

Radio-y response in blazars as a signature of adiabatic blob expansion: a self-consistent approach

https://github.com/andreatramacere/adiabatic_exp_radio_gamma_delay

https://jetset.readthedocs.io/en/1.2.2/

A&A 658, A173 (2022) https://doi.org/10.1051/0004-6361/202142003 © ESO 2022

Radio- γ -ray response in blazars as a signature of adiabatic blob expansion

A. Tramacere[®], V. Sliusar, R. Walter, J. Jurysek, and M. Balbo

Andrea Tramacere

Vitalii Sliusar, Roland Walter, Jakub Jurysek, Matteo Balbo

Astronomy **A**strophysics

delays on weeks to years timescales

MW variability and correlation studies of Mrk 421 during historically low X-ray and γ-ray activity in 2015-2016

Radio- γ delay in Mrk 421 (months)

- Observed lags are not compatible with cooling, acc., crossing (unless strong fine tuning) lacksquare
- Explanations based on reacceleration, would be challenging due to MW observations \bullet

We want to test if it is possible to reproduce a radio- γ due (T>>d) due to blob expansion

W. Max-Moerbeck+ 2014 B. Pushkarev+ 2010 McCray, R. 1968

self-consistent approach

Numerical solution of FP equation taking into account:

- •FI+FII(first order and stochastic acceleration) Radiative cooling: Sync+IC(SSC) Adiabatic expansion/cooling

phenomenological trends v_{obs}

Tramacere+ 2022

adiabatic expansion!

simulation!

- Visit Numerical self-consistent simulations reproduce the radio-gamma delay due to
- Appendix phenomenological trends, derived for adiabatic expansion match numerical
 Appendix and a set of the s

- let's extract some physics from the data!
 - single flare fit or....

Radio-y response

Radio-y response

Radio-y response Tramacere+ 2022

Numerical simulation

 $\mathcal{L} = \mathcal{L}_{\text{rise}} + \mathcal{L}_{\text{decay}} + \mathcal{L}_{\text{delay}}$

MCMC sampling

 $t_{\text{[rise, decay, delay]}} = f(m_B, \beta_{exp}, \nu_{ssa}, B, R, p)$

conv. analysis best fit values

Tramacere+ 2022

- Radio-gamma delays on weeks to year timescales can be self consistently reproduced by adiabatic \bullet blob expansion (consistent with Potter 2018, Boula 2022)
- We derived phenomenological relations, validated via accurate numerical simulations, and plugged to \bullet a response function, providing a direct link between the radio delay timescales and physics of the jet
- Implication on structure of magnetic fields, jet expansion, and MW connection open an interesting \bullet path to a deeper understanding of the how the engine of the jets work, and how jets evolve on larger scales, providing connection between micro and macro physics in relativistic jets
- Next: Plugging a realistic jet model with parabolic-to-conical transition, plus EC and crossing time effect, and application to a large sample of BL Lacs and FSRQs
- Analysis fully reproducible with JetSeT and convolution tool:

https://github.com/andreatramacere/adiabatic_exp_radio_gamma_delay

https://jetset.readthedocs.io/en/1.2.2/

backup slides

delays from crossing time, cooling, acc., inj.

etSeT

$$\beta_{\exp} = v_{exp}/c$$

$$R(t) = R_0 + \beta_{\exp}c(t - t_{exp})H(t - t_{exp})$$

$$B(t) = B_0 (\frac{R_0}{R(t)})^{m_B} \qquad m_B \in [1, 2]$$

Magnetic field (flux freezing and conservation): (Begelman, Blandford, and Rees 1984)

- $B|| \alpha R^{-2}$ (poloidal) m_B=2
- $B \perp \alpha R^{-1}$ (toroidal) m_B=1
- for initial mixed configuration, and no velocity gradient, $B\perp$ will dominate with $m_B \sim m_R$

blob expansion

Blazars in a nutshell

Beamed Emission (achromatic var.)

$$R(t) = R_0 + \beta_{\exp} c(t - t_{exp}) H(t - t_{exp})$$
$$B(t) = B_0 (\frac{R_0}{R(t)})^{m_B} \quad m_B \in [1, 2]$$

$$\begin{aligned} |\dot{\gamma}_{synch}(t)| &= \frac{4\sigma_T c}{3m_e c^2} \gamma^2 U_B(t) = C_0 \gamma^2 U_B(t) \\ |\dot{\gamma}_{IC}(t)| &= \frac{4\sigma_T c}{3m_e c^2} \gamma^2 \int f_{KN}(4\gamma\epsilon_0)\epsilon_0 n_{ph}(\epsilon_0, t) d\epsilon_0 \\ &= C_0 \gamma^2 F_{KN}(\gamma, t) \\ |\dot{\gamma}_{ad}(t)| &= \frac{1}{3} \frac{\dot{V}}{V} \gamma = \frac{\dot{R}(t)}{R(t)} \gamma = \frac{\beta_{exp} c}{R(t)} \gamma \end{aligned}$$

expanding volume, they are subject to

self-consistent approach

$$W(k) = \frac{\delta B(k_0^2)}{8\pi} \left(\frac{k}{k_0}\right)^{-q}$$

self-consistent approach

- Acc. region+Rad. region
- SSC scenario (*R*,*B* similar to those observed in HBLs from MW model fitting)
- Particles are confined in Rad. region
- we limit to $m_B=1$, beaming factor constant across the jet
- we ignore crossing time (<<other time scales in the expanding site)

deriving phenomenological trends

synch self. abs

Rybicki&Lightman (1985) standard synchrotron theory

$$v_{\text{SSA}}(t) = v_L(t) \Big[\frac{\pi \sqrt{\pi}}{4} \frac{eR(t)N(t)}{B(t)} f_k(p) \Big]^{\frac{2}{p+4}}$$

synch self. abs

synch self. abs

synch self. abs

breaking down the process

$$\Delta t_{\nu_{\rm SSA}^0 \to \nu_{\rm SSA}^*} = t_{\rm exp} + t_{\rm peak}$$

$$R^* = R_0 \left(\frac{v_{SSA}^0}{v_{SSA}^*}\right)^{\psi}$$
$$\psi = \frac{p+4}{m_B(p+2)}$$

breaking down the process

$$\Delta t_{\nu_{\rm SSA}^0 \to \nu_{\rm SSA}^*} = t_{\rm exp} + t_{\rm peak}$$

$$t_{\text{peak}} = \Delta t_{R_0 \to R^*} = \frac{R^* - R_0}{\beta_{\text{exp}}c} = \frac{R_0}{\beta_{\text{exp}}c} \left[\left(\frac{\nu_{\text{SSA}}^0}{\nu_{\text{SSA}}^*}\right)^{\psi} - 1 \right]$$

$$R^* = R_0 \left(\frac{v_{SSA}^0}{v_{SSA}^*}\right)$$
$$\psi = \frac{p+4}{m_B(p+2)}$$

breaking down the process

$$\Delta t_{\nu_{\rm SSA}^0 \to \nu_{\rm SSA}^*} = t_{\rm exp} + t_{\rm peak}$$

$$t_{\text{peak}} = \Delta t_{R_0 \to R^*} = \frac{R^* - R_0}{\beta_{\text{exp}}c} = \frac{R_0}{\beta_{\text{exp}}c} \left[\left(\frac{\nu_{\text{SSA}}^0}{\nu_{\text{SSA}}^*}\right)^{\psi} - 1 \right]$$

$$R^* = R_0 \left(\frac{v_{SSA}}{v_{SSA}^*}\right)$$
$$\psi = \frac{p+4}{m_B(p+2)}$$

7th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy Barcelona, July 4-8 2022

ψ

$$R^* = R_0 \left(\frac{v_{SSA}^0}{v_{SSA}^*}\right)$$
$$\psi = \frac{p+4}{m_B(p+2)}$$

trends in the obs. frame

$$\delta = \frac{1}{\Gamma(1 - \beta_{\Gamma} \cos(\theta))} \qquad \nu^{\text{obs}} = \nu \frac{\delta}{z+1}$$

 $t_{var}^{obs} = \frac{(1+z)R_0}{\delta c}$ $R_{obs}^0 = R_0 \frac{1+z}{\delta}$ $\Delta_r = \Gamma \Delta t_{\nu_{SSA}^0 \to \nu_{SSA}^*} \beta_{\Gamma} c = \frac{\delta \Gamma \beta_{\Gamma} c \Delta t_{\nu_{SSA}^{obs}}}{1+z}$

trends vs v*SSA.

trends vs β_{exp}

actual values		values from <i>B</i> trend dest fit			
blob	obs	t ^{obs} rise	t ^{obs} decay	$\Delta t^{\rm o}$	
5×10^{15}	1.66×10^{14}	$(1.9 \pm 0.5) \times 10^{14}$	$(1.7 \pm 0.1) \times 10^{14}$	(1.8 ± 0.1)	
3	90	110 ± 40	100 ± 10	100 ± 5	
1×10^{7}	3.3×10^{5}			(3.57 ± 0.0)	
1			0.96 ± 0.06		
		0.6 ± 0.1	0.52 ± 0.04	0.54 ± 0.02	
1.46		1.6 ± 0.3	1.5 ± 0.01	1.57 ± 0.05	

 $\begin{bmatrix} R_0 \\ \nu_{SS}^0 \\ t_{exp} \\ m_B \\ \beta_{ex} \\ \phi \\ p \end{bmatrix}$

trends vs v_{obs}

 β_{exp} =[0.1]

$$t_{\text{decay}}^{\text{obs}} = \frac{R_0^{\text{obs}}}{m_B \beta_{\text{exp}} c} \left(\frac{\nu_{\text{SSA}}^{0,\text{obs}}}{\nu_{\text{SSA}}^{*,\text{obs}}}\right)^{\phi}$$

$$t_{\text{rise}}^{\text{obs}} = \frac{1}{2} t_{\text{peak}}^{\text{obs}} = \begin{cases} \frac{1}{2} \frac{R_0^{\text{obs}}}{\beta_{\text{exp}} c} \left[\left(\frac{\nu_{\text{SSA}}^{0,\text{obs}}}{\nu_{\text{SSA}}^{*,\text{obs}}}\right)^{\phi} - 1\right] & \text{if } \nu_{\text{SSA}}^{0,\text{obs}} > 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\Delta t^{\text{obs}} = t_{\text{exp}}^{\text{obs}} + t_{\text{peak}}^{\text{obs}} = t_{\text{exp}}^{\text{obs}} + \frac{R_0^{\text{obs}}}{\beta_{\text{exp}}c} \Big[\Big(\frac{\nu_{\text{SSA}}^{0,\text{obs}}}{\nu_{\text{SSA}}^{*,\text{obs}}}\Big)^{\phi} - 1 \Big].$$

		actual values		values from v trend best fit			
		blob	obs	t ^{obs} rise	$t_{\rm decay}^{\rm obs}$	Ĺ	
)	cm	5×10^{15}	1.66×10^{14}	$(2.4 \pm 1.0) \times 10^{14}$	$(1.7 \pm 0.2) \times 10^{14}$	(1.6 ± 0)	
SA	GHz	3	90	90 ± 10	100 ± 20	90 ± 10	
p	S	1×10^{7}	3.3×10^{5}			(3.4 ± 0)	
3		1			1.0 ± 0.1		
хр	C	0.1		0.03 ± 0.01	0.09 ± 0.01	$0.06 \pm$	
1				0.24 ± 0.07	0.58 ± 0.02	$0.50 \pm$	
		1.46		0.6 ± 0.2	1.7 ± 0.1	$ 1.4 \pm 0$	

som parison with observed data

57000	57250	57500 577	, 750 58000
	t (MJD)	3C 2	273
		Period, MJD	Value
		54684-54890	1.07 ± 0.11
		54890-55340	0.69 ± 0.04
		55340-56125	$5 1.39 \pm 0.08$
A A A A A A A A A A A A A A A A A A A		56125-56530	5.31 ± 0.16
		56530-56920	0.46 ± 0.15
		56920-57250	5.3 ± 0.4
		57250-57710	2.71 ± 0.12
		57710-57910	0.88 ± 0.17
		57910-58110	3.5 ± 0.3
		58110-58610	2.4 ± 0.3

Parameter	Value	
A_0	$174^{+12}_{-11} \times 10^3$ Jy cm ² s/ph	
t _{rise}	37^{+2}_{-2} days	
t _{decay}	69^{+3}_{-3} days	
Δt	276^{+10}_{-10} days	

神神神

 $\mathcal{L} = \mathcal{L}_{\text{rise}} + \mathcal{L}_{\text{decay}} + \mathcal{L}_{\text{delay}}$

Tramacere+ 2022

Model

$$t_{\text{decay}}^{\text{obs}} = \frac{R_0^{\text{obs}}}{m_B \beta_{\text{exp}} c} \left(\frac{\nu_{\text{SSA}}^{0,\text{obs}}}{\nu_{\text{SSA}}^{*,\text{obs}}}\right)^{\phi}$$

$$t_{\text{rise}}^{\text{obs}} = \frac{1}{2} t_{\text{peak}}^{\text{obs}} = \begin{cases} \frac{1}{2} \frac{R_0^{\text{obs}}}{\beta_{\text{exp}} c} \left[\left(\frac{\nu_{\text{SSA}}^{0,\text{obs}}}{\nu_{\text{SSA}}^{*,\text{obs}}}\right)^{\phi} - 1 \right] & \text{if } \nu_{\text{SSA}}^{0,\text{obs}} > \nu_{\text{SSA}}^{*,\text{obs}} \\ 0 & \text{otherwise} \end{cases}$$

$$\Delta t^{\text{obs}} = t_{\text{exp}}^{\text{obs}} + t_{\text{peak}}^{\text{obs}} = t_{\text{exp}}^{\text{obs}} + \frac{R_0^{\text{obs}}}{\beta_{\text{exp}} c} \left[\left(\frac{\nu_{\text{SSA}}^{0,\text{obs}}}{\nu_{\text{SSA}}^{*,\text{obs}}}\right)^{\phi} - 1 \right].$$

MCMC sampling

MCMC validation with simulations

red dashed line simualtion values

connection with MQ:

MAXI J1820+070

$$S(t) = A \frac{\exp \frac{-(t-\Delta)}{t_{\rm f}}}{1 + \exp \frac{-(t-\Delta)}{t_{\rm u}}} \longrightarrow \Delta t = \Delta - t_u \ln \left(\frac{t_u}{t_f - t_u}\right)$$

$$S(t) = \frac{A}{2} \longrightarrow t_{\text{rise}} = t_u \left(0.54 + 1.34 \left(\frac{t_f}{t_u} \right)^{1/4} \right)$$
$$S(t) = \frac{A}{e} \longrightarrow t_{\text{decay}} = t_f \left(1.00 + 1.33 \left(\frac{t_f}{t_u} \right)^{-1.11} \right)$$

Response

Analytical

Numerical

 $\log(R_0^{\rm obs}) = 15.53^{+0.61}_{-0.50}$ 3C 273 $m_B = 1.48^{+0.28}_{-0.18}$ m_B $\log(\beta_{\rm exp}) = -0.83^{+0.53}_{-0.66}$ 0.0 في ديني هير هير وي في $\log(eta_{
m exp})$ $\int \frac{1}{100} \log(\nu_{\text{SSA}}^{0,\,\text{obs}}) = 11.69^{+0.76}_{-0.61}$ $\log(v_{\rm SSA}^{0,\,\rm obs})$ $\phi = 0.63^{+0.23}_{-0.20}$ Φ 0.60 0.⁴⁵-' 0.30 $\cdot 3^{3} \cdot 1^{k} \cdot 1^{k} \cdot 5^{2} \cdot 5^{3} \cdot 5^{k} \cdot 6^{k} \cdot 1^{3} \cdot 5^{3} \cdot 5^{k} \cdot 6^{k} \cdot 5^{k} \cdot 2^{k} \cdot 2^{k} \cdot 2^{k} \cdot 2^{k} \cdot 2^{k} \cdot 2^{k} \cdot 5^{k} \cdot 5^$

 $\log(\beta_{exp})$

m_B

 $log(R_0^{obs})$

 $\log(v_{SSA}^{0, obs})$

φ

