (\theta < \theta_{PSF})$$

 ΔN_{sim} Number of source events that survived to the EBL absorption

 $\Delta T_{ctivity} = 40min$

 ΔT Exposure time

 $F(E > 200 GeV) \simeq 5 \times 2.024 \times 10^{-9} \ cm^{-2} s^{-1}$

Flux measured by MAGIC and extrapolated up to the first 6 seconds after the burst (factor of 5 the measured one)

Fermi/LAT sensitivity (95% CL)

Background model optimization

The nearby blazar PKS 0346-27 is in a flaring state during the time period studied.

It is not well characterized by the 4FGL model, and requires a PLSuperExpCutOff

1e-7

Published lower bounds on IGMF from GRB 190114C

» Wang et al. 2020

Analytic approach

Several EBL models tested

Intrinsic spectral shape in the VHE band: power law index 2 up to 1 TeV and 15 TeV

Flux above 200 GeV extrapolated up to $T_0=6s$ (about factor of 5 the flux measured by MAGIC from $T_0=64 s$)

Result: $B \gtrsim 3 \times 10^{-20}$ G for $\lambda_B \lesssim$ 1 Mpc

Published lower bounds on IGMF from GRB 190114C

» Dzhatdoev et al. 2020: they first reconstructed the intrinsic spectrum in the VHE band using the EBL model from Gilmore et al. 2012

- » Assuming an intrinsic spectrum $\sim E^{\gamma} * \exp(-E/E_c)$ and absorbing it using the EBL model, they scanned the (γ , E_c) space performing a χ^2 test to look for the best values
- Only considering a different normalization of the EBL intensity (90%, 80% and 70%) they were able to get a finite value of E_c

Published lower bounds on IGMF from GRB 190114C

