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Fig. 3: Left panel: SEDs corresponding to the simulation of the flaring state, for the radiative region. The dashed green line
corresponds to the earliest of the SEDs stored by the code, the blue lines correspond to the period when the injection, acceleration,
and radiative process are active, and the red lines correspond to the period when only the radiative processes are active. The times
reported in the label are in the blob frame. Right panel: Same as in left panel, but for the electron energy distribution in the radiative
region.

ning of the expansion (B0 and R0). Hence, we only extrapolate
the evolution of B according to mB and R(t) from the beginning
of the expansion process. We adopte this approximation for the
current approach because we are mostly interested in the deter-
mination of the radio-� response in terms of delay and expan-
sion velocity, and are not interested in investigating the jet struc-
ture before the flaring site. Nevertheless, our model can be easily
generalised to a generic conical jet geometry simply by replac-
ing the temporal law R(t) in order to follow the jet cross-section
as a function of the jet opening angle and of the distance from
the BH, setting a scaling parameter z(t) = RH(t)/RH0, and then
expressing R(t) = R0z(t)mR , and B(t) = B0z(t)�mBmR , where the
expansion index of the jet mR is assumed to be 2 [0, 1]. In the
ballistic case (mR = 1, Kaiser 2006) the initial opening angle of
the jet will be given by tan ✓0 = R0/RH0, and will change with
z according to tan (✓(z)) = tan (✓0)(RH(t)/RH0)mR�1, i.e. will be
constant.

Both for the flaring and long-term (expansion) simulations,
the time grid for the solution of the FP equation is tuned to have a
temporal mesh at least two orders of magnitude smaller than the
shortest cooling and acceleration timescale. We use an energy
grid with 1500 points and 1  �  108. As the total number of
time steps used in the FP numerical solution (Tsize) can be very
large, a subsample of the time steps of the simulation (NUMS ET )
is stored in arrays, and can be used to build both light curves and
SEDs. In the current simulation, we use NUMS ET = 200 for the
flaring stage and NUMS ET 2 [1000, 5000] for the long-term evo-
lution, depending on the duration of the simulation. This guar-
antees an adequate time sampling for light curves and spectral
evolution. SEDs are computed from the stored electron distribu-
tions, and from the blob parameters (according to their tempo-
ral evolution). In our case, the blob variable parameters are the
source radius (R) and magnetic field (B), which evolve accord-
ing to Equations 1 and 2, respectively. Light curves are obtained
by integrating SEDs between two frequencies, or as monochro-
matic. The code o↵ers the possibility to convolve the light curves
with the light-crossing time. In the present analysis, we skip this
option because, as shown in section 2, the light-crossing time
is always shorter than the other competing timescales. This ap-

proximation used in the current approach will be removed in a
forthcoming paper, where it will be treated accurately. We also
decided to use a constant bulk Lorentz factor. We tested and ver-
ified that, for the current scope of the simulations, the di↵erence
between enabling and disabling the IC cooling is negligible, and
therefore to speed up the computational time we use only syn-
chrotron cooling for the radiative terms.

3.2. Flare simulation

To generate the flaring event, we use the JetTimeEvol config-
uration with a separated acceleration and radiative region. With
this configuration, particles are injected into the acceleration re-
gion (AR), and then di↵used toward the radiative region (RR)
for a timescale corresponding to the flare duration. We set the
parameters for the flaring stage in order to reproduce the typi-
cal SED of HBLs, according to Tramacere et al. (2011). We as-
sume that both radiative and first and second-order acceleration
processes, occur in the AR, whilst in the RR region, we only
take cooling processes into account. Particles are injected in the
AR with a quasi-monoenergetic distribution, normalised accord-
ing to Equation 19. This initial distribution evolves under the
e↵ect of radiative and accelerative mechanisms, leading to the
formation of a distribution with a low-energy power-law branch
that bends close to the equilibrium energy. The high-energy
branch exhibits a log-parabolic shape during the acceleration-
dominated stage, and approaches a relativistic Maxwellian cut-
o↵ at the equilibrium. The spectral index of the low-energy
power law is dictated by the ratio of the first-order accelera-
tion timescale to the escape time from the acceleration region,
whilst the curvature during the acceleration-dominated stage is
dictated by the momentum di↵usion term. The acceleration re-
gion is modelled as a cylindrical shell with a radius equal to
the radiative region, and we assume a ten times smaller width.
Particles leaving the acceleration region (shock front) enter the
radiative region with a rate derived for the escape probability
Pescape(�tmesh) = 1�exp�tmesh/Tesc (Park & Petrosian 1996), where
�tmesh is the temporal mesh for the numerical solution of the FP

Article number, page 6 of 27

A&A proofs: manuscript no. 42003_final_layout

Fig. 3: Left panel: SEDs corresponding to the simulation of the flaring state, for the radiative region. The dashed green line
corresponds to the earliest of the SEDs stored by the code, the blue lines correspond to the period when the injection, acceleration,
and radiative process are active, and the red lines correspond to the period when only the radiative processes are active. The times
reported in the label are in the blob frame. Right panel: Same as in left panel, but for the electron energy distribution in the radiative
region.

ning of the expansion (B0 and R0). Hence, we only extrapolate
the evolution of B according to mB and R(t) from the beginning
of the expansion process. We adopte this approximation for the
current approach because we are mostly interested in the deter-
mination of the radio-� response in terms of delay and expan-
sion velocity, and are not interested in investigating the jet struc-
ture before the flaring site. Nevertheless, our model can be easily
generalised to a generic conical jet geometry simply by replac-
ing the temporal law R(t) in order to follow the jet cross-section
as a function of the jet opening angle and of the distance from
the BH, setting a scaling parameter z(t) = RH(t)/RH0, and then
expressing R(t) = R0z(t)mR , and B(t) = B0z(t)�mBmR , where the
expansion index of the jet mR is assumed to be 2 [0, 1]. In the
ballistic case (mR = 1, Kaiser 2006) the initial opening angle of
the jet will be given by tan ✓0 = R0/RH0, and will change with
z according to tan (✓(z)) = tan (✓0)(RH(t)/RH0)mR�1, i.e. will be
constant.

Both for the flaring and long-term (expansion) simulations,
the time grid for the solution of the FP equation is tuned to have a
temporal mesh at least two orders of magnitude smaller than the
shortest cooling and acceleration timescale. We use an energy
grid with 1500 points and 1  �  108. As the total number of
time steps used in the FP numerical solution (Tsize) can be very
large, a subsample of the time steps of the simulation (NUMS ET )
is stored in arrays, and can be used to build both light curves and
SEDs. In the current simulation, we use NUMS ET = 200 for the
flaring stage and NUMS ET 2 [1000, 5000] for the long-term evo-
lution, depending on the duration of the simulation. This guar-
antees an adequate time sampling for light curves and spectral
evolution. SEDs are computed from the stored electron distribu-
tions, and from the blob parameters (according to their tempo-
ral evolution). In our case, the blob variable parameters are the
source radius (R) and magnetic field (B), which evolve accord-
ing to Equations 1 and 2, respectively. Light curves are obtained
by integrating SEDs between two frequencies, or as monochro-
matic. The code o↵ers the possibility to convolve the light curves
with the light-crossing time. In the present analysis, we skip this
option because, as shown in section 2, the light-crossing time
is always shorter than the other competing timescales. This ap-

proximation used in the current approach will be removed in a
forthcoming paper, where it will be treated accurately. We also
decided to use a constant bulk Lorentz factor. We tested and ver-
ified that, for the current scope of the simulations, the di↵erence
between enabling and disabling the IC cooling is negligible, and
therefore to speed up the computational time we use only syn-
chrotron cooling for the radiative terms.

3.2. Flare simulation

To generate the flaring event, we use the JetTimeEvol config-
uration with a separated acceleration and radiative region. With
this configuration, particles are injected into the acceleration re-
gion (AR), and then di↵used toward the radiative region (RR)
for a timescale corresponding to the flare duration. We set the
parameters for the flaring stage in order to reproduce the typi-
cal SED of HBLs, according to Tramacere et al. (2011). We as-
sume that both radiative and first and second-order acceleration
processes, occur in the AR, whilst in the RR region, we only
take cooling processes into account. Particles are injected in the
AR with a quasi-monoenergetic distribution, normalised accord-
ing to Equation 19. This initial distribution evolves under the
e↵ect of radiative and accelerative mechanisms, leading to the
formation of a distribution with a low-energy power-law branch
that bends close to the equilibrium energy. The high-energy
branch exhibits a log-parabolic shape during the acceleration-
dominated stage, and approaches a relativistic Maxwellian cut-
o↵ at the equilibrium. The spectral index of the low-energy
power law is dictated by the ratio of the first-order accelera-
tion timescale to the escape time from the acceleration region,
whilst the curvature during the acceleration-dominated stage is
dictated by the momentum di↵usion term. The acceleration re-
gion is modelled as a cylindrical shell with a radius equal to
the radiative region, and we assume a ten times smaller width.
Particles leaving the acceleration region (shock front) enter the
radiative region with a rate derived for the escape probability
Pescape(�tmesh) = 1�exp�tmesh/Tesc (Park & Petrosian 1996), where
�tmesh is the temporal mesh for the numerical solution of the FP
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JetSeT delays on weeks to years  timescales
MW variability and correlation studies of Mrk 421 during historically 
low X-ray and γ-ray activity in 2015-2016 Radio-γ delay in Mrk 421 (months)

Radio-γ delay ~ 1/ν 
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JetSeT what we want to test

W. Max-Moerbeck+ 2014  
B. Pushkarev+ 2010 

McCray,R. 1968 

• Observed lags are not compatible with cooling, acc., crossing (unless strong fine tuning)


• Explanations based on reacceleration, would be challenging due to MW observations


We want to test if it is possible to reproduce a radio-γ due (T>>d)  due to blob expansion  
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Numerical solution of FP equation taking into account:  

•FI+FII(first order and stochastic acceleration) 
•Radiative cooling: Sync+IC(SSC) 
•Adiabatic expansion/cooling
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A. Tramacere et al.: Radio-�-ray response in blazars as a signature of adiabatic blob expansion

Fig. 12: Expanding trends for ⌫ obtained from the simulations. Top left panel: Decay times (blue solid points) obtained from the best
fit for the radio-� response, for the simulation with �exp = 0.1 and ranging ⌫obs = [5, 45] GHz. The orange dashed line represents
the best fit with first equation of Equation 25. Top right panel: Same as in the top left panel, but for the case of t

obs
rise. The dashed

line corresponds to the best fit with the second equation of Equation 25. Bottom left panel: Same as in the top left panel, but for
�t

obs. The dashed line corresponds to the best fit with the third equation of Equation 25. Bottom right panel: Trend of t
obs
rise/t

obs
decay

as observed in the simulations (solid blue points) compared to the expectation from the individual best-fit trends of t
obs
rise and t

obs
decay

(dashed line).

Table 4: Best fit results, for the ⌫obs simulations

actual values values from ⌫ trend best fit
blob obs t

obs
rise t

obs
decay �t

obs

R0 cm 5 ⇥ 1015 1.66 ⇥ 1014 (2.4 ± 1.0) ⇥ 1014 (1.7 ± 0.2) ⇥ 1014 (1.6 ± 0.1) ⇥ 1014

⌫0SSA GHz 3 90 90 ± 10 100 ± 20 90 ± 10
texp s 1 ⇥ 107 3.3 ⇥ 105 (3.4 ± 0.1) ⇥ 105

mB 1 1.0 ± 0.1
�exp c 0.1 0.03 ± 0.01 0.09 ± 0.01 0.06 ± 0.01
� 0.24 ± 0.07 0.58 ± 0.02 0.50 ± 0.02
p 1.46 0.6 ± 0.2 1.7 ± 0.1 1.4 ± 0.1

Notes. Best fit results, for the ⌫obs simulations, of the trends reported in Equation 25 for t
obs
rise, t

obs
decay, and �t

obs, and shown in the top left, top right, and
bottom left panels of Figure 12, respectively. The parameter p, i.e. the electron distribution spectral index, is evaluated from the best-fit parameters
using the second equation of Equations 8.

in agreement with the simulation value within a few percent. Fi-
nally, we comment on the e↵ect of the initial SSA frequency on
the rising time. As already noted, the rising time decreases to
zero as ⌫⇤SSA approaches ⌫0SSA. This implies that even if we ob-
tain a long decay time because of the low expansion rate, we
might expect a short rising time if ⌫⇤SSA is close to ⌫0SSA. As in

the case of the �exp trends, we estimate the electron distribution
index p from the best-fit parameters using the second equation
of Equation 8. The agreement with the simulation value is lower
than in the case of the �exp trends, in particular for the case of
the rise time trend, but nevertheless both delay and decay times
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on the usual ‘double-humped’ SED shape rather than on the pos-
sible relation with the radio�� delay.

In this paper, we derive phenomenological trends linking the
relevant timescales of the delay to the physical parameters of
the emitting region, and we verify them by means of a self-
consistent numerical modelling. We propose a response func-
tion based on the relevant phenomenological timescales that is
able to reproduce the radio-delayed light curve as a response to
the ��ray, and we validate the phenomenological trends against
the numerical simulations, investigating biases due to the com-
petition between radiative and adiabatic cooling timescales. We
apply this response to Mrk 421, Mrk 501, and 3C237, and ob-
tain good agreement with the long-term radio trends. Finally, we
employ a Monte Carlo Markov Chain (MCMC) approach to es-
timate physical parameters from the comparison between the re-
sponse function convolution parameters and the prediction from
the phenomenological trends. The paper is organised as follows.
In section 2 we derive the phenomenological trends expected un-
der the hypothesis of a moving blob expanding with uniform
velocity, and we characterise the delay in terms of the velocity
of expansion and of the consequent evolution of the SSA, find-
ing a physical link between observed rise and decay timescales
and the physical parameters of the blob and jet. In section 3.1,
we describe our setup of numerical simulations done with the
JetSeT code (Tramacere 2020; Tramacere et al. 2011; Tra-
macere et al. 2009), taking into account radiative, accelerative
processes, and adiabatic expansion. The simulations reproduce
the long-term temporal evolution of a single blob, from the ini-
tial flaring activity, and the subsequent expansion. In section 4
we compare the results for the cases of an expanding versus a
non-expanding blob. In section 5 we follow the spectral evolu-
tion and the corresponding light curves for di↵erent values of
the expansion velocity and for di↵erent radio frequencies. We
propose a response function —embedding the relevant observed
timescales— able to reproduce the radio light curve as a convo-
lution with the �-ray one, and we validate the phenomenologi-
cal trends against the numerical simulations, studying the biases
on the timescales embedded in the response functions result-
ing from competition between radiative and adiabatic cooling
timescales. In section 6 we apply our model to observed data
for Mrk 421, Mrk 501, and 3C 273, and we reproduce long-
term radio light curves as convolution of the �-ray light curve
with the proposed response function. In section 7 we employ a
MCMC approach to estimate physical parameters of the jet from
a comparison between the response function convolution param-
eters and the prediction from the phenomenological trends. More
specifically, we investigate estimates of the source size, the mag-
netic field index, the initial SSA frequency, the expansion veloc-
ity, and the spectral index of the electron distribution. We also
compare our results with similar works in the literature, and dis-
cuss some implications of our model regarding the impact on the
Compton dominance, hadronic models, and polarisation, and we
also speculate on other possible causes of the delays, such as
jet bending and the connection to the jet profile observed in the
VLBI radio analysis. In section 8 we summarise our findings and
discuss our upcoming extension of the presented model. In sec-
tion A we provide instructions to reproduce the analysis and the
numerical modelling presented in this paper.

2. Phenomenological setup of an expanding blob
and synchrotron self-absorption

We assume that a spherical blob, characterised by an initial ra-
dius R0 and magnetic field B0 expands with a constant velocity

�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob.
Quantities expressed in the observer frame are labelled by the
obs flag. The size of the blob can be expressed as

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside step function.
The time-dependent law of the magnetic field, dictated by

flux freezing (Begelman et al. 1984) and energy conservation,
reads

B(t) = B0
⇣ R0

R(t)

⌘mB

, (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for a fully poloidal
configuration, and mB = 1 for a fully toroidal configuration
(Begelman et al. 1984). The adiabatic cooling will read (Lon-
gair 2010)

�̇ad(t) =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
�, (3)

where � is the Lorentz factor of the electrons, and V is the vol-
ume of the region that we assume to be spherical. The corre-
sponding cooling time can be expressed as

t
ad

cooling(t) =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)H(t � texp)

�expc
. (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫SSA(t) = ⌫L(t)
h⇡
p
⇡

4
eR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where e is the electron charge, N(t) is the particle num-
ber density at time t, p is the power-law index of the electron
distribution at the Lorentz factor most contributing to ⌫SSA(t),
and ⌫L(t) = eB(t)

2⇡mec
is the Larmor frequency. The functions fk(p)

are approximated to percent accuracy as reported in Ghisellini
(2013). Assuming that particles are confined (R3

N(t) = N
tot),

and plugging Equation 2 and 1 into Equation 5 we obtain

⌫SSA(t) /
h
B(t)

p+2
2

N
tot

R(t)2

i 2
p+4 . (6)

Setting the initial self-absorption frequency ⌫0SSA ⌘ ⌫SSA(t = 0),
an increase in flux of the synchrotron emission at a given fre-
quency ⌫⇤ > ⌫0SSA is expected at time t

⇤ such that ⌫SSA(t⇤) ⌘
⌫⇤SSA ' ⌫⇤, when the source is characterised by a size R

⇤ = R(t⇤)
and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and B
⇤ are

such that the source is optically thin at frequencies ⌫ � ⌫⇤. We
use Equation 6 to relate the two frequencies ⌫0SSA and ⌫⇤SSA to the
corresponding blob radius R

⇤ :

⌫⇤SSA

⌫0SSA

=
h⇣B⇤

B0

⌘ p+2
2
⇣R0

R⇤
⌘2i 2

p+4
=
hR0

R⇤
i mB(p+2)+4

p+4 . (7)

This equation provides a link between the temporal evolution of
the SSA frequency and source radius, for a homogeneous blob
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ABSTRACT

Context. Multiwavelengths light curves in long-term campaigns, have shown that, for several blazars, the gamma-ray emission occurs
with a significant delay w.r.t to high-energy bands, with time scales ranging from week to years. Such observational evidence has been
matter of debate for several year, and usually is understood in terms of di↵erent distances of the ��ray and radio transparent region.
Aims. In this paper we show, by means of a self-consistent numerical modeling, that the adiabatic expansion of relativist blob can
explain these delays, reproducing lags compatible with the observed time scales.
Methods. We use the JetSeTframework to reproduce the numerical modeling of the radiative and accelerative processes, reproducing
the temporal evolution of a single blob, from the initial flaring activity, and the subsequent expansion. We follow the spectral evolution
and the corresponding light curves, investigating the relations among the observed parameters, rise time, delay, and decay time, and
we identify the link with the physical parameters
Results. We find that, when adiabatic expansion is active, lags due to the shift of the synchrotron frequency occurs. The correspond-
ing time lags has an o↵set equal to the distance in time between the flaring onset and the beginning of the expansion, whilst the
rising and decaying time scales depends on the velocity of the expansion and on time required to the source to exhibit a synchrotron
self-absorption frequency below the relevant radio spectral window. We derive an inter-band response function, embedding the afore-
mentioned parameters, and we compare it with the Radio�� empirical response obtained from observational data of Mrk 421 and Mrk
501.

1. Introduction

2. Phenomenological setup of expanding blob and
synchrotron self-absorption

We assume that a spherical blob, characterized by an initial ra-
dius R0 and magnetic field B0. expands with a constant velocity
�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob,
quantities expressed in the observer frame are labeled by the obs

flag. The size of the blob can be expressed as:

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside function.
The time dependent law of the magnetic field, dictated by

flux freezing and energy conservation, reads:

B(t) = B0(
R0

R(t)
)mB , (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for fully poloidal
configuration, and mB = 1 for fully toroidal configuration. The
adiabatic cooling will read (Longair 2010):

�̇ad =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
� (3)

and the corresponding cooling time can be expressed as:

tad =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)

�expc
H(t � texp) (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫S S A(t) = ⌫L(t)
h⇡
p
⇡

4
qR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where q is the electron charge, where p is the power-law index of
the electron distribution at the Lorentz factor most contributing
to ⌫S S A(t), and ⌫L(t) = qB(t)

2⇡mec
is the Larmor frequency, and where

the functions fk(p) are approximated to percent accuracy as re-
ported in Ghisellini (2013). Assuming that particles are confined
(N(t) = N0), and plugging Equation 2 and 1 into Equation 5 we
obtain:

⌫S S A(t) /
h
B(t)

p+2
2 R(t)N0

i 2
p+4 (6)

Setting the initial self-absorption frequency ⌫0
S S A
⌘ ⌫S S A(t =

0), an increase of flux in the synchrotron emission, at a given
frequency ⌫⇤ > ⌫0

S S A
, is expected a time t

⇤ such that ⌫S S A(t⇤) ⌘
⌫⇤

S S A
' ⌫⇤, when the source will be characterized by a size R

⇤ =
R(t⇤) and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and
B
⇤ are such that the source optically thin at frequencies ⌫ � ⌫⇤.

We use Equation 6 to relate the two frequencies ⌫0
S S A

and ⌫⇤
S S A

,
to the corresponding blob radius R

⇤ :

⌫⇤
S S A

⌫0
S S A

=
h⇣B⇤

B0

⌘ p+2
2 R

⇤

R0

i 2
p+4
=
hR0

R⇤
i mB(p+2)�2

p+4 (7)

This equation provides a link between the temporal evolution
of the SSA frequency and source radius, for an homogeneous
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ABSTRACT

Context. Multiwavelengths light curves in long-term campaigns, have shown that, for several blazars, the gamma-ray emission occurs
with a significant delay w.r.t to high-energy bands, with time scales ranging from week to years. Such observational evidence has been
matter of debate for several year, and usually is understood in terms of di↵erent distances of the ��ray and radio transparent region.
Aims. In this paper we show, by means of a self-consistent numerical modeling, that the adiabatic expansion of relativist blob can
explain these delays, reproducing lags compatible with the observed time scales.
Methods. We use the JetSeTframework to reproduce the numerical modeling of the radiative and accelerative processes, reproducing
the temporal evolution of a single blob, from the initial flaring activity, and the subsequent expansion. We follow the spectral evolution
and the corresponding light curves, investigating the relations among the observed parameters, rise time, delay, and decay time, and
we identify the link with the physical parameters
Results. We find that, when adiabatic expansion is active, lags due to the shift of the synchrotron frequency occurs. The correspond-
ing time lags has an o↵set equal to the distance in time between the flaring onset and the beginning of the expansion, whilst the
rising and decaying time scales depends on the velocity of the expansion and on time required to the source to exhibit a synchrotron
self-absorption frequency below the relevant radio spectral window. We derive an inter-band response function, embedding the afore-
mentioned parameters, and we compare it with the Radio�� empirical response obtained from observational data of Mrk 421 and Mrk
501.

1. Introduction

2. Phenomenological setup of expanding blob and
synchrotron self-absorption

We assume that a spherical blob, characterized by an initial ra-
dius R0 and magnetic field B0. expands with a constant velocity
�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob,
quantities expressed in the observer frame are labeled by the obs

flag. The size of the blob can be expressed as:

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside function.
The time dependent law of the magnetic field, dictated by

flux freezing and energy conservation, reads:

B(t) = B0(
R0

R(t)
)mB , (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for fully poloidal
configuration, and mB = 1 for fully toroidal configuration. The
adiabatic cooling will read (Longair 2010):

�̇ad =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
� (3)

and the corresponding cooling time can be expressed as:

tad =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)

�expc
H(t � texp) (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫S S A(t) = ⌫L(t)
h⇡
p
⇡

4
qR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where q is the electron charge, where p is the power-law index of
the electron distribution at the Lorentz factor most contributing
to ⌫S S A(t), and ⌫L(t) = qB(t)

2⇡mec
is the Larmor frequency, and where

the functions fk(p) are approximated to percent accuracy as re-
ported in Ghisellini (2013). Assuming that particles are confined
(N(t) = N0), and plugging Equation 2 and 1 into Equation 5 we
obtain:

⌫S S A(t) /
h
B(t)

p+2
2 R(t)N0

i 2
p+4 (6)

Setting the initial self-absorption frequency ⌫0
S S A
⌘ ⌫S S A(t =

0), an increase of flux in the synchrotron emission, at a given
frequency ⌫⇤ > ⌫0

S S A
, is expected a time t

⇤ such that ⌫S S A(t⇤) ⌘
⌫⇤

S S A
' ⌫⇤, when the source will be characterized by a size R

⇤ =
R(t⇤) and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and
B
⇤ are such that the source optically thin at frequencies ⌫ � ⌫⇤.

We use Equation 6 to relate the two frequencies ⌫0
S S A

and ⌫⇤
S S A

,
to the corresponding blob radius R

⇤ :

⌫⇤
S S A

⌫0
S S A

=
h⇣B⇤

B0

⌘ p+2
2 R

⇤

R0

i 2
p+4
=
hR0

R⇤
i mB(p+2)�2

p+4 (7)

This equation provides a link between the temporal evolution
of the SSA frequency and source radius, for an homogeneous
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Fig. 13: Synthetic radio light curve for Mrk 421 (middle) created as a convolution of the day-binned Fermi-LAT 0.1-300 GeV light
curve (top) and of the radio response (inset panel), compared with the OVRO 15 GHz radio light curve (bottom). Fitting time range
is highlighted in grey.

ones by 170-250 days (Arbet-Engels et al. 2021b). To further
probe the connection between these bands, we searched for the
delayed response profile, which, when convolved with the GeV
light curve, can mimic the radio variations.

Adopting the analytical response profile defined by Eq. 21
together with a constant background emission (⇠ 0.9 Jy) and
minimising the deviations between the observed and synthetic
radio data (�2/⌫ = 258/112 = 2.3) led to a best-fit response de-
caying in 66 days after a delay of about 224 days as displayed
in Fig. 14 (inset panel) and parametrised in Table 6. The min-
imisation was performed for the period starting on MJD 56800,
because prior to that the GeV-radio correlation is weak, indicat-
ing that additional noise or emission components are present.

Table 6: Best-fit parameters for the �-ray-to-radio response for
Mrk 501.

Parameter Value
A 166+5

�3 ⇥ 104 Jy cm2 s/ph
trise 12+4

�4 days
tdecay 73+3.6

�3.6 days
�t 234+10

�10 days
Fbackground 0.915+0.004

�0.004 Jy

Notes. Best-fit parameters for the �-ray-to-radio response profile
(Eq. 21) with the addition of a background radio flux.

6.4. 3C 273

The GeV-radio response for the FSRQ 3C 273 was investigated
and discussed in Esposito et al. (2015) using light curves lasting
for about 6 years. The radio data could be reproduced using a
convolution of the GeV light curve through a response profile
varying only in amplitude from flare to flare.

We performed a similar analysis including additional data
and found that for 3C 273 a single response profile cannot re-
produce the complete radio light curve, unlike for Mrk 421 and
Mrk 501. The addition of a slowly changing background radio
emission was required, which was estimated with a third-order
Savitzky-Golay filter of the observed radio emission with a win-
dows size of 501 days, which is long enough to prevent fitting
of individual radio flares (dotted line in Fig. 15). This variable
background component needs to be bright (about 90% of the to-
tal emission) and cannot be accounted for by the core emission
of 3C 273. This emission is linked to the jet itself. The variability
of that component cannot be well constrained.

Figure 15 shows the original Fermi-LAT and radio light
curves, and the synthetic radio light curve derived as described
above. We had to adjust the amplitude of the response for di↵er-
ent individual flaring periods while the other response parame-
ters could remain unchanged, as found by Esposito et al. (2015).
The response profile (best-fit parameters listed in Table 7) was
derived using a single flare (�-ray time range [54710, 54890]
MJD) with a goodness of fit �2/⌫ = 88.5/59 = 1.5. The ampli-
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provide an estimate that is consistent within one sigma with the
simulation value.

6. Comparison with observational data

Here we show how we derive the radio-�-ray response using
real data from Fermi-LAT (Atwood et al. 2009) and from the
OVRO radio telescope (Richards et al. 2011) for three well-
known sources. The results are discussed in Sect. 7 in the frame-
work of the model outlined above.

To reconstruct the radio light curve, we convolved the GeV
light curve with the response profile given by Eq. 21 and opti-
mised the response parameters to obtain a match with the ob-
served radio data. The response is based on a single flare pro-
file, even if the radio light curves consist of many overlapping
consecutive flares in addition to a background flux. As, in re-
ality, the response parameters might change from flare to flare,
the response we derive should be considered as an average, pos-
sibly driven by the most prominent flares. As a consequence,
short-term features, such as spiky structures, could be smoothed
and suppressed. The main aim of this section is to show that the
physical mechanism investigated in the previous section is re-
sponsible for the systematic delayed radio emission, and to un-
derstand whether or not these average timescales are compatible
with those predicted by the model, assuming physical parame-
ters within the range of those used in the simulations

Delayed responses were already observed by Max-Moerbeck
et al. (2014) for specific flares of Mrk 421 and Mrk 501 and in-
terpreted as the propagation of shocks through conical jets. The
same interpretation was proposed (Türler et al. 1999) to explain
the long-term light curves of 3C 273, and in particular the radio
flares corresponding to overlapping stretched and delayed GeV
flares (Esposito et al. 2015).

The results indicated below show that a constant response
profile is adequate for Mrk 421 and Mrk 501, while the response
amplitude appears variable from flare to flare in the case of
3C 273. We also find that the background flux could be consid-
ered as constant in Mrk 421 and Mrk 501, possibly accounting
for the core emission, while it is slowly variable and firmly as-
sociated to the jet in 3C 273.

6.1. Data

The Large Area Telescope on board the Fermi Gamma-ray Space
Telescope (Fermi-LAT) is the most sensitive �-ray telescope in
the 20 MeV < E < 300 GeV energy range. Fermi-LAT uses
a charged particle tracker and a calorimeter to detect photons.
The point spread function (PSF) depends on energy, reaching
a 1�-equivalent containment radius of ⇠ 0.1� at 40 GeV (At-
wood et al. 2009). Despite Fermi-LAT being sensitive to �-rays
of about 20 MeV, because of the energy-dependent PSF we can
only reliably consider photons with energies between 100 MeV
and 300 GeV. Data reduction was performed using the PASS8
pipeline and the Fermi Science Tool v10r0p5 package. Sources
from the Fermi-LAT four-year point-source catalogue were used
for the fitting model. More details on the performed analysis can
be found in Arbet-Engels et al. (2021a). Because of their dif-
ferent �-ray fluxes, we used di↵erent time bins for each source:
3 days, 1 day, and 7 days for 3C 273, Mrk 421, and Mrk 501,
respectively. In the case of Mrk 501, we also reduced the consid-
ered energy range to 1-300 GeV leading to a reduction in the flux
uncertainties thanks to the better PSF and a lower background in
that energy range.

Regular radio observations of Mrk 421, Mrk 501, and 3C 273
were performed at 15 GHz by the 40 m radio telescope of
the Owens Valley Radio Observatory (OVRO) (Richards et al.
2011). These observations were conducted as part of the Fermi

blazars monitoring campaign. The light curves (with twice-per-
week cadence) were publicly available (when we started the
analysis) from the OVRO archive 3. We removed all the data
points with a significance of less than 5�, because these observa-
tions were performed during unfavourable observing conditions.

6.2. Mrk 421

The radio light curve of Mrk 421 is broadly correlated to the GeV
light curve, with radio lagging behind the GeV variations by 30�
100 days at the maximum of the discrete correlation function
(Arbet-Engels et al. 2021a).

The best-fit response was obtained by minimising, over a
7.5-year period (MJD 55500-58226), the deviations between the
observed radio light curve and the synthetic light curve obtained
by the convolution of the Fermi LAT daily binned light curve
with a response (Eq. 21). The Fermi LAT light curve starts about
two years before the period used for the minimisation to account
for the long-lasting e↵ect of the response, particularly �t.

The observed GeV and radio and the resulting synthetic ra-
dio light curves are shown in Fig. 13, and the best-fit parame-
ters are listed in Table 5. The uncertainties on the synthetic light
curve were derived using direct uncertainty propagation from the
Fermi LAT light curve and response profile through the convolu-
tion with the response profile. The best-fit synthetic light curve
is similar, but does not perfectly match the observed radio light
curve, possibly indicating that the intensity of the response (e.g.
the constant A) might be variable with time. Also, a fast radio
flare near MJD 56897 and a wider flare at about MJD 55600
(see Fig. 13) could not be reproduced. These flares could have
a di↵erent origin or may need a di↵erent response (such adjust-
ments were also used by Esposito et al. 2015, and could indicate
di↵erent conditions in various shocks). As the uncertainties on
the GeV light curve and on the response profile are not Gaussian
nor independent, the goodness of fit (�2/⌫ = 1243/218 = 5.9)
between the observed and synthetic radio data is only indicative.
As the response rise time is similar to the binning time of the
GeV light curve, its value indicates a rising time of shorter than
one day.

6.3. Mrk 501

The correlation between the GeV and radio light curves is also
strong in Mrk 501 with radio variations lagging behind the GeV

3 http://www.astro.caltech.edu/ovroblazars/

Table 5: Best-fit parameters for the �-ray to radio response pro-
file for Mrk 421.

Parameter Value
A 12.5+0.5

�0.013 ⇥ 103 Jy cm2 s/ph
trise . 1 day
tdecay 126.5+1.3

�1.3 days
�t 37.58+0.13

�0.13 days
Fbackground 0.18+0.008

�0.0004 Jy

Notes. Best-fit parameters for the �-ray to radio response profile
(Eq. 21) with the addition of a background radio flux.
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Fig. 5: Best fit for the radio-� response, at 15 GHz, for �exp = 0.001 (left panel), and at 15 GHz for�exp = 0.084 (right panel),
and texp = 1 ⇥ 107 s. All the other parameters are the same as reported in Table 2. The lightcurves are in the observer frame. The
red dashed line represents the actual fit interval, the orange line the simulate � � ray lightcurve, the green one the simulated radio
lightcurve, and the blue one is the best-fit of the radio lightcurve obtained from the convolution of the � � ray lightcurve with the
bestfit response. For �exp = 0.084 the best fit delay is �t = 5.14 + / � 0.02 days, the rising time is trise = 3.02 ± 0.04 days, and the
decay time is tdecay = 2.29±0.03 days. For �exp = 0.001 the best fit delay is �t = 131+ /�3 days, the rising time is trise = 32.6±0.5
days, and the decay time is tdecay = 54± days.

the 15 GHz frequency. For each value of �exp we find the best fit
response from Equation 20, and we investigate the trends param-
eters �obs

t
, t

obs
rise, t

obs
decay with the predictions from Equations 15 and

16. In particular, we define the synchrotron transparency radius,
Rtr, as the radius making the blob transparent to the frequency ⌫

Rtr = R0
⇣⌫0

S S A

⌫⇤
S S A

⌘ 
(21)

�Rtr = Rtr � R0 = R0
h⇣⌫0
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⌘ � 1
i
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so the Equations 15 will read:
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The results for the trends are shown in Figure 6. We start from
the decay trends (top left panel). The best fit values for the pa-
rameter Rtr ' 4 ⇥ 1014 cm, that corrected for the beaming corre-
sponds to a blob frame value of Rtr ' 1.2 ⇥ 1016 cm. This value
has to be compared with R0 = 5 ⇥ 1015 cm used in our simula-
tion, hence the synchrotron transparency value corresponding to
the ⌫obs = 15 GHz requires that the blob has roughly doubled its
size. We can compare this value with the expectation from Equa-
tion 21. From our simulation we know that the initial ⌫obs

SSA ' 80
GHz. Regarding the value of  , we notice that due to strong ef-
fect of the adiabatic expansion, the cut-o↵ of cooled electrons, at
a time corresponding to peak of the radio-delayed lightcurve, has
moved at � ' �t, where �t is the Lorentz factor of the electrons
most contributing to the SSA. Hence, we will have p >> 1, and
consequently  ' 1. (I will add a plot with the evolution of the

electrons). It follows a predicted value of Rtr ' 2.5 ⇥ 1016 cm

that is compatible with the one estimate from our best fit within
a factor of 2.

For the rising time trend (top right panel of Figure 6), we
obtain a best fit value of �Rtr = 5.3 ⇥ 1015 cm (after correcting
for trise ⇡ 2t

⇤
rise, and for the beaming). This value is compatible

with �Rtr = Rtr � R0 if we substitute to Rtr the value obtained
from the decay trends (Rtr ' 1.2 ⇥ 1016 cm), and to R0 the input
value of the simulation (R0 = 5 ⇥ 1015 cm).

Finally we investigate the delay trend (bottom lef panel of
Figure 6). In this case we obtain as best fit values of t

obs

exp ⇡ 3.4 ⇥
105 s that is in excellent agreement with the simulation value
of texp/� ⇡ 3.3 ⇥ 105 s. In conclusions all the trends predicted
in section 2 are verified by the numerical simulation, proofing
that can be used with real data to determine the corresponding
parameters from observed radio-� delays. As a final step, in the
bottom right panel of Figure 6, we show the predicted correlation
among the rise and decay times.

5.2. ⌫ trends

6. Comparison with observational data for Mrk 421
and Mrk 501

(Here we put the response evaluated by Viatlii with real data,

and some comments with the previous discussion)

7. Discussion

(Here we should give some caveats, in particular to other

classes of sources)

8. Conclusions
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Fig. 5: Best fit for the radio-� response, at 15 GHz, for �exp = 0.001 (left panel), and at 15 GHz for�exp = 0.084 (right panel),
and texp = 1 ⇥ 107 s. All the other parameters are the same as reported in Table 2. The lightcurves are in the observer frame. The
red dashed line represents the actual fit interval, the orange line the simulate � � ray lightcurve, the green one the simulated radio
lightcurve, and the blue one is the best-fit of the radio lightcurve obtained from the convolution of the � � ray lightcurve with the
bestfit response. For �exp = 0.084 the best fit delay is �t = 5.14 + / � 0.02 days, the rising time is trise = 3.02 ± 0.04 days, and the
decay time is tdecay = 2.29±0.03 days. For �exp = 0.001 the best fit delay is �t = 131+ /�3 days, the rising time is trise = 32.6±0.5
days, and the decay time is tdecay = 54± days.

the 15 GHz frequency. For each value of �exp we find the best fit
response from Equation 20, and we investigate the trends param-
eters �obs
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The results for the trends are shown in Figure 6. We start from
the decay trends (top left panel). The best fit values for the pa-
rameter Rtr ' 4 ⇥ 1014 cm, that corrected for the beaming corre-
sponds to a blob frame value of Rtr ' 1.2 ⇥ 1016 cm. This value
has to be compared with R0 = 5 ⇥ 1015 cm used in our simula-
tion, hence the synchrotron transparency value corresponding to
the ⌫obs = 15 GHz requires that the blob has roughly doubled its
size. We can compare this value with the expectation from Equa-
tion 21. From our simulation we know that the initial ⌫obs

SSA ' 80
GHz. Regarding the value of  , we notice that due to strong ef-
fect of the adiabatic expansion, the cut-o↵ of cooled electrons, at
a time corresponding to peak of the radio-delayed lightcurve, has
moved at � ' �t, where �t is the Lorentz factor of the electrons
most contributing to the SSA. Hence, we will have p >> 1, and
consequently  ' 1. (I will add a plot with the evolution of the

electrons). It follows a predicted value of Rtr ' 2.5 ⇥ 1016 cm

that is compatible with the one estimate from our best fit within
a factor of 2.

For the rising time trend (top right panel of Figure 6), we
obtain a best fit value of �Rtr = 5.3 ⇥ 1015 cm (after correcting
for trise ⇡ 2t

⇤
rise, and for the beaming). This value is compatible

with �Rtr = Rtr � R0 if we substitute to Rtr the value obtained
from the decay trends (Rtr ' 1.2 ⇥ 1016 cm), and to R0 the input
value of the simulation (R0 = 5 ⇥ 1015 cm).

Finally we investigate the delay trend (bottom lef panel of
Figure 6). In this case we obtain as best fit values of t

obs

exp ⇡ 3.4 ⇥
105 s that is in excellent agreement with the simulation value
of texp/� ⇡ 3.3 ⇥ 105 s. In conclusions all the trends predicted
in section 2 are verified by the numerical simulation, proofing
that can be used with real data to determine the corresponding
parameters from observed radio-� delays. As a final step, in the
bottom right panel of Figure 6, we show the predicted correlation
among the rise and decay times.
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the analyses were performed with di↵erent methods and numer-
ical codes (Potter 2018; Boula et al. 2018)—, the comparison
provides orthogonal checks, the results of which appear to sup-
port the hypothesis of an expanding blob related to the radio-�
connection in blazars.

One of the main novelties of our analysis, and one that is
missing in previous studies, is the determination of the single
flare response, and its verification via a self-consistent numerical
model, taking into account both acceleration and radiation pro-
cess, and the determination of the phenomenological relations
that link not only the delay but also the rise and decay time to
the expansion velocity, magnetic field index, and initial SSA fre-
quency. The proposed single-flare response is able to reproduce
the radio light curve as a convolution of the ��ray light curve,
and we verified that the timescales of the response follow the
phenomenological trends. This allowed us to establish a link be-
tween some physical parameters, such as the emitting region ini-
tial size, R0, the jet magnetic field index mB, and the observed
response. In particular, the derivation of the initial source size
can provide an orthogonal method compared to the determina-
tion based on MW SED fitting or variability timescales.

We also investigated other e↵ects of the adiabatic expansion.
In particular, we analysed the impact on the CD, verifying that
as the source size increases, the consequent decrease in photon
and electron density leads to a drop in the CD. This e↵ect, if
present at the time of the flare (texp = 0), can provide a hint
for the blob expansion before the observation of the radio de-
lay. It is extremely interesting that, very recently, MAGIC Col-
laboration et al. (2021) presented an analysis of the correlation
patterns of Mrk 421 in 2017, finding that adiabatic expansion
without significant particle losses can be invoked to explain the
pattern of the CD evolution. The authors also verified that the
adiabatic cooling timescales should be longer than those neces-
sary to explain a cooling break compatible with their MW data,
requiring adiabatic timescales of the order of weeks to months
in the observer frame that are in good agreement with our pro-
posed scenario. Moreover, the authors also state that the expand-
ing blob can explain �-ray orphan flares. The scenario proposed
in MAGIC Collaboration et al. (2021) is highly compatible with
our scenario, as we can set texp = 0 without any loss of general-
ity, and proves that, for Mrk 421, both the radio delay and the CD
e↵ect are confirmed by the data. Also, comparisons with the data
shown in Section 6 indicate that our model can accurately repro-
duce the radio light curve as a response to the �-ray light curve
over a time-span of years, and the relevant timescales derived
from the response function are in agreement with those derived
from the self-consistent modelling. In particular, for Mrk 421,
the analysis in Section 6.2 returns a best-fit value of �t ⇡ 37
days with a decay time of ⇡ 126 days, which corresponds to
�exp . 0.01 (see Sect. 5.2). The value of the decay time, which
according to our model is a proxy for the adiabatic cooling time,
is also in nice agreement with the decay time of the order of
weeks to months reported in MAGIC Collaboration et al. (2021).

To get a deeper understanding of the physics embedded in
the convolution analysis, we used a MCMC approach using the
emcee4 package (Foreman-Mackey et al. 2013). We define a
composite log-likelihoodL = Lrise+Ldecay+Ldelay, whereLrise,
Ldecay, and Ldelay represent the log-likelihood functions corre-
sponding to rise, decay, and delay time in Equation 25. Each
likelihood is evaluated assuming that the parameters returned by
the convolution analysis are distributed according to a Gaussian

4 https://emcee.readthedocs.io/en/stable/
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where µi and �i represent best-fit parameter values and the 1-�
errors, respectively, for �t, t

obs
rise, and t

obs
decay obtained in the con-

volution analysis, and xi represents the corresponding parameter
evaluated from Equation 25. In order to sample the parameter
space, we ran a chain with 104 steps, and a burn-in length of
1000 steps, checking that the chain was always converging. We
use uninformative flat priors, with mB 2 [1, 2], � 2 [1/3, 1],
⌫0,obs

SSA 2 [10, 104] GHz, �exp 2 [10�4, 1]. To determine the range
on R

obs
0 , we started from setting a flat range for the observed

�-ray variability timescale t
var
� 2 [0.25, 14] days, and we set

R
obs
0 = t

var
� c, leading to R

obs
0 2 [6.5 ⇥ 1013, 3.6 ⇥ 1017] cm. As

the phenomenological relations have a bias with respect to the
case where radiative cooling is taken into account (see Section 5,
Figure 7) we add 5% systematic error to the convolution analy-
sis results. In Appendix C we provide a validation of the method
against the simulation for �exp = 0.1. In Figures 16, 17, and
18, we plot the posterior contour maps (where the solid black
line identifies the 1-� containment for a bivariate Gaussian dis-
tribution). On the diagonal, we plot the marginalised posterior
distributions. The blue vertical line in the log(⌫0,obs

SSA ) histogram
identifies the 15 GHz observed OVRO frequency. In figure 19,
we plot the histogram of the values of the electron distribution in-
dex p obtained from the posterior values of mB and �, and using
the second equation of Equation 8. We notice that the MCMC is
able to provide informative confidence regions for the parame-
ters of interest, except for log(R0) estimated for Mrk 421, where
we notice a flat posterior for log(Robs

0 ) = 15.67+0.59
�0.59. In all the

other cases, we get informative posteriors. The magnetic index,
for Mrk 421, mB = 1.39+0.38

�0.29 has the peak of the PDF at mB = 1.
For the same source, we notice the low value of log(⌫0,obs

SSA ) =
10.34+0.09

�0.06, corresponding to ⌫0,obs
SSA ⇡ 22 GHz, driven by the short

t
obs
rise

returned by the convolution analysis, and very close the ob-
served OVRO frequency of 15 GHz. For the case of Mrk 501,
we obtain log(Robs

0 ) = 15.60+0.60
�0.54, mB = 1.31+0.36

0.22 . In this case,
the PDF is also peaking at mB ⇡ 1.0. The initial SSA frequency
log(⌫0,obs

SSA ) = 11.26+0.84
�0.49, which is larger than in the case of Mrk5

421, is compatible with the longer rise time. Regarding 3C 273,
we obtain log(Robs

0 ) = 15.53+0.61
�0.50, mB = 1.48+0.28

�0.18, but in this case
the PDF is not peaking at mB = 1. In this case, as in the case of
Mrk 501, we also obtain a larger value of log(⌫0,obs

SSA ) = 11.69+0.76
�0.61

compared to the case of Mrk 421. Regarding the index �, we
find it interesting to discuss the estimate on the electron index
p. Indeed, as � plays the same role as  , we can use the second
equation of Equation 8 to estimate the posterior distribution of
p from the posterior values of mB and �. The result is shown in
Figure 19. For the case of Mrk 421, we find a confidence level
of p = 1.97+1.26

�0.72, for Mrk 501 p = 2.00+1.14
�0.73, and for 3C 273

p = 2.27+1.18
�0.84. The value of 3C 273 is compatible with a stronger

cooling regime, and is therefore in agreement with the presence
of an EC radiative component. For all the objects, the values of p

are compatible with the predictions from Fermi first-order accel-
eration plus a stochastic component, which is in agreement with
previous theoretical and observational analyses (Tramacere et al.
2009; Tramacere et al. 2011).

Nevertheless, the convolution analysis performed with the
observed data can be a↵ected by numerous sources of bias; in
particular, our use of a single response for the full time-span, en-
compassing several flaring episodes, with the possibility that the
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the analyses were performed with di↵erent methods and numer-
ical codes (Potter 2018; Boula et al. 2018)—, the comparison
provides orthogonal checks, the results of which appear to sup-
port the hypothesis of an expanding blob related to the radio-�
connection in blazars.

One of the main novelties of our analysis, and one that is
missing in previous studies, is the determination of the single
flare response, and its verification via a self-consistent numerical
model, taking into account both acceleration and radiation pro-
cess, and the determination of the phenomenological relations
that link not only the delay but also the rise and decay time to
the expansion velocity, magnetic field index, and initial SSA fre-
quency. The proposed single-flare response is able to reproduce
the radio light curve as a convolution of the ��ray light curve,
and we verified that the timescales of the response follow the
phenomenological trends. This allowed us to establish a link be-
tween some physical parameters, such as the emitting region ini-
tial size, R0, the jet magnetic field index mB, and the observed
response. In particular, the derivation of the initial source size
can provide an orthogonal method compared to the determina-
tion based on MW SED fitting or variability timescales.

We also investigated other e↵ects of the adiabatic expansion.
In particular, we analysed the impact on the CD, verifying that
as the source size increases, the consequent decrease in photon
and electron density leads to a drop in the CD. This e↵ect, if
present at the time of the flare (texp = 0), can provide a hint
for the blob expansion before the observation of the radio de-
lay. It is extremely interesting that, very recently, MAGIC Col-
laboration et al. (2021) presented an analysis of the correlation
patterns of Mrk 421 in 2017, finding that adiabatic expansion
without significant particle losses can be invoked to explain the
pattern of the CD evolution. The authors also verified that the
adiabatic cooling timescales should be longer than those neces-
sary to explain a cooling break compatible with their MW data,
requiring adiabatic timescales of the order of weeks to months
in the observer frame that are in good agreement with our pro-
posed scenario. Moreover, the authors also state that the expand-
ing blob can explain �-ray orphan flares. The scenario proposed
in MAGIC Collaboration et al. (2021) is highly compatible with
our scenario, as we can set texp = 0 without any loss of general-
ity, and proves that, for Mrk 421, both the radio delay and the CD
e↵ect are confirmed by the data. Also, comparisons with the data
shown in Section 6 indicate that our model can accurately repro-
duce the radio light curve as a response to the �-ray light curve
over a time-span of years, and the relevant timescales derived
from the response function are in agreement with those derived
from the self-consistent modelling. In particular, for Mrk 421,
the analysis in Section 6.2 returns a best-fit value of �t ⇡ 37
days with a decay time of ⇡ 126 days, which corresponds to
�exp . 0.01 (see Sect. 5.2). The value of the decay time, which
according to our model is a proxy for the adiabatic cooling time,
is also in nice agreement with the decay time of the order of
weeks to months reported in MAGIC Collaboration et al. (2021).

To get a deeper understanding of the physics embedded in
the convolution analysis, we used a MCMC approach using the
emcee4 package (Foreman-Mackey et al. 2013). We define a
composite log-likelihoodL = Lrise+Ldecay+Ldelay, whereLrise,
Ldecay, and Ldelay represent the log-likelihood functions corre-
sponding to rise, decay, and delay time in Equation 25. Each
likelihood is evaluated assuming that the parameters returned by
the convolution analysis are distributed according to a Gaussian
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where µi and �i represent best-fit parameter values and the 1-�
errors, respectively, for �t, t

obs
rise, and t

obs
decay obtained in the con-

volution analysis, and xi represents the corresponding parameter
evaluated from Equation 25. In order to sample the parameter
space, we ran a chain with 104 steps, and a burn-in length of
1000 steps, checking that the chain was always converging. We
use uninformative flat priors, with mB 2 [1, 2], � 2 [1/3, 1],
⌫0,obs

SSA 2 [10, 104] GHz, �exp 2 [10�4, 1]. To determine the range
on R

obs
0 , we started from setting a flat range for the observed

�-ray variability timescale t
var
� 2 [0.25, 14] days, and we set

R
obs
0 = t

var
� c, leading to R

obs
0 2 [6.5 ⇥ 1013, 3.6 ⇥ 1017] cm. As

the phenomenological relations have a bias with respect to the
case where radiative cooling is taken into account (see Section 5,
Figure 7) we add 5% systematic error to the convolution analy-
sis results. In Appendix C we provide a validation of the method
against the simulation for �exp = 0.1. In Figures 16, 17, and
18, we plot the posterior contour maps (where the solid black
line identifies the 1-� containment for a bivariate Gaussian dis-
tribution). On the diagonal, we plot the marginalised posterior
distributions. The blue vertical line in the log(⌫0,obs

SSA ) histogram
identifies the 15 GHz observed OVRO frequency. In figure 19,
we plot the histogram of the values of the electron distribution in-
dex p obtained from the posterior values of mB and �, and using
the second equation of Equation 8. We notice that the MCMC is
able to provide informative confidence regions for the parame-
ters of interest, except for log(R0) estimated for Mrk 421, where
we notice a flat posterior for log(Robs

0 ) = 15.67+0.59
�0.59. In all the

other cases, we get informative posteriors. The magnetic index,
for Mrk 421, mB = 1.39+0.38

�0.29 has the peak of the PDF at mB = 1.
For the same source, we notice the low value of log(⌫0,obs

SSA ) =
10.34+0.09

�0.06, corresponding to ⌫0,obs
SSA ⇡ 22 GHz, driven by the short

t
obs
rise

returned by the convolution analysis, and very close the ob-
served OVRO frequency of 15 GHz. For the case of Mrk 501,
we obtain log(Robs

0 ) = 15.60+0.60
�0.54, mB = 1.31+0.36

0.22 . In this case,
the PDF is also peaking at mB ⇡ 1.0. The initial SSA frequency
log(⌫0,obs

SSA ) = 11.26+0.84
�0.49, which is larger than in the case of Mrk5

421, is compatible with the longer rise time. Regarding 3C 273,
we obtain log(Robs

0 ) = 15.53+0.61
�0.50, mB = 1.48+0.28

�0.18, but in this case
the PDF is not peaking at mB = 1. In this case, as in the case of
Mrk 501, we also obtain a larger value of log(⌫0,obs

SSA ) = 11.69+0.76
�0.61

compared to the case of Mrk 421. Regarding the index �, we
find it interesting to discuss the estimate on the electron index
p. Indeed, as � plays the same role as  , we can use the second
equation of Equation 8 to estimate the posterior distribution of
p from the posterior values of mB and �. The result is shown in
Figure 19. For the case of Mrk 421, we find a confidence level
of p = 1.97+1.26

�0.72, for Mrk 501 p = 2.00+1.14
�0.73, and for 3C 273

p = 2.27+1.18
�0.84. The value of 3C 273 is compatible with a stronger

cooling regime, and is therefore in agreement with the presence
of an EC radiative component. For all the objects, the values of p

are compatible with the predictions from Fermi first-order accel-
eration plus a stochastic component, which is in agreement with
previous theoretical and observational analyses (Tramacere et al.
2009; Tramacere et al. 2011).

Nevertheless, the convolution analysis performed with the
observed data can be a↵ected by numerous sources of bias; in
particular, our use of a single response for the full time-span, en-
compassing several flaring episodes, with the possibility that the
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the analyses were performed with di↵erent methods and numer-
ical codes (Potter 2018; Boula et al. 2018)—, the comparison
provides orthogonal checks, the results of which appear to sup-
port the hypothesis of an expanding blob related to the radio-�
connection in blazars.

One of the main novelties of our analysis, and one that is
missing in previous studies, is the determination of the single
flare response, and its verification via a self-consistent numerical
model, taking into account both acceleration and radiation pro-
cess, and the determination of the phenomenological relations
that link not only the delay but also the rise and decay time to
the expansion velocity, magnetic field index, and initial SSA fre-
quency. The proposed single-flare response is able to reproduce
the radio light curve as a convolution of the ��ray light curve,
and we verified that the timescales of the response follow the
phenomenological trends. This allowed us to establish a link be-
tween some physical parameters, such as the emitting region ini-
tial size, R0, the jet magnetic field index mB, and the observed
response. In particular, the derivation of the initial source size
can provide an orthogonal method compared to the determina-
tion based on MW SED fitting or variability timescales.

We also investigated other e↵ects of the adiabatic expansion.
In particular, we analysed the impact on the CD, verifying that
as the source size increases, the consequent decrease in photon
and electron density leads to a drop in the CD. This e↵ect, if
present at the time of the flare (texp = 0), can provide a hint
for the blob expansion before the observation of the radio de-
lay. It is extremely interesting that, very recently, MAGIC Col-
laboration et al. (2021) presented an analysis of the correlation
patterns of Mrk 421 in 2017, finding that adiabatic expansion
without significant particle losses can be invoked to explain the
pattern of the CD evolution. The authors also verified that the
adiabatic cooling timescales should be longer than those neces-
sary to explain a cooling break compatible with their MW data,
requiring adiabatic timescales of the order of weeks to months
in the observer frame that are in good agreement with our pro-
posed scenario. Moreover, the authors also state that the expand-
ing blob can explain �-ray orphan flares. The scenario proposed
in MAGIC Collaboration et al. (2021) is highly compatible with
our scenario, as we can set texp = 0 without any loss of general-
ity, and proves that, for Mrk 421, both the radio delay and the CD
e↵ect are confirmed by the data. Also, comparisons with the data
shown in Section 6 indicate that our model can accurately repro-
duce the radio light curve as a response to the �-ray light curve
over a time-span of years, and the relevant timescales derived
from the response function are in agreement with those derived
from the self-consistent modelling. In particular, for Mrk 421,
the analysis in Section 6.2 returns a best-fit value of �t ⇡ 37
days with a decay time of ⇡ 126 days, which corresponds to
�exp . 0.01 (see Sect. 5.2). The value of the decay time, which
according to our model is a proxy for the adiabatic cooling time,
is also in nice agreement with the decay time of the order of
weeks to months reported in MAGIC Collaboration et al. (2021).

To get a deeper understanding of the physics embedded in
the convolution analysis, we used a MCMC approach using the
emcee4 package (Foreman-Mackey et al. 2013). We define a
composite log-likelihoodL = Lrise+Ldecay+Ldelay, whereLrise,
Ldecay, and Ldelay represent the log-likelihood functions corre-
sponding to rise, decay, and delay time in Equation 25. Each
likelihood is evaluated assuming that the parameters returned by
the convolution analysis are distributed according to a Gaussian
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where µi and �i represent best-fit parameter values and the 1-�
errors, respectively, for �t, t

obs
rise, and t

obs
decay obtained in the con-

volution analysis, and xi represents the corresponding parameter
evaluated from Equation 25. In order to sample the parameter
space, we ran a chain with 104 steps, and a burn-in length of
1000 steps, checking that the chain was always converging. We
use uninformative flat priors, with mB 2 [1, 2], � 2 [1/3, 1],
⌫0,obs

SSA 2 [10, 104] GHz, �exp 2 [10�4, 1]. To determine the range
on R

obs
0 , we started from setting a flat range for the observed

�-ray variability timescale t
var
� 2 [0.25, 14] days, and we set

R
obs
0 = t

var
� c, leading to R

obs
0 2 [6.5 ⇥ 1013, 3.6 ⇥ 1017] cm. As

the phenomenological relations have a bias with respect to the
case where radiative cooling is taken into account (see Section 5,
Figure 7) we add 5% systematic error to the convolution analy-
sis results. In Appendix C we provide a validation of the method
against the simulation for �exp = 0.1. In Figures 16, 17, and
18, we plot the posterior contour maps (where the solid black
line identifies the 1-� containment for a bivariate Gaussian dis-
tribution). On the diagonal, we plot the marginalised posterior
distributions. The blue vertical line in the log(⌫0,obs

SSA ) histogram
identifies the 15 GHz observed OVRO frequency. In figure 19,
we plot the histogram of the values of the electron distribution in-
dex p obtained from the posterior values of mB and �, and using
the second equation of Equation 8. We notice that the MCMC is
able to provide informative confidence regions for the parame-
ters of interest, except for log(R0) estimated for Mrk 421, where
we notice a flat posterior for log(Robs

0 ) = 15.67+0.59
�0.59. In all the

other cases, we get informative posteriors. The magnetic index,
for Mrk 421, mB = 1.39+0.38

�0.29 has the peak of the PDF at mB = 1.
For the same source, we notice the low value of log(⌫0,obs

SSA ) =
10.34+0.09

�0.06, corresponding to ⌫0,obs
SSA ⇡ 22 GHz, driven by the short

t
obs
rise

returned by the convolution analysis, and very close the ob-
served OVRO frequency of 15 GHz. For the case of Mrk 501,
we obtain log(Robs

0 ) = 15.60+0.60
�0.54, mB = 1.31+0.36

0.22 . In this case,
the PDF is also peaking at mB ⇡ 1.0. The initial SSA frequency
log(⌫0,obs

SSA ) = 11.26+0.84
�0.49, which is larger than in the case of Mrk5

421, is compatible with the longer rise time. Regarding 3C 273,
we obtain log(Robs

0 ) = 15.53+0.61
�0.50, mB = 1.48+0.28

�0.18, but in this case
the PDF is not peaking at mB = 1. In this case, as in the case of
Mrk 501, we also obtain a larger value of log(⌫0,obs

SSA ) = 11.69+0.76
�0.61

compared to the case of Mrk 421. Regarding the index �, we
find it interesting to discuss the estimate on the electron index
p. Indeed, as � plays the same role as  , we can use the second
equation of Equation 8 to estimate the posterior distribution of
p from the posterior values of mB and �. The result is shown in
Figure 19. For the case of Mrk 421, we find a confidence level
of p = 1.97+1.26

�0.72, for Mrk 501 p = 2.00+1.14
�0.73, and for 3C 273

p = 2.27+1.18
�0.84. The value of 3C 273 is compatible with a stronger

cooling regime, and is therefore in agreement with the presence
of an EC radiative component. For all the objects, the values of p

are compatible with the predictions from Fermi first-order accel-
eration plus a stochastic component, which is in agreement with
previous theoretical and observational analyses (Tramacere et al.
2009; Tramacere et al. 2011).

Nevertheless, the convolution analysis performed with the
observed data can be a↵ected by numerous sources of bias; in
particular, our use of a single response for the full time-span, en-
compassing several flaring episodes, with the possibility that the
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the analyses were performed with di↵erent methods and numer-
ical codes (Potter 2018; Boula et al. 2018)—, the comparison
provides orthogonal checks, the results of which appear to sup-
port the hypothesis of an expanding blob related to the radio-�
connection in blazars.

One of the main novelties of our analysis, and one that is
missing in previous studies, is the determination of the single
flare response, and its verification via a self-consistent numerical
model, taking into account both acceleration and radiation pro-
cess, and the determination of the phenomenological relations
that link not only the delay but also the rise and decay time to
the expansion velocity, magnetic field index, and initial SSA fre-
quency. The proposed single-flare response is able to reproduce
the radio light curve as a convolution of the ��ray light curve,
and we verified that the timescales of the response follow the
phenomenological trends. This allowed us to establish a link be-
tween some physical parameters, such as the emitting region ini-
tial size, R0, the jet magnetic field index mB, and the observed
response. In particular, the derivation of the initial source size
can provide an orthogonal method compared to the determina-
tion based on MW SED fitting or variability timescales.

We also investigated other e↵ects of the adiabatic expansion.
In particular, we analysed the impact on the CD, verifying that
as the source size increases, the consequent decrease in photon
and electron density leads to a drop in the CD. This e↵ect, if
present at the time of the flare (texp = 0), can provide a hint
for the blob expansion before the observation of the radio de-
lay. It is extremely interesting that, very recently, MAGIC Col-
laboration et al. (2021) presented an analysis of the correlation
patterns of Mrk 421 in 2017, finding that adiabatic expansion
without significant particle losses can be invoked to explain the
pattern of the CD evolution. The authors also verified that the
adiabatic cooling timescales should be longer than those neces-
sary to explain a cooling break compatible with their MW data,
requiring adiabatic timescales of the order of weeks to months
in the observer frame that are in good agreement with our pro-
posed scenario. Moreover, the authors also state that the expand-
ing blob can explain �-ray orphan flares. The scenario proposed
in MAGIC Collaboration et al. (2021) is highly compatible with
our scenario, as we can set texp = 0 without any loss of general-
ity, and proves that, for Mrk 421, both the radio delay and the CD
e↵ect are confirmed by the data. Also, comparisons with the data
shown in Section 6 indicate that our model can accurately repro-
duce the radio light curve as a response to the �-ray light curve
over a time-span of years, and the relevant timescales derived
from the response function are in agreement with those derived
from the self-consistent modelling. In particular, for Mrk 421,
the analysis in Section 6.2 returns a best-fit value of �t ⇡ 37
days with a decay time of ⇡ 126 days, which corresponds to
�exp . 0.01 (see Sect. 5.2). The value of the decay time, which
according to our model is a proxy for the adiabatic cooling time,
is also in nice agreement with the decay time of the order of
weeks to months reported in MAGIC Collaboration et al. (2021).

To get a deeper understanding of the physics embedded in
the convolution analysis, we used a MCMC approach using the
emcee4 package (Foreman-Mackey et al. 2013). We define a
composite log-likelihoodL = Lrise+Ldecay+Ldelay, whereLrise,
Ldecay, and Ldelay represent the log-likelihood functions corre-
sponding to rise, decay, and delay time in Equation 25. Each
likelihood is evaluated assuming that the parameters returned by
the convolution analysis are distributed according to a Gaussian
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where µi and �i represent best-fit parameter values and the 1-�
errors, respectively, for �t, t

obs
rise, and t

obs
decay obtained in the con-

volution analysis, and xi represents the corresponding parameter
evaluated from Equation 25. In order to sample the parameter
space, we ran a chain with 104 steps, and a burn-in length of
1000 steps, checking that the chain was always converging. We
use uninformative flat priors, with mB 2 [1, 2], � 2 [1/3, 1],
⌫0,obs

SSA 2 [10, 104] GHz, �exp 2 [10�4, 1]. To determine the range
on R

obs
0 , we started from setting a flat range for the observed

�-ray variability timescale t
var
� 2 [0.25, 14] days, and we set

R
obs
0 = t

var
� c, leading to R

obs
0 2 [6.5 ⇥ 1013, 3.6 ⇥ 1017] cm. As

the phenomenological relations have a bias with respect to the
case where radiative cooling is taken into account (see Section 5,
Figure 7) we add 5% systematic error to the convolution analy-
sis results. In Appendix C we provide a validation of the method
against the simulation for �exp = 0.1. In Figures 16, 17, and
18, we plot the posterior contour maps (where the solid black
line identifies the 1-� containment for a bivariate Gaussian dis-
tribution). On the diagonal, we plot the marginalised posterior
distributions. The blue vertical line in the log(⌫0,obs

SSA ) histogram
identifies the 15 GHz observed OVRO frequency. In figure 19,
we plot the histogram of the values of the electron distribution in-
dex p obtained from the posterior values of mB and �, and using
the second equation of Equation 8. We notice that the MCMC is
able to provide informative confidence regions for the parame-
ters of interest, except for log(R0) estimated for Mrk 421, where
we notice a flat posterior for log(Robs

0 ) = 15.67+0.59
�0.59. In all the

other cases, we get informative posteriors. The magnetic index,
for Mrk 421, mB = 1.39+0.38

�0.29 has the peak of the PDF at mB = 1.
For the same source, we notice the low value of log(⌫0,obs

SSA ) =
10.34+0.09

�0.06, corresponding to ⌫0,obs
SSA ⇡ 22 GHz, driven by the short

t
obs
rise

returned by the convolution analysis, and very close the ob-
served OVRO frequency of 15 GHz. For the case of Mrk 501,
we obtain log(Robs

0 ) = 15.60+0.60
�0.54, mB = 1.31+0.36

0.22 . In this case,
the PDF is also peaking at mB ⇡ 1.0. The initial SSA frequency
log(⌫0,obs

SSA ) = 11.26+0.84
�0.49, which is larger than in the case of Mrk5

421, is compatible with the longer rise time. Regarding 3C 273,
we obtain log(Robs

0 ) = 15.53+0.61
�0.50, mB = 1.48+0.28

�0.18, but in this case
the PDF is not peaking at mB = 1. In this case, as in the case of
Mrk 501, we also obtain a larger value of log(⌫0,obs

SSA ) = 11.69+0.76
�0.61

compared to the case of Mrk 421. Regarding the index �, we
find it interesting to discuss the estimate on the electron index
p. Indeed, as � plays the same role as  , we can use the second
equation of Equation 8 to estimate the posterior distribution of
p from the posterior values of mB and �. The result is shown in
Figure 19. For the case of Mrk 421, we find a confidence level
of p = 1.97+1.26

�0.72, for Mrk 501 p = 2.00+1.14
�0.73, and for 3C 273

p = 2.27+1.18
�0.84. The value of 3C 273 is compatible with a stronger

cooling regime, and is therefore in agreement with the presence
of an EC radiative component. For all the objects, the values of p

are compatible with the predictions from Fermi first-order accel-
eration plus a stochastic component, which is in agreement with
previous theoretical and observational analyses (Tramacere et al.
2009; Tramacere et al. 2011).

Nevertheless, the convolution analysis performed with the
observed data can be a↵ected by numerous sources of bias; in
particular, our use of a single response for the full time-span, en-
compassing several flaring episodes, with the possibility that the
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Fig. 17: Same as in Figure 16, but for the case of Mrk 501.

e↵ects similar to those investigated in the case of the syn-
chrotron cooling.

– A further bias is introduced by the sampling of the IC win-
dow for di↵erent classes of objects. For example, in the case
of FSRQs, the Fermi window (0.1-300 GeV) is sampling the
EC bump close to the SED peak, whilst in the case of HBLs,
Fermi is sampling the rising part of the IC bump. We there-
fore expect a di↵erent dynamics in the light curves.

– Regarding the interplay between escape times and source
size, because particle escape time is / R/c, we could expect
significant escape at the time of the flare, with increasing es-
cape times as long as the source expands. This, again, might
lead to modulation of the amplitude and also the SSA fre-
quency. The combination of these e↵ects could impact the
slopes of the trends in Equation 25

– In general, changes to the initial SSA frequency, ⌫0,obs
SSA , re-

lated to di↵erent combinations of N
tot and B0 will lead to the

same trends as those in Equation 25. Given the functional
form of the term

⇣
⌫0,obs

SSA /⌫
⇤,obs
SSA

⌘�
, these trends with respect to

⌫⇤,obs
SSA will have a changed sing in the exponent.

Nevertheless, the agreement between the observed radio data
and the results obtained from the convolution with a single re-
sponse is satisfactory and supports the hypothesis that adiabatic
expansion is the main driver of the observed radio delay. It is
interesting to note a possible connection between the expansion
and the polarisation measurements. According to Yusef-Zadeh
et al. (2007), for an expanding blob, the polarisation rotation
measure (RM) follows the trend RM / NRB, which for our setup
(constant N(t)R3(t)), will scale as RM / R

�3 for mB = 1, and as
RM / R

�4 for mB = 2. Therefore, in the case of an expansion we
expect the RM to decrease at lower radio frequencies, and would
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Fig. 14: Mrk 501 synthetic radio light curve (middle), created as a convolution of the weekly binned Fermi-LAT 1-300 GeV light
curve (top) and of the radio response (inset of the middle panel), compared with the OVRO 15 GHz radio light curve (bottom). The
fitting time range is highlighted in grey.

tudes of the response for the individual flaring periods (listed in
Tab. 8) were determined on the full range of radio observations.
The variations of the response amplitude during di↵erent flares
can be explained by two possible factors:

– A transition from a SSC- to an external Compton (EC)-
dominated IC emission regime. Indeed, the amplitude of the
response strongly depends on the initial radiative output of
both the IC and S components at the flaring state. Hence, a
di↵erent contribution from the EC emission can impact the
response amplitude.

– As shown in Section 5, and in particular in Figure 10, there is
a strong e↵ect of the competition between synchrotron and
adiabatic cooling times on the modulation of the response
amplitude. In particular, we notice that, for changes in �exp,
variations on the response amplitude of up to one order of
magnitude are possible, whilst for changes in ⌫obs the varia-
tions can be up to 40%. As for 3C 373, the modulation of the
amplitude ranges form ⇡ 0.5 to ⇡ 5 (see Table 8), we can as-
sume that the observed modulation can also be explained as
a change in �exp. Moreover, a change in the EC contribution
can impact the radiative–adiabatic balance, producing e↵ects
similar to those produced by changes in �exp.

We also note that the slowly changing background (dotted
line in the middle and bottom panels of Figure 15) needed for
the radio emission does not a↵ect the ��ray component. This

discrepancy seems to be unrelated to the EC/SSC transition, be-
cause the radio-� response reproduces the detrended radio light
curves. A possible explanation could be provided by a change in
the baseline of the radio emission at the expansion site, possibly
related to a change in the beaming factor and therefore related to
the jet–blob geometry. In any case, the fact that the modulated
baseline alone allows us to reproduce the trend suggests that the
physical cause of the modulation is not a↵ecting the physical
mechanism of the response.

Table 7: Best-fit parameters of the �-ray(Fermi-LAT)-to-radio
response profile for 3C 273.

Parameter Value
A0 174+12

�11 ⇥ 103 Jy cm2 s/ph
trise 37+2

�2 days
tdecay 69+3

�3 days
�t 276+10

�10 days

Notes. Best-fit parameters of the �-ray(Fermi-LAT)-to-radio response
profile (see Eq. 21).

7. Discussion

The results presented in the present analysis provide a self-
consistent framework with which to explain the observed delay
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Fig. 13: Synthetic radio light curve for Mrk 421 (middle) created as a convolution of the day-binned Fermi-LAT 0.1-300 GeV light
curve (top) and of the radio response (inset panel), compared with the OVRO 15 GHz radio light curve (bottom). Fitting time range
is highlighted in grey.

ones by 170-250 days (Arbet-Engels et al. 2021b). To further
probe the connection between these bands, we searched for the
delayed response profile, which, when convolved with the GeV
light curve, can mimic the radio variations.

Adopting the analytical response profile defined by Eq. 21
together with a constant background emission (⇠ 0.9 Jy) and
minimising the deviations between the observed and synthetic
radio data (�2/⌫ = 258/112 = 2.3) led to a best-fit response de-
caying in 66 days after a delay of about 224 days as displayed
in Fig. 14 (inset panel) and parametrised in Table 6. The min-
imisation was performed for the period starting on MJD 56800,
because prior to that the GeV-radio correlation is weak, indicat-
ing that additional noise or emission components are present.

Table 6: Best-fit parameters for the �-ray-to-radio response for
Mrk 501.

Parameter Value
A 166+5

�3 ⇥ 104 Jy cm2 s/ph
trise 12+4

�4 days
tdecay 73+3.6

�3.6 days
�t 234+10

�10 days
Fbackground 0.915+0.004

�0.004 Jy

Notes. Best-fit parameters for the �-ray-to-radio response profile
(Eq. 21) with the addition of a background radio flux.

6.4. 3C 273

The GeV-radio response for the FSRQ 3C 273 was investigated
and discussed in Esposito et al. (2015) using light curves lasting
for about 6 years. The radio data could be reproduced using a
convolution of the GeV light curve through a response profile
varying only in amplitude from flare to flare.

We performed a similar analysis including additional data
and found that for 3C 273 a single response profile cannot re-
produce the complete radio light curve, unlike for Mrk 421 and
Mrk 501. The addition of a slowly changing background radio
emission was required, which was estimated with a third-order
Savitzky-Golay filter of the observed radio emission with a win-
dows size of 501 days, which is long enough to prevent fitting
of individual radio flares (dotted line in Fig. 15). This variable
background component needs to be bright (about 90% of the to-
tal emission) and cannot be accounted for by the core emission
of 3C 273. This emission is linked to the jet itself. The variability
of that component cannot be well constrained.

Figure 15 shows the original Fermi-LAT and radio light
curves, and the synthetic radio light curve derived as described
above. We had to adjust the amplitude of the response for di↵er-
ent individual flaring periods while the other response parame-
ters could remain unchanged, as found by Esposito et al. (2015).
The response profile (best-fit parameters listed in Table 7) was
derived using a single flare (�-ray time range [54710, 54890]
MJD) with a goodness of fit �2/⌫ = 88.5/59 = 1.5. The ampli-
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JetSeT Conclusions

• Radio-gamma delays on weeks to year timescales can be self consistently reproduced by adiabatic 
blob expansion (consistent with Potter 2018, Boula 2022)


• We derived phenomenological relations, validated via accurate numerical simulations, and plugged to 
a response function, providing a direct link between the radio delay timescales and physics of the jet


• Implication on structure of magnetic fields, jet expansion, and MW connection open an interesting 
path to a deeper understanding of the how the engine of the jets work, and how jets evolve on larger 
scales, providing connection between micro and macro physics in relativistic jets


• Next: Plugging a realistic jet model with parabolic-to-conical transition, plus EC and crossing time 
effect,  and application to a large sample of BL Lacs  and FSRQs


• Analysis fully reproducible with JetSeT and convolution tool: 

https://github.com/andreatramacere/adiabatic_exp_radio_gamma_delay


https://jetset.readthedocs.io/en/1.2.2/


https://github.com/andreatramacere/adiabatic_exp_radio_gamma_delay
https://jetset.readthedocs.io/en/1.2.2/
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JetSeT delays from crossing time, cooling, acc., inj.

ΔT ~ R/c, tcool

dispersion on ΔT ~ R/c, tcool

hours to daysno crossing time with crossing timejetset simulation
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Magnetic field (flux freezing and conservation):   (Begelman, Blandford, and Rees 1984)

• B|| αR-2 (poloidal) mB=2
• B⊥αR-1 (toroidal) mB=1
• for initial mixed configuration, and no velocity gradient, B⊥ will dominate with mB ~ mR Begelman, Blandford, and Rees: Extragalactic radio sources 281
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FIG. 13. Diagram illustrating the effects of shear on the evolu-
tion of a loop of magnetic field which is initially perpendicular
to the jet axis. (a) Cross-sectional view, emphasizing the fact
that creation of a longitudinal component (B~~) from a loop of
transverse field (B&) requires that the loop not coincide with a
surface of constant jet velocity v~. (b)—(d) Succession snapshots
of the loops as they are stretched by the velocity field depicted
at left until reconnection takes place. It is likely that jets in
which longitudinal field dominates have field structures consist-
ing of numerous stretched loops, as shown in (d); otherwise, the
net flux carried by the jet would be too large.

near the jet boundary. Polarization maps of 3C31 indi-
cate that this might be occurring (Fomalont et al., 1980;
Laing, 1981), but we should note that there is no accom-
panying increase in surface brightness at the edge of the
jet (limb brightening), which one might expect if dissipa-
tion were a surface effect. [Such boundary layers need
not show up in radio maps, though, because if there is
strict equipartition, then the volume emissivity would be
fixed by the pressure alone, and this is approximately con-
stant across the jet. Electrons accelerated in the boundary
layer could probably cross the jet on the expansion time
scale (Eilek, 1982).] The direction of longitudinal field
amplified by large-scale shear would reverse periodically
as one moved in azimuth around the jet boundary. Shear
on smaller scales might amplify B~~ more uniformly
throughout the jet, for example, if the jet interior were
turbulent. Both B~~ and Bj would then reverse on small

scales, helping to reduce the depolarizing effect of inter-
nal Faraday rotation as described in Sec. II.A.3.
A detailed investigation of turbulent amplification of

magnetic field by De Young (1980) shows that, provided
the stirring motions contain sufficient helicity (nonzero
( v.V Xv) ), a small seed magnetic field can be amplified
up to an energy density -5% of the fluid kinetic energy
density. In particular, magnetic energy density can flow
from short wavelength to long wavelength, in contrast to
what is assumed in most models of magnetic turbulence.
The flux conservation problem does not apply to Bj.

Indeed, the values of the field strength inferred within
both extended and compact radio sources are approxi-
mately consistent with the field having been advected
away from the neighborhood of a black hole according to
the scaling law Bz ~ d '. In fact, we expect that shear
and entrainment will enable Bz (and in the presence of
sufficient shear, B~~ also) to fall more slowly with jet di-
ameter than this. Hence the Alfven speed increases along
the expanding jet, and the effective value of p is less than
unity. Unless the gas is heated and increases its tempera-
ture, the jet must become magnetically dominated and
will approach local force-free equilibrium (i.e., V&&B
parallel to 8). Particle acceleration probably will be asso-
ciated with this field readjustment (see Sec. II.C.7).
If the jet carries a net current, then it can be magneti-

cally self-confined under the tension associated with the
toroidal field lines (Fig. 14; Benford, 1978; Chan and
Henriksen, 1980; Bicknell and Henriksen, 1980; Bridle,
Chan, and Henriksen, 1981; cf. also Piddington, 1970;
Sturrock and Barnes, 1972; Ozernoi and Usov,
1973a,1973b; Achterberg, Blandford, and Goldreich,
1983). The current involved is —10' p' &2dk~, A, where
10 ' p ~2 dyncm is the pressure. In an axisymmetric
jet, with a purely toroidal field and no significant particle
pressure, magnetic confinement can be achieved by re-
arranging the density profile in the external medium so
that the toroidal field 8~ varies inversely with distance x
from the axis. The magnetic stress then varies as x
and can be reduced to the value of the external pressure.
The return current flows at larger radii still, and the
stresses associated with it can be ignorably small. This
approach towards force-free equilibrium results in a high
compression of the core of the jet. Thus the above scaling
must ultimately break down when the combined pressures
due to the particles and the longitudinal field become
comparable with that of the toroidal field. In this way,
the pressure in the core of the jet can be substantially
larger than in the external medium.
Other studies of magnetically self-confined equilibria

undertaken in connection with astrophysical jets have ei-
ther assumed the field to be generated by surface currents
(Cohn, 1983), which implies that the jet confinement is
entirely supplied by the cocoon, or made the ad hoc as-
sumption of a self-similar helical equilibrium (Chan and
Henriksen, 1980). As discussed earlier, the assumption of
a unidirectional longitudinal field, required by the latter
model, is probably unreahstic.
A more realistic approach to magnetic self-confinement
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ABSTRACT

Context. Multiwavelengths light curves in long-term campaigns, have shown that, for several blazars, the gamma-ray emission occurs
with a significant delay w.r.t to high-energy bands, with time scales ranging from week to years. Such observational evidence has been
matter of debate for several year, and usually is understood in terms of di↵erent distances of the ��ray and radio transparent region.
Aims. In this paper we show, by means of a self-consistent numerical modeling, that the adiabatic expansion of relativist blob can
explain these delays, reproducing lags compatible with the observed time scales.
Methods. We use the JetSeTframework to reproduce the numerical modeling of the radiative and accelerative processes, reproducing
the temporal evolution of a single blob, from the initial flaring activity, and the subsequent expansion. We follow the spectral evolution
and the corresponding light curves, investigating the relations among the observed parameters, rise time, delay, and decay time, and
we identify the link with the physical parameters
Results. We find that, when adiabatic expansion is active, lags due to the shift of the synchrotron frequency occurs. The correspond-
ing time lags has an o↵set equal to the distance in time between the flaring onset and the beginning of the expansion, whilst the
rising and decaying time scales depends on the velocity of the expansion and on time required to the source to exhibit a synchrotron
self-absorption frequency below the relevant radio spectral window. We derive an inter-band response function, embedding the afore-
mentioned parameters, and we compare it with the Radio�� empirical response obtained from observational data of Mrk 421 and Mrk
501.

1. Introduction

2. Phenomenological setup of expanding blob and
synchrotron self-absorption

We assume that a spherical blob, characterized by an initial ra-
dius R0 and magnetic field B0. expands with a constant velocity
�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob,
quantities expressed in the observer frame are labeled by the obs

flag. The size of the blob can be expressed as:

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside function.
The time dependent law of the magnetic field, dictated by

flux freezing and energy conservation, reads:

B(t) = B0(
R0

R(t)
)mB , (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for fully poloidal
configuration, and mB = 1 for fully toroidal configuration. The
adiabatic cooling will read (Longair 2010):

�̇ad =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
� (3)

and the corresponding cooling time can be expressed as:

tad =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)

�expc
H(t � texp) (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫S S A(t) = ⌫L(t)
h⇡
p
⇡

4
qR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where q is the electron charge, where p is the power-law index of
the electron distribution at the Lorentz factor most contributing
to ⌫S S A(t), and ⌫L(t) = qB(t)

2⇡mec
is the Larmor frequency, and where

the functions fk(p) are approximated to percent accuracy as re-
ported in Ghisellini (2013). Assuming that particles are confined
(N(t) = N0), and plugging Equation 2 and 1 into Equation 5 we
obtain:

⌫S S A(t) /
h
B(t)

p+2
2 R(t)N0

i 2
p+4 (6)

Setting the initial self-absorption frequency ⌫0
S S A
⌘ ⌫S S A(t =

0), an increase of flux in the synchrotron emission, at a given
frequency ⌫⇤ > ⌫0

S S A
, is expected a time t

⇤ such that ⌫S S A(t⇤) ⌘
⌫⇤

S S A
' ⌫⇤, when the source will be characterized by a size R

⇤ =
R(t⇤) and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and
B
⇤ are such that the source optically thin at frequencies ⌫ � ⌫⇤.

We use Equation 6 to relate the two frequencies ⌫0
S S A

and ⌫⇤
S S A

,
to the corresponding blob radius R

⇤ :

⌫⇤
S S A

⌫0
S S A

=
h⇣B⇤

B0

⌘ p+2
2 R

⇤

R0

i 2
p+4
=
hR0

R⇤
i mB(p+2)�2

p+4 (7)

This equation provides a link between the temporal evolution
of the SSA frequency and source radius, for an homogeneous
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quantities expressed in the observer frame are labeled by the obs

flag. The size of the blob can be expressed as:
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where H is the Heaviside function.
The time dependent law of the magnetic field, dictated by

flux freezing and energy conservation, reads:
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)mB , (2)

where the index mB 2 [1, 2] depends on the geometric con-
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configuration, and mB = 1 for fully toroidal configuration. The
adiabatic cooling will read (Longair 2010):
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be expressed as (Rybicki & Lightman 1986)

⌫S S A(t) = ⌫L(t)
h⇡
p
⇡

4
qR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where q is the electron charge, where p is the power-law index of
the electron distribution at the Lorentz factor most contributing
to ⌫S S A(t), and ⌫L(t) = qB(t)
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is the Larmor frequency, and where

the functions fk(p) are approximated to percent accuracy as re-
ported in Ghisellini (2013). Assuming that particles are confined
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obtain:
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Setting the initial self-absorption frequency ⌫0
S S A
⌘ ⌫S S A(t =

0), an increase of flux in the synchrotron emission, at a given
frequency ⌫⇤ > ⌫0

S S A
, is expected a time t

⇤ such that ⌫S S A(t⇤) ⌘
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S S A
' ⌫⇤, when the source will be characterized by a size R

⇤ =
R(t⇤) and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and
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⇤ are such that the source optically thin at frequencies ⌫ � ⌫⇤.

We use Equation 6 to relate the two frequencies ⌫0
S S A

and ⌫⇤
S S A

,
to the corresponding blob radius R
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S S A

⌫0
S S A
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⌘ p+2
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⇤
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This equation provides a link between the temporal evolution
of the SSA frequency and source radius, for an homogeneous
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⇤ :

⌫⇤
S S A

⌫0
S S A

=
h⇣B⇤

B0

⌘ p+2
2 R

⇤

R0

i 2
p+4
=
hR0

R⇤
i mB(p+2)�2

p+4 (7)

This equation provides a link between the temporal evolution
of the SSA frequency and source radius, for an homogeneous
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ABSTRACT

Context. Multiwavelengths light curves in long-term campaigns, have shown that, for several blazars, the gamma-ray emission occurs
with a significant delay w.r.t to high-energy bands, with time scales ranging from week to years. Such observational evidence has been
matter of debate for several year, and usually is understood in terms of di↵erent distances of the ��ray and radio transparent region.
Aims. In this paper we show, by means of a self-consistent numerical modeling, that the adiabatic expansion of relativist blob can
explain these delays, reproducing lags compatible with the observed time scales.
Methods. We use the JetSeTframework to reproduce the numerical modeling of the radiative and accelerative processes, reproducing
the temporal evolution of a single blob, from the initial flaring activity, and the subsequent expansion. We follow the spectral evolution
and the corresponding light curves, investigating the relations among the observed parameters, rise time, delay, and decay time, and
we identify the link with the physical parameters
Results. We find that, when adiabatic expansion is active, lags due to the shift of the synchrotron frequency occurs. The correspond-
ing time lags has an o↵set equal to the distance in time between the flaring onset and the beginning of the expansion, whilst the
rising and decaying time scales depends on the velocity of the expansion and on time required to the source to exhibit a synchrotron
self-absorption frequency below the relevant radio spectral window. We derive an inter-band response function, embedding the afore-
mentioned parameters, and we compare it with the Radio�� empirical response obtained from observational data of Mrk 421 and Mrk
501.

1. Introduction

2. Phenomenological setup of expanding blob and
synchrotron self-absorption

We assume that a spherical blob, characterized by an initial ra-
dius R0 and magnetic field B0. expands with a constant velocity
�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob,
quantities expressed in the observer frame are labeled by the obs

flag. The size of the blob can be expressed as:

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside function.
The time dependent law of the magnetic field, dictated by

flux freezing and energy conservation, reads:

B(t) = B0(
R0

R(t)
)mB , (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for fully poloidal
configuration, and mB = 1 for fully toroidal configuration. The
adiabatic cooling will read (Longair 2010):

�̇ad =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
� (3)

and the corresponding cooling time can be expressed as:

tad =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)

�expc
H(t � texp) (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫S S A(t) = ⌫L(t)
h⇡
p
⇡

4
qR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where q is the electron charge, where p is the power-law index of
the electron distribution at the Lorentz factor most contributing
to ⌫S S A(t), and ⌫L(t) = qB(t)

2⇡mec
is the Larmor frequency, and where

the functions fk(p) are approximated to percent accuracy as re-
ported in Ghisellini (2013). Assuming that particles are confined
(N(t) = N0), and plugging Equation 2 and 1 into Equation 5 we
obtain:

⌫S S A(t) /
h
B(t)

p+2
2 R(t)N0

i 2
p+4 (6)

Setting the initial self-absorption frequency ⌫0
S S A
⌘ ⌫S S A(t =

0), an increase of flux in the synchrotron emission, at a given
frequency ⌫⇤ > ⌫0

S S A
, is expected a time t

⇤ such that ⌫S S A(t⇤) ⌘
⌫⇤

S S A
' ⌫⇤, when the source will be characterized by a size R

⇤ =
R(t⇤) and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and
B
⇤ are such that the source optically thin at frequencies ⌫ � ⌫⇤.

We use Equation 6 to relate the two frequencies ⌫0
S S A

and ⌫⇤
S S A

,
to the corresponding blob radius R

⇤ :

⌫⇤
S S A

⌫0
S S A

=
h⇣B⇤

B0

⌘ p+2
2 R

⇤

R0

i 2
p+4
=
hR0

R⇤
i mB(p+2)�2

p+4 (7)

This equation provides a link between the temporal evolution
of the SSA frequency and source radius, for an homogeneous
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and a stochastic acceleration process, where s will depend on
the ration between the acceleration time, and the escape time.

In this paper we propose a phenomenological approach that
uses the spectral features of the rising part of the IC component
of blazars, to derive �min and s. We work in a leptonic SSC and
SSC+EC framework. The rationale of our analysis is intuitively
pictured in Fig. 1. This figure shows how the Fermi-LAT and the
hard X-ray bands sample the IC component for FSRQs an BL
Lacs. Top and middle panel show the typical SEDs of FSRQs
and I/LSPs exhibiting the rising part of the IC component in
the range of the hard-X ray spectral window, hence, we inves-
tigate how the hard X-ray photon index (�X) depends on �min,
and on s. Bottom panel of the same figure shows that, in the
case of HSPs, the rising branch of the IC component is sampled
by the Fermi-LAT spectral window, hence we investigate how
the Fermi-LAT photon index (��) depends on �min, and on s.
As hard X-ray band we use the 10-100 keV band (2.4⇥1017 Hz-
2.4⇥1019 Hz), and for the Fermi-LAT case, we use the 100 MeV
- 100 GeV band (2.4 ⇥ 1022 Hz-2.4 ⇥ 1025 Hz). In this sections
we use a parametric approach, namely we study the trends of the
observed photon indices �X , and �� as a function of �min and s.

The paper is organize as follows. In Sec. 2, we discuss the
sample of ��ray and hard X-ray objects, and the spectral anal-
ysis results. In Sec. 3 we describe the physical setup for the
numerical modelig. In Sec. 4 we present the expected theoret-
ical trends of �min vs ��, and s vs. ��, for the case of Fermi-
LAT HSPs for a SSC scenario. In Sec. 4.2 we discussing on
possible observational biases. Finally, in Sec. 4.3, and in Sec.
4.4 we compare the numerical trends to the theoretical ones ,
and we estimate the e⇥ectiveness of the method in deriving s,

and �min. In Sec 5 (and related subsections), we present the par-
allel analysis of Sec. 4, for the case of hard X-ray FSRQs and
L/ISPs, for a SSC+EC scenario. In Sec. 6, we use a MonteCarlo
approach...

2. blazar population samples

2.1. Swift/BAT

The Swift satellite (Gehrels et al. 2004) is a NASA multi-
wavelength observatory. The Burst Alert Telescope (BAT,
Barthelmy et al. 2005) on board Swit is a coded-mask instru-
ment operating in the 14–195 keV energy range. The coded-
mask is made of ⇤ 54, 000 lead tiles arranged in a random half-
open/half-closed pattern. BAT performs continuous surveys of
the hard X-ray sky, accumulating sky maps every 5 minutes. For
our study we selected all the objects that were flagged as class 5
(beamed) in the 58-months Swift/BAT catalog 1 (Baumgartner et
al., in prep.). In table 2 the sample used is reported, together with
their 14-195 keV flux, their photon indices and their redshifts.

2.2. INTEGRAL I BIS/ISGRI

The INTErnational Gamma-Ray Astrophysics Laboratory
(INTEGRAL, Winkler et al. 2003) is the latest hard X-Ray/soft
�-Ray mission of the ESA, fruit of a collaboration with IKI and
NASA. The Imager on-Board the INTEGRAL satellite (IBIS,
Ubertini et al. 2003) is designed to obtain high resolution images

1 http://swift.gsfc.nasa.gov/docs/swift/results/bs58mon/
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Fig. 2 Cartoon of the assumed geometry for the model, see [22]. At some distance Rdiss

from the black hole, the jet produces most of its radiation. This region can be inside the
BLR or within Rtorus, the dimension of the molecular torus. The radiation energy densities

within the BLR and the torus are constant, since both RBLR and Rtorus scale as L
1/2
d . This

structure is valid for FSRQs only, since BL Lacs have a radiatively ine�cient disk, unable
to photo–ionize the BLR.

emission is self–absorbed for values of �⇠<50–100 and the SSC flux is always
hidden by the synchrotron one at low energies. In these condition we cannot
estimate �min, that corresponds to an uncertainty on the jet power of the order
of ⇠ �p�1

min . But for powerful blazars the soft X–ray emission is produced by the
EC process. In this case we do see the e↵ects of changing �min since the soft
X–ray shape should become harder below ⌫Ly↵�2

min�
2 ⇠ 1 keV ⇥�2

min(�/10)
2.

Usually, we do not see a break in the soft X–ray spectrum, corresponding to
�min < a few. This agrees with the typical values estimated by the radiative
cooling occurring in the emitting region.

The other uncertainty concerns the presence of protons, or, equivalently,
the number of electron–positron pairs. This is because, at least in powerful
blazars, the bulk motion of protons, even if cold in the comoving frame, domi-
nates the jet power if we assume that there is one proton for emitting electron.
If instead there are no protons, i.e. for a pure pair jet, the jet power estimate
is a factor h�ime/mp ⇡ 10�2 smaller. The presence of both protons and pairs
corresponds to intermediate values of the jet power. The counter–arguments
concerning the presence of e�–e+ pairs are:

– It is not easy to produce pairs in the first place. If we are using even a
relatively small fraction of the �–ray photons produced in the emitting

Broad Line Region(UV)
~0.01 pc

Disk, Corona

RBLR

BL Lacs 

SSC/
EC(jet)

FSRQs 
HERGs

BL Lacs
LERGs

rad eff.
Ld>10-2 LEDD

rad ineff.
Ld<10-2 LEDD

Uext '
Ld

Rextc2

Rext ' L1/2
d

<latexit sha1_base64="532aIez+b5O6gUS7bYKCqk+nLlw=">AAACLHicbVDLSgMxFM34rPVVdekmWARXdaYIuix248JFLfYBnTpk0jttMPMwyYglzAe58VcEcWERt36H6WNhrQcCh3PO5eYeP+FMKtseWUvLK6tr67mN/ObW9s5uYW+/KeNUUGjQmMei7RMJnEXQUExxaCcCSOhzaPn31bHfegQhWRzdqmEC3ZD0IxYwSpSRvEK14Wl4UpkrWQgP2A0Eofra070s0/WpRe/Kmevm63PBSeROO6flLO8VinbJngAvEmdGimiGmld4c3sxTUOIFOVEyo5jJ6qriVCMcsjybiohIfSe9KFjaERCkF09OTbDx0bp4SAW5kUKT9TfE5qEUg5D3yRDogbyrzcW//M6qQouuppFSaogotNFQcqxivG4OdxjAqjiQ0MIFcz8FdMBMX0p0++4BOfvyYukWS45dsm5OStWLmd15NAhOkInyEHnqIKuUA01EEXP6BV9oJH1Yr1bn9bXNLpkzWYO0Bys7x/Fp6kN</latexit><latexit sha1_base64="532aIez+b5O6gUS7bYKCqk+nLlw=">AAACLHicbVDLSgMxFM34rPVVdekmWARXdaYIuix248JFLfYBnTpk0jttMPMwyYglzAe58VcEcWERt36H6WNhrQcCh3PO5eYeP+FMKtseWUvLK6tr67mN/ObW9s5uYW+/KeNUUGjQmMei7RMJnEXQUExxaCcCSOhzaPn31bHfegQhWRzdqmEC3ZD0IxYwSpSRvEK14Wl4UpkrWQgP2A0Eofra070s0/WpRe/Kmevm63PBSeROO6flLO8VinbJngAvEmdGimiGmld4c3sxTUOIFOVEyo5jJ6qriVCMcsjybiohIfSe9KFjaERCkF09OTbDx0bp4SAW5kUKT9TfE5qEUg5D3yRDogbyrzcW//M6qQouuppFSaogotNFQcqxivG4OdxjAqjiQ0MIFcz8FdMBMX0p0++4BOfvyYukWS45dsm5OStWLmd15NAhOkInyEHnqIKuUA01EEXP6BV9oJH1Yr1bn9bXNLpkzWYO0Bys7x/Fp6kN</latexit><latexit sha1_base64="532aIez+b5O6gUS7bYKCqk+nLlw=">AAACLHicbVDLSgMxFM34rPVVdekmWARXdaYIuix248JFLfYBnTpk0jttMPMwyYglzAe58VcEcWERt36H6WNhrQcCh3PO5eYeP+FMKtseWUvLK6tr67mN/ObW9s5uYW+/KeNUUGjQmMei7RMJnEXQUExxaCcCSOhzaPn31bHfegQhWRzdqmEC3ZD0IxYwSpSRvEK14Wl4UpkrWQgP2A0Eofra070s0/WpRe/Kmevm63PBSeROO6flLO8VinbJngAvEmdGimiGmld4c3sxTUOIFOVEyo5jJ6qriVCMcsjybiohIfSe9KFjaERCkF09OTbDx0bp4SAW5kUKT9TfE5qEUg5D3yRDogbyrzcW//M6qQouuppFSaogotNFQcqxivG4OdxjAqjiQ0MIFcz8FdMBMX0p0++4BOfvyYukWS45dsm5OStWLmd15NAhOkInyEHnqIKuUA01EEXP6BV9oJH1Yr1bn9bXNLpkzWYO0Bys7x/Fp6kN</latexit><latexit sha1_base64="532aIez+b5O6gUS7bYKCqk+nLlw=">AAACLHicbVDLSgMxFM34rPVVdekmWARXdaYIuix248JFLfYBnTpk0jttMPMwyYglzAe58VcEcWERt36H6WNhrQcCh3PO5eYeP+FMKtseWUvLK6tr67mN/ObW9s5uYW+/KeNUUGjQmMei7RMJnEXQUExxaCcCSOhzaPn31bHfegQhWRzdqmEC3ZD0IxYwSpSRvEK14Wl4UpkrWQgP2A0Eofra070s0/WpRe/Kmevm63PBSeROO6flLO8VinbJngAvEmdGimiGmld4c3sxTUOIFOVEyo5jJ6qriVCMcsjybiohIfSe9KFjaERCkF09OTbDx0bp4SAW5kUKT9TfE5qEUg5D3yRDogbyrzcW//M6qQouuppFSaogotNFQcqxivG4OdxjAqjiQ0MIFcz8FdMBMX0p0++4BOfvyYukWS45dsm5OStWLmd15NAhOkInyEHnqIKuUA01EEXP6BV9oJH1Yr1bn9bXNLpkzWYO0Bys7x/Fp6kN</latexit>

R2ext c



JetSeT Beamed Emission (achromatic var.)

rest frame : 
isotropic emission 

Observer frame: beamed

Lobs  ∼Ljetδ4      

θ 

observer

Beaming factor:    

Γ

• � = 1
�(1��cos(✓))

• ✓ = 1/�

• ⌫obs = �⌫em

• Lobs = �4Lem

R<= c Δtδ/(1+z)

R

Δt=R/c Δt/δ Δt(1+z)



JetSeT blob expansion 

RH

R(t)R0

Astronomy & Astrophysics manuscript no. radio_gamma ©ESO 2021
May 24, 2021

Adiabatic expansion and self-consistent modeling of Radio-� delay
in Blazars with the JetSeT code

Authors1

1Department of Astronomy, University of Geneva, Chemin d’Ecogia 16, CH-1290 Versoix, Switzerland

Received September 15, 1996; accepted March 16, 1997

ABSTRACT

Context. Multiwavelengths light curves in long-term campaigns, have shown that, for several blazars, the gamma-ray emission occurs
with a significant delay w.r.t to high-energy bands, with time scales ranging from week to years. Such observational evidence has been
matter of debate for several year, and usually is understood in terms of di↵erent distances of the ��ray and radio transparent region.
Aims. In this paper we show, by means of a self-consistent numerical modeling, that the adiabatic expansion of relativist blob can
explain these delays, reproducing lags compatible with the observed time scales.
Methods. We use the JetSeTframework to reproduce the numerical modeling of the radiative and accelerative processes, reproducing
the temporal evolution of a single blob, from the initial flaring activity, and the subsequent expansion. We follow the spectral evolution
and the corresponding light curves, investigating the relations among the observed parameters, rise time, delay, and decay time, and
we identify the link with the physical parameters
Results. We find that, when adiabatic expansion is active, lags due to the shift of the synchrotron frequency occurs. The correspond-
ing time lags has an o↵set equal to the distance in time between the flaring onset and the beginning of the expansion, whilst the
rising and decaying time scales depends on the velocity of the expansion and on time required to the source to exhibit a synchrotron
self-absorption frequency below the relevant radio spectral window. We derive an inter-band response function, embedding the afore-
mentioned parameters, and we compare it with the Radio�� empirical response obtained from observational data of Mrk 421 and Mrk
501.

1. Introduction

2. Phenomenological setup of expanding blob and
synchrotron self-absorption

We assume that a spherical blob, characterized by an initial ra-
dius R0 and magnetic field B0. expands with a constant velocity
�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob,
quantities expressed in the observer frame are labeled by the obs

flag. The size of the blob can be expressed as:

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside function.
The time dependent law of the magnetic field, dictated by

flux freezing and energy conservation, reads:

B(t) = B0(
R0

R(t)
)mB , (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for fully poloidal
configuration, and mB = 1 for fully toroidal configuration. The
adiabatic cooling will read (Longair 2010):

�̇ad =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
� (3)

and the corresponding cooling time can be expressed as:

tad =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)

�expc
H(t � texp) (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫S S A(t) = ⌫L(t)
h⇡
p
⇡

4
qR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where q is the electron charge, where p is the power-law index of
the electron distribution at the Lorentz factor most contributing
to ⌫S S A(t), and ⌫L(t) = qB(t)

2⇡mec
is the Larmor frequency, and where

the functions fk(p) are approximated to percent accuracy as re-
ported in Ghisellini (2013). Assuming that particles are confined
(N(t) = N0), and plugging Equation 2 and 1 into Equation 5 we
obtain:

⌫S S A(t) /
h
B(t)

p+2
2 R(t)N0

i 2
p+4 (6)

Setting the initial self-absorption frequency ⌫0
S S A
⌘ ⌫S S A(t =

0), an increase of flux in the synchrotron emission, at a given
frequency ⌫⇤ > ⌫0

S S A
, is expected a time t

⇤ such that ⌫S S A(t⇤) ⌘
⌫⇤

S S A
' ⌫⇤, when the source will be characterized by a size R

⇤ =
R(t⇤) and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and
B
⇤ are such that the source optically thin at frequencies ⌫ � ⌫⇤.

We use Equation 6 to relate the two frequencies ⌫0
S S A

and ⌫⇤
S S A

,
to the corresponding blob radius R

⇤ :

⌫⇤
S S A

⌫0
S S A

=
h⇣B⇤

B0

⌘ p+2
2 R

⇤

R0

i 2
p+4
=
hR0

R⇤
i mB(p+2)�2

p+4 (7)

This equation provides a link between the temporal evolution
of the SSA frequency and source radius, for an homogeneous
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Context. Multiwavelengths light curves in long-term campaigns, have shown that, for several blazars, the gamma-ray emission occurs
with a significant delay w.r.t to high-energy bands, with time scales ranging from week to years. Such observational evidence has been
matter of debate for several year, and usually is understood in terms of di↵erent distances of the ��ray and radio transparent region.
Aims. In this paper we show, by means of a self-consistent numerical modeling, that the adiabatic expansion of relativist blob can
explain these delays, reproducing lags compatible with the observed time scales.
Methods. We use the JetSeTframework to reproduce the numerical modeling of the radiative and accelerative processes, reproducing
the temporal evolution of a single blob, from the initial flaring activity, and the subsequent expansion. We follow the spectral evolution
and the corresponding light curves, investigating the relations among the observed parameters, rise time, delay, and decay time, and
we identify the link with the physical parameters
Results. We find that, when adiabatic expansion is active, lags due to the shift of the synchrotron frequency occurs. The correspond-
ing time lags has an o↵set equal to the distance in time between the flaring onset and the beginning of the expansion, whilst the
rising and decaying time scales depends on the velocity of the expansion and on time required to the source to exhibit a synchrotron
self-absorption frequency below the relevant radio spectral window. We derive an inter-band response function, embedding the afore-
mentioned parameters, and we compare it with the Radio�� empirical response obtained from observational data of Mrk 421 and Mrk
501.

1. Introduction

2. Phenomenological setup of expanding blob and
synchrotron self-absorption

We assume that a spherical blob, characterized by an initial ra-
dius R0 and magnetic field B0. expands with a constant velocity
�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob,
quantities expressed in the observer frame are labeled by the obs

flag. The size of the blob can be expressed as:

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside function.
The time dependent law of the magnetic field, dictated by

flux freezing and energy conservation, reads:

B(t) = B0(
R0

R(t)
)mB , (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for fully poloidal
configuration, and mB = 1 for fully toroidal configuration. The
adiabatic cooling will read (Longair 2010):

�̇ad =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
� (3)

and the corresponding cooling time can be expressed as:

tad =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)

�expc
H(t � texp) (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫S S A(t) = ⌫L(t)
h⇡
p
⇡

4
qR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where q is the electron charge, where p is the power-law index of
the electron distribution at the Lorentz factor most contributing
to ⌫S S A(t), and ⌫L(t) = qB(t)

2⇡mec
is the Larmor frequency, and where

the functions fk(p) are approximated to percent accuracy as re-
ported in Ghisellini (2013). Assuming that particles are confined
(N(t) = N0), and plugging Equation 2 and 1 into Equation 5 we
obtain:

⌫S S A(t) /
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B(t)
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2 R(t)N0

i 2
p+4 (6)

Setting the initial self-absorption frequency ⌫0
S S A
⌘ ⌫S S A(t =

0), an increase of flux in the synchrotron emission, at a given
frequency ⌫⇤ > ⌫0

S S A
, is expected a time t

⇤ such that ⌫S S A(t⇤) ⌘
⌫⇤

S S A
' ⌫⇤, when the source will be characterized by a size R

⇤ =
R(t⇤) and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and
B
⇤ are such that the source optically thin at frequencies ⌫ � ⌫⇤.

We use Equation 6 to relate the two frequencies ⌫0
S S A

and ⌫⇤
S S A

,
to the corresponding blob radius R

⇤ :

⌫⇤
S S A

⌫0
S S A

=
h⇣B⇤

B0

⌘ p+2
2 R

⇤

R0

i 2
p+4
=
hR0

R⇤
i mB(p+2)�2

p+4 (7)

This equation provides a link between the temporal evolution
of the SSA frequency and source radius, for an homogeneous
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ABSTRACT

Context. Multiwavelengths light curves in long-term campaigns, have shown that, for several blazars, the gamma-ray emission occurs
with a significant delay w.r.t to high-energy bands, with time scales ranging from week to years. Such observational evidence has been
matter of debate for several year, and usually is understood in terms of di↵erent distances of the ��ray and radio transparent region.
Aims. In this paper we show, by means of a self-consistent numerical modeling, that the adiabatic expansion of relativist blob can
explain these delays, reproducing lags compatible with the observed time scales.
Methods. We use the JetSeTframework to reproduce the numerical modeling of the radiative and accelerative processes, reproducing
the temporal evolution of a single blob, from the initial flaring activity, and the subsequent expansion. We follow the spectral evolution
and the corresponding light curves, investigating the relations among the observed parameters, rise time, delay, and decay time, and
we identify the link with the physical parameters
Results. We find that, when adiabatic expansion is active, lags due to the shift of the synchrotron frequency occurs. The correspond-
ing time lags has an o↵set equal to the distance in time between the flaring onset and the beginning of the expansion, whilst the
rising and decaying time scales depends on the velocity of the expansion and on time required to the source to exhibit a synchrotron
self-absorption frequency below the relevant radio spectral window. We derive an inter-band response function, embedding the afore-
mentioned parameters, and we compare it with the Radio�� empirical response obtained from observational data of Mrk 421 and Mrk
501.

1. Introduction

2. Phenomenological setup of expanding blob and
synchrotron self-absorption

We assume that a spherical blob, characterized by an initial ra-
dius R0 and magnetic field B0. expands with a constant velocity
�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob,
quantities expressed in the observer frame are labeled by the obs

flag. The size of the blob can be expressed as:

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside function.
The time dependent law of the magnetic field, dictated by

flux freezing and energy conservation, reads:

B(t) = B0(
R0

R(t)
)mB , (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for fully poloidal
configuration, and mB = 1 for fully toroidal configuration. The
adiabatic cooling will read (Longair 2010):

�̇ad =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
� (3)

and the corresponding cooling time can be expressed as:

tad =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)

�expc
H(t � texp) (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫S S A(t) = ⌫L(t)
h⇡
p
⇡

4
qR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where q is the electron charge, where p is the power-law index of
the electron distribution at the Lorentz factor most contributing
to ⌫S S A(t), and ⌫L(t) = qB(t)

2⇡mec
is the Larmor frequency, and where

the functions fk(p) are approximated to percent accuracy as re-
ported in Ghisellini (2013). Assuming that particles are confined
(N(t) = N0), and plugging Equation 2 and 1 into Equation 5 we
obtain:

⌫S S A(t) /
h
B(t)

p+2
2 R(t)N0

i 2
p+4 (6)

Setting the initial self-absorption frequency ⌫0
S S A
⌘ ⌫S S A(t =

0), an increase of flux in the synchrotron emission, at a given
frequency ⌫⇤ > ⌫0

S S A
, is expected a time t

⇤ such that ⌫S S A(t⇤) ⌘
⌫⇤

S S A
' ⌫⇤, when the source will be characterized by a size R

⇤ =
R(t⇤) and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and
B
⇤ are such that the source optically thin at frequencies ⌫ � ⌫⇤.

We use Equation 6 to relate the two frequencies ⌫0
S S A

and ⌫⇤
S S A

,
to the corresponding blob radius R

⇤ :

⌫⇤
S S A

⌫0
S S A

=
h⇣B⇤

B0

⌘ p+2
2 R

⇤

R0

i 2
p+4
=
hR0

R⇤
i mB(p+2)�2

p+4 (7)

This equation provides a link between the temporal evolution
of the SSA frequency and source radius, for an homogeneous
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Appendix A: Code availability and reproducibility

The work presented here is fully reproducible by following
the instructions in the git repository5. In this repository you
can find the notebooks to reproduce the analysis and the in-
structions to install the JetSeT version 1.2.0rc11. We remind
the reader that this is a pre-release of the forthcoming 1.2.0
JetSeT version. Further details on the JetSeT code can be
obtained by contacting the author Andrea Tramacere (e-mail:
andrea.tramacere@gmail.com).

Appendix B: JetSeT temporal evolution

In the following, we give a detailed description of the cooling
terms used in the numerical solution of the FP equation:

|�̇synch(t)| = 4�T c

3mec2 �
2
UB(t) = C0�

2
UB(t) (B.1)

|�̇IC(t)| = 4�T c

3mec2 �
2
Z

fKN(4�✏0)✏0nph(✏0, t)d✏0 (B.2)

= C0�
2
FKN(�, t)

|�̇ad(t)| = 1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
�

C(�, t) = |�̇synch(t)| + |�̇IC(t)| + |�̇ad(t)|

where UB = B
2/8⇡, is the energy density of the magnetic field,

✏0 = h⌫0/mec
2 is the IC seed photon energy in units of mec

2, and
nph(✏0) is the number density of IC seed photons with the corre-
sponding photon energy density Uph = mec

2
R
✏0nph(✏0)d✏0. The

function fKN results from the analytical integration of the Jones
(1968) Compton kernel, fully taking into account Klein-Nishina
(KN) e↵ects for an isotropic seed photon field (see Moderski
et al. 2005, appendix C), and FKN(�) represents its convolution
with the seed photon field. We note that FKN plays a crucial role
in the cooling process, depending both on the IC regime (Thom-
son (TH) limit for 4�✏0 << 1, KN limit for 4�✏0 >> 1), and on
✏0nph(✏0) / B

2/R2. The acceleration terms in Eq. 18, and their
related timescales, can be expressed as a power-law in terms of
the Lorentz factor (�):
8>>>>>><
>>>>>>:

Dp(�) = Dp0
⇣
�
�0

⌘q
, tD =

1
Dp0

⇣
�
�0

⌘2�q

DA(�) = 2Dp0
⇣
�
�0

⌘q�1
, tDA =

1
2Dp0

⇣
�
�0

⌘2�q

A(�) = Ap0�, tA =
1

A0
.

(B.3)

Appendix C: MCMC analysis validation

In this section we validate the MCMC analysis presented in
Section 8 using as a benchmark the long-term simulations for
�exp = 0.1. We use the same configuration as in the case of
the analysis presented in Section 8. In Figure C.1, we plot the
MCMC results, and with a vertical red dashed line we report
the ‘true’ simulation values. We notice that, in all cases except
mB, the simulation value is contained within the 1-� confidence
range returned by the MCMC posterior. For the case of mB, we
notice that peak of the posterior PDF matches the simulation
value of mB = 1. In Figure C.2, we show the same check for the
electron distribution index p. Also in this case, the agreement is
excellent.

5 https://github.com/andreatramacere/adiabatic_exp_
radio_gamma_delay
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Fig. 2: Competition among the di↵erent timescales. Left panels: Case of �exp = 0.1. Right panels: Case of �exp = 0.001. The
top row refers to the case of R0 = 1 ⇥ 1015 cm, the middle row to the case of R0 = 1 ⇥ 1015, and the bottom row to the case of
R0 = 1 ⇥ 1016 cm. The times are in the blob frame, and the total duration is such that R(tstop) = 1000R0. The x axis reports on the
bottom side the value of R(t)/R0, whilst on the opposite side the corresponding value of ⌫SSA(t)/⌫SSA(0) is reported, for the case of
no particle escape. The orange shaded area represents the synchrotron cooling timescales, with the lower bound corresponding to
the case of � = 10 and B0 = 1.0 G, and the upper bound corresponding to the case of � = 10 and B0 = 0.01 G. The red shaded area,
represents the same trend for the case of � = 1000. The blue line represents the adiabatic cooling time (Equation 4), the black red
line represents the geometrical decay time (Equation 12), and the green line the light crossing time (R(t)/c).

3.1. General setup of the simulation, assumptions, and
limitations

We set up our simulation in order to reproduce an initial flar-
ing episode, and a following expansion process within a leptonic
synchrotron self-Compton (SSC) scenario. During the flare, par-
ticles are injected and accelerated in the acceleration region (AR)
where they undergo both cooling and acceleration processes, and
di↵use toward the radiative region (RR), where only losses take
place. After a time texp (measured in the blob frame), the expan-

sion process takes place in the RR region. We follow the long-
term evolution under the e↵ects of radiative cooling and adia-
batic expansion, setting the duration of the simulation to be long
enough to follow the particle evolution due to the expansion pro-
cess. A schematic representation of these processes is shown in
Figure 1.

In the current approach, the values of the magnetic field (B)
and the radius (R) in the RR during the flaring episode are taken
from the typical values derived from MW modelling for HBLs,
and these values coincide with the initial values at the begin-
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blob expanding with a constant velocity. We can easily invert
this relation, and solve in terms of R

⇤:

R
⇤ = R0

⇣⌫0
S S A

⌫⇤
S S A

⌘ 
(8)

 =
p + 4

mB(p + 2) � 2
This equation allows to determine the time needed, starting from
texp, to move the initial ⌫0

S S A
to ⌫⇤

S S A
, that is actually time needed

to expand the source from an initial radius R0 to the radius R
⇤,

that is the rising time. In the blob rest frame will read:

trise = �tR0!R⇤ =
R
⇤ � R0

�expc
=

R0

�expc

h⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
i

(9)

The total delay will be given by the sum of texp and trise, i.e:

�t⌫0
S S A
!⌫⇤

S S A

= texp + trise = texp +
R0

�expc

h⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
i

(10)

Finally, the adiabatic decay time,will be proportional to the adi-
abatic cooling time at R

⇤:

t
ad

decay
/ R

⇤

�expc
=

R0

�expc

⇣⌫0
S S A

⌫⇤
S S A

⌘ 
(11)

It is relevant to notice that the decaying time will be a↵ected also
by the purely geometric factor, depending on B(t) and R(t). This
can be easily derived starting from the $delta-approximation for
the emitted synchrotron flux, and taking into account that, for
confined emitter, N0V(t) is constant:
⌫F⌫(t) / N0V(t)B(t)2 / B(t)2. (12)
Hence, the geometric decay time will scale as :

t
geom

decay
/
⇣⌫0

S S A

⌫⇤
S S A

⌘2(mB� )
(13)

Since it is di�cult to discriminate among all these e↵ects, in
particular with observed data (where the incertitude on the value
of R0 and � introduces a further level of complication), we will
use a in place of  a more generic term � that is not explicitly
related to mB and p:

tdecay / R0

�expc

⇣⌫0
S S A

⌫⇤
S S A

⌘�
(14)

We can express these relations in the observer frame:

�t
obs

⌫0
S S A
!⌫⇤

S S A

=
1 + z

�

h
t
blob

exp
+

R0

�expc

⇣⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
⌘i

(15)

t
obs

decayd
=

(1 + z)
�

R0

�expc

⇣⌫0
S S A

⌫⇤
S S A

⌘�

t
obs

rise
=

(1 + z)
�

R0

�expc

h⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
i

where ⌫obs=⌫ �
z+1 . If the light crossing times (R/c) are larger then

cooling times, we can substitute the observed timescale variabil-
ity t

obs

var
= (1+z)R0

�c in the equations above:

�t
obs

⌫0,obs

S S A
!⌫⇤,obs

S S A

= t
obs

exp
+

t
obs

var

�exp

h⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
i

(16)

t
obs

decay
=

t
obs

var

�exp

⇣⌫0
S S A

⌫⇤
S S A

⌘�

t
obs

rise
=

t
obs

var

�exp

h⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
i

where t
obs

exp
= texp(1 + z)/�.

3. Self-consistent temporal evolution of an
expanding blob

To follow the evolution of the emitting particle distribution, and
the radiative fields, we use the JetTimeEvol class from the
jet_timedep module of JetSeT. This class allows to evolve
the particle distribution under the e↵ects of both cooling and ac-
celeration (both systematic and stochastic) process, and to ex-
tract SED, light curves at any given time. The code proceeds
through the numerical solution of a kinetic equation, following
the same approach as in Tramacere et al. (2011) based on the
employment of the quasi-linear approximation with the inclu-
sion of momentum di↵usion term (Ramaty 1979; Becker et al.
2006). The equation governing the temporal evolution of n(�) is
the Fokker-Planck (FP) equation that reads:

@n(�, t)
@t

=
@

@�

n
� [S (�, t) + DA(�, t)]n(�, t)

o
(17)

+
@

@�

n
Dp(�, t)

@n(�, t)
@�

o
� n(�, t)

Tesc(�)
� n(�, t)

Tad

+ Q(�, t).

The momentum di↵usion coe�cient Dp(�, t) and the average en-
ergy change term resulting from the momentum-di↵usion pro-
cess DA(�, t) = (2/�)Dp(�, t), represent the contribution from
a stochastic momentum-di↵usion acceleration mechanism The
systematic term S (�, t) = �C(�, t) + A(�, t) describes system-
atic energy loss (C) and/or gain (A), and Q(�, t) is the injection
term. n(�,t)

Tad

corresponds to the decrease in particle density due
to the expansion process, with Tad =

1
3

R(t)
�expc

(Gould 1975), and
n(�,t)

Tesc(�) represents the particle escape term. The injection function
Q(�in j, t) is normalised according to:

Lin j = Vacc

Z
�mec

2
Q(�, t)d� (erg/s), (18)

where Vacc is the volume of the acceleration region. The numer-
ical solution of the FP equation is obtained using the same ap-
proach of Tramacere et al. (2011), that is based on method pro-
posed by Chang & Cooper (1970) as described in Park & Pet-
rosian (1996).

3.1. setup of the simulation

We first generate a flaring event where both cooling and acceler-
ation processes act, in order to reproduce the typical SEDs and
lightcurves observed in HBLs. Then we follow the long-term
evolution under the e↵ects of radiative cooling and adiabatic ex-
pansion, setting a duration of the simulation long enough to fol-
low the particle evolution due to the expansion process. Both
for the flaring and log-term simulation, the time grid for the
solution of the FP equation is tuned to have a temporal mesh
at least two order of magnitude smaller then the shortest cool-
ing/acclearation time scale. We use an energy grid with 1500
points and 1  �  108. Since the total number of time steps
used in the FP numerical solution (Tsize) can be very large, a sub
sample of the time steps of the simulation (NUMS ET ) are stored
in arrays, and can be used to build both lightcurves and SEDs. In
the current simulation we have used NUMS ET = 200 for the flar-
ing stage, NUMS ET = 1000 for the long-term evolution, which
guarantee an adequate time sampling for lightcurves and spectral
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blob expanding with a constant velocity. We can easily invert
this relation, and solve in terms of R

⇤:

R
⇤ = R0

⇣⌫0
S S A

⌫⇤
S S A

⌘ 
(8)

 =
p + 4

mB(p + 2) � 2
This equation allows to determine the time needed, starting from
texp, to move the initial ⌫0

S S A
to ⌫⇤

S S A
, that is actually time needed

to expand the source from an initial radius R0 to the radius R
⇤,

that is the rising time. In the blob rest frame will read:

trise = �tR0!R⇤ =
R
⇤ � R0

�expc
=

R0

�expc

h⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
i

(9)

The total delay will be given by the sum of texp and trise, i.e:

�t⌫0
S S A
!⌫⇤

S S A

= texp + trise = texp +
R0

�expc

h⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
i

(10)

Finally, the adiabatic decay time,will be proportional to the adi-
abatic cooling time at R

⇤:

t
ad

decay
/ R

⇤

�expc
=

R0

�expc

⇣⌫0
S S A

⌫⇤
S S A

⌘ 
(11)

It is relevant to notice that the decaying time will be a↵ected also
by the purely geometric factor, depending on B(t) and R(t). This
can be easily derived starting from the $delta-approximation for
the emitted synchrotron flux, and taking into account that, for
confined emitter, N0V(t) is constant:
⌫F⌫(t) / N0V(t)B(t)2 / B(t)2. (12)
Hence, the geometric decay time will scale as :

t
geom

decay
/
⇣⌫0

S S A

⌫⇤
S S A

⌘2(mB� )
(13)

Since it is di�cult to discriminate among all these e↵ects, in
particular with observed data (where the incertitude on the value
of R0 and � introduces a further level of complication), we will
use a in place of  a more generic term � that is not explicitly
related to mB and p:

tdecay / R0

�expc

⇣⌫0
S S A

⌫⇤
S S A

⌘�
(14)

We can express these relations in the observer frame:

�t
obs

⌫0
S S A
!⌫⇤

S S A

=
1 + z

�

h
t
blob

exp
+

R0

�expc

⇣⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
⌘i

(15)

t
obs

decayd
=

(1 + z)
�

R0

�expc

⇣⌫0
S S A

⌫⇤
S S A

⌘�

t
obs

rise
=

(1 + z)
�

R0

�expc

h⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
i

where ⌫obs=⌫ �
z+1 . If the light crossing times (R/c) are larger then

cooling times, we can substitute the observed timescale variabil-
ity t

obs

var
= (1+z)R0

�c in the equations above:

�t
obs

⌫0,obs

S S A
!⌫⇤,obs

S S A

= t
obs

exp
+

t
obs

var

�exp

h⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
i

(16)
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⌫⇤
S S A
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where t
obs

exp
= texp(1 + z)/�.

3. Self-consistent temporal evolution of an
expanding blob

To follow the evolution of the emitting particle distribution, and
the radiative fields, we use the JetTimeEvol class from the
jet_timedep module of JetSeT. This class allows to evolve
the particle distribution under the e↵ects of both cooling and ac-
celeration (both systematic and stochastic) process, and to ex-
tract SED, light curves at any given time. The code proceeds
through the numerical solution of a kinetic equation, following
the same approach as in Tramacere et al. (2011) based on the
employment of the quasi-linear approximation with the inclu-
sion of momentum di↵usion term (Ramaty 1979; Becker et al.
2006). The equation governing the temporal evolution of n(�) is
the Fokker-Planck (FP) equation that reads:

@n(�, t)
@t

=
@

@�

n
� [S (�, t) + DA(�, t)]n(�, t)

o
(17)

+
@

@�

n
Dp(�, t)

@n(�, t)
@�

o
� n(�, t)

Tesc(�)
� n(�, t)

Tad

+ Q(�, t).

The momentum di↵usion coe�cient Dp(�, t) and the average en-
ergy change term resulting from the momentum-di↵usion pro-
cess DA(�, t) = (2/�)Dp(�, t), represent the contribution from
a stochastic momentum-di↵usion acceleration mechanism The
systematic term S (�, t) = �C(�, t) + A(�, t) describes system-
atic energy loss (C) and/or gain (A), and Q(�, t) is the injection
term. n(�,t)

Tad

corresponds to the decrease in particle density due
to the expansion process, with Tad =

1
3

R(t)
�expc

(Gould 1975), and
n(�,t)

Tesc(�) represents the particle escape term. The injection function
Q(�in j, t) is normalised according to:

Lin j = Vacc

Z
�mec

2
Q(�, t)d� (erg/s), (18)

where Vacc is the volume of the acceleration region. The numer-
ical solution of the FP equation is obtained using the same ap-
proach of Tramacere et al. (2011), that is based on method pro-
posed by Chang & Cooper (1970) as described in Park & Pet-
rosian (1996).

3.1. setup of the simulation

We first generate a flaring event where both cooling and acceler-
ation processes act, in order to reproduce the typical SEDs and
lightcurves observed in HBLs. Then we follow the long-term
evolution under the e↵ects of radiative cooling and adiabatic ex-
pansion, setting a duration of the simulation long enough to fol-
low the particle evolution due to the expansion process. Both
for the flaring and log-term simulation, the time grid for the
solution of the FP equation is tuned to have a temporal mesh
at least two order of magnitude smaller then the shortest cool-
ing/acclearation time scale. We use an energy grid with 1500
points and 1  �  108. Since the total number of time steps
used in the FP numerical solution (Tsize) can be very large, a sub
sample of the time steps of the simulation (NUMS ET ) are stored
in arrays, and can be used to build both lightcurves and SEDs. In
the current simulation we have used NUMS ET = 200 for the flar-
ing stage, NUMS ET = 1000 for the long-term evolution, which
guarantee an adequate time sampling for lightcurves and spectral
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where Dp(γ , t) is the momentum-diffusion coefficient,
DA(γ , t) = (2/γ )Dp(γ , t) is the average energy change term
resulting from the momentum-diffusion process, and S(γ , t) =
−C(γ , t) + A(γ , t) is an extra term describing systematic en-
ergy loss (C) and/or gain (A), and Q(γ , t) is the injection term.
In the standard diffusive shock acceleration scenario, there are
several possibilities for which one can expect that energy gain
fluctuations will occur, due to the momentum-diffusion term. In
particular, for the case of a turbulent magnetized medium, the
advection of particles toward the shock due to pitch angle scat-
tering may be accompanied by stochastic momentum-diffusion
mechanism. In this scenario, particles embedded in a magnetic
field with both an ordered (B0) and turbulent (δB) component,
exchange energy with resonant plasma waves, and the related
diffusion coefficient is determined by the spectrum of the plasma
waves. Following the approach of Becker et al. (2006), we de-
scribe the energy distribution W (k) in terms of the wave number
k = 2π/λ with a PL

W (k) = δB(k)2

8π
= δB(k0)2

8π

(
k

k0

)−q

, (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for
the Kolmogorov spectrum, and q = 3/2 for the Kraichnan
spectrum, the total energy density in the fluctuations being

UδB =
∫ kmax

k0

W (k)dk. (13)

Under these assumptions, the momentum-diffusion coefficient
reads (O’Sullivan et al. 2009)

Dp ≈ β2
A

(
δB

B0

)2 ( ρg

λmax

)q−1 p2c2

ρgc
, (14)

where βA = VA/c and VA is the Alfvén waves velocity,
ρg = pc/qB is the Larmor radius, and λmax is the maximum
wavelength of the Alfvén waves spectrum. The acceleration time
for particles with Lorentz factor γ , whose Larmor radii resonate
with one particular magnetic field turbulence length scale, is
dictated by the momentum-diffusion coefficient (Dp) as

tacc ≈ p2

Dp

= ρg(γ0)
cβ2

A

(
B2

0

δB2

)∣∣∣∣
γ0

(
γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum-
diffusion coefficient through the relation, DxDp ≈ p2β2

A
(Skilling 1975), hence the escape time of the particles from the
acceleration region of size R depends on the spatial diffusion
coefficient through the relation

tesc ≈ R2

Dx

≈ R2

(cβA)2 tacc
. (16)

The coefficients in Equation (11), and their related timescales,
can be expressed as a PL in terms of the Lorentz factor (γ )






Dp(γ ) = Dp0

(
γ
γ0

)q

, tD = 1
Dp0

(
γ
γ0

)2−q

DA(γ ) = 2Dp0

(
γ
γ0

)q−1
, tDA = 1

2Dp0

(
γ
γ0

)2−q

A(γ ) = Ap0γ , tA = 1
A0

, (17)

where Dp0 and A0 have the dimension of the inverse of a time.
Analytical solutions of the diffusion equation for relativistic
electrons have frequently been discussed in the literature since
the early work by Kardashev (1962), in particular for the
case of the “hard-sphere” approximation. Neglecting the S and
Tesc terms in Equation (11), and using a mono-energetic and
instantaneous injection (n(γ , 0) = N0δ(γ − γ0)), the solution
of the diffusion equation is (Melrose 1969; Kardashev 1962)

n(γ , t) = N0

γ
√

4πDp0t
exp

{
− [ln(γ /γ0) − (Ap0 − Dp0)t]2

4Dp0t

}
,

(18)
i.e., a log-parabolic distribution, whose curvature term is

r = ce

4Dp0t
∝ 1

Dp0t
. (19)

This result is fully consistent with that found in the statistical
description; indeed, Equations (18) and (8) have the same
functional form in both the statistical and in the diffusion
equation scenario, with t playing the role of ns, Dp0 the role
of the variance of the energy gain (σ 2

ε ), and Ap0 the role of
log ε̄. Hence we can write

Dp0 ∝
(σε

ε̄

)2
. (20)

It is interesting to note that in the case of the “hard-sphere”
approximation, the curvature term is simply dictated by the
ratio of the diffusive acceleration time (tD) to the evolution
time (t).

3. NUMERICAL APPROACH: MONTE CARLO
SIMULATION WITH MAGNETIC TURBULENCE

In this section, we demonstrate explicitly how the introduction
of energy fluctuations leads to curved spectral distributions of
particles. This is carried out using an MC approach.

In our simulations, we considered 105 particles injected into
the system with a cold mono-energetic distribution of Lorentz
factors, with γ0 = 1. To compare these results with the ones
presented in Section 2, we remind the reader that in the MC
approach, the duration of the acceleration process t is the
equivalent of the number of acceleration steps (ns) used in
the statistical picture and that the probability of the particle
to be upscattered or downscattered in the MC realizations
can be expressed in the statistical approach as P (ε > 1)
and P (ε < 1), respectively. The scattering probability of the
particles is dictated by the intensity of resonant waves in the
turbulent magnetic power spectrum. As a working hypothesis,
we assume that particles interact with a turbulent magnetic field
whose power spectrum is expressed by Equation (12). In each
scattering, the particles have a probability of (1 + βA)/2 of
being upscattered and a probability of (1 − βA)/2 of being
downscattered. The energy dispersion of the particle due to
resonant scattering with Alfvén waves will be 〈∆E2〉 ∝ (EβA)2t ,
where E = mec

2γ . Using the very good approximation for
the variance of the product of n uncorrelated random variables
(Goodman 1962)

σ 2(Πxi) = Π〈xi〉2Σ
(

σ 2
xi

〈xi〉2

)

(21)
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for the number of steps undergone by a particle is given
by a Poisson law, it is possible to show that the energy
distribution follows a log-parabola whose curvature term
depends on the inverse of the mean number of steps mul-
tiplied by the duration of the acceleration process.

2.2. Diffusion equation approach

The above statistical description provides an intuitive
link between the curvature in the energy distribution of
accelerated particles and the presence of a randomiza-
tion process, such as the dispersion in the energy gain or
in the number of acceleration steps. However, this ap-
proach does not give a complete physical description of
the processes responsible for the systematic and stochas-
tic energy gain, ignoring other physical processes, such
as the radiative cooling and injection rates, or the accel-
eration energy dependence, necessary to give a complete
description of the particles energy distribution evolution.
A physical self-consistent description of stochastic accel-
eration in a time-dependent fashion, can be achieved
through a kinetic equation approach. Employing the
quasi-linear approximation with the inclusion of momen-
tum diffusion term (Ramaty 1979; Becker et al. 2006),
the equation governing the temporal evolution of n(γ)
is:
∂n(γ, t)

∂t
=

∂

∂γ

{

− [S(γ, t) +DA(γ, t)]n(γ, t)
}

(11)

+
∂

∂γ

{

Dp(γ, t)
∂n(γ, t)

∂γ

}

−
n(γ, t)

Tesc(γ)
+Q(γ, t)

where Dp(γ, t) is the momentum diffusion coefficient,
DA(γ, t) = (2/γ)Dp(γ, t) is the average energy change
term resulting from the momentum-diffusion process,
and S(γ, t) = −C(γ, t) + A(γ, t) is an extra term de-
scribing systematic energy loss (C) and/or gain (A), and
Q(γ, t) is the injection term. In the standard diffusive
shock acceleration scenario, there are several possibilities
for which one can expect that energy gain fluctuations
will occur, due to the momentum diffusion term. In par-
ticular, for the case of a turbulent magnetized medium,
the advection of particles towards the shock due to pitch
angle scattering may be accompanied by stochastic mo-
mentum diffusion mechanism. In this scenario, parti-
cles embedded in a magnetic field with both an ordered
(B0) and turbulent (δB) component, exchange energy
with resonant plasma waves, and the related diffusion
coefficient is determined by the spectrum of the plasma
waves. Following the approach of Becker et al. (2006)
we describe the energy distribution W (k) in terms of the
wave number k = 2π/λ with a power-law :

W (k) =
δB(k)2

8π
=

δB(k0)2

8π

(

k

k0

)

−q

. (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for
the Kolmogorov spectrum, and q = 3/2 for the Kraich-
nan spectrum, the total energy density in the fluctuations
being

UδB =

∫ kmax

k0

W (k)dk . (13)

Under these assumptions the momentum-diffusion coef-
ficient reads (O’Sullivan et al. 2009):

Dp ≈ β2
A

(δB

B0

)2( ρg
λmax

)q−1 p2c2

ρgc
(14)

where βA = VA/c and VA is the Alfven waves velocity,
ρg = pc/qB is the Larmor radius, and λmax is the maxi-
mum wavelength of the Alfven waves spectrum. The ac-
celeration time for particles with Lorentz factor γ, whose
Larmor radii resonate with one particular magnetic field
turbulence length-scale, is dictated by the momentum
diffusion coefficient (Dp) as,

tacc ≈
p2

Dp
=

ρg(γ0)

c β2
A

(

B2
0

δB2

)
∣

∣

∣

∣

γ0

(

γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum
diffusion coefficient through the relation, DxDp ≈ p2β2

A
(Skilling 1975), hence the escape time of the particles
from the acceleration region of size R, depends on the
spatial diffusion coefficient through the relation,

tesc ≈
R2

Dx
≈

R2

(cβA)
2 tacc

. (16)

The coefficients in Eq. 12, and their related time scales,
can be expressed as a power-law in terms of the Lorentz
factor (γ):
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γ
γ0

)q

, tD = 1
Dp0

(

γ
γ0

)2−q

DA(γ) = 2Dp0

(

γ
γ0

)q−1
, tDA = 1

2Dp0

(

γ
γ0

)2−q

A(γ) = Ap0γ, tA = 1
A0

(17)
where Dp0, and A0 have the dimension of the inverse
of a time. Analytical solutions of the diffusion equa-
tion for relativistic electrons are frequently discussed in
the literature since the early work by Kardashev (1962),
in particular for the case of the “hard-sphere” approx-
imation. Neglecting the S and Tesc terms in Eq. 12,
and using a mono-energetic and instantaneous injection
(n(γ, 0) = N0δ(γ − γ0)), the solution of the diffusion
equation is (Melrose 1969; Kardashev 1962):

n(γ, t) =
N0

γ
√

4πDp0t
exp

{

−
[ln(γ/γ0)− (Ap0 −Dp0)t]2

4Dp0t

}

,

(18)
ie. a log-parabolic distribution, whose curvature term is:

r =
ce

4Dp0 t
∝

1

Dp0t
(19)

This result is fully consistent with that found in the sta-
tistical description, indeed Eq. 18 and Eq. 8 have the
same functional form in both the statistical and in the
diffusion equation scenario, with t playing the role of ns,
Dp0 the role of the variance of the energy gain (σ2

ε), and
Ap0 the role of log ε̄. Hence we can write:

Dp0 ∝
(σε

ε̄

)2
(20)

It is interesting to note, that in the case of the “hard-
sphere” approximation, the curvature term is simply
dictated by the ratio of the diffusive acceleration time
(tD) to the evolution time (t).
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Appendix A: JetSeT temporal evolution

The cooling terms are given by:

|�̇synch| =
4�T c

3mec2 �
2
UB = C0�

2
UB (A.1)

|�̇IC | =
4�T c

3mec2 �
2
Z

fKN(4�✏0)✏0nph(✏0)d✏0 = C0�
2
FKN(�)

|�̇ad | =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
�

C(�) = |�̇synch| + |�̇IC | + |�̇ad |

where UB = B
2/8⇡, is the energy density of the magnetic field,

✏0 = h⌫0/mec
2 is the IC seed photon energy in units of mec

2,
nph(✏0) is the number density of IC seed photons with the corre-
sponding photon energy density Uph = mec

2
R
✏0nph(✏0)d✏0. The

function fKN results from the analytical integration of the Jones
(1968) Compton kernel, fully taking into account Klein-Nishina
(KN) e↵ects for an isotropic seed photon field (see Moderski
et al. 2005, appendix C), and FKN(�) represents its convolution
with the seed photon field. We remark that FKN plays a crucial
role in the cooling process, depending both on the IC regime
(Thomson (TH) limit for 4�✏0 << 1, KN limit for 4�✏0 >> 1),
and on ✏0nph(✏0) / B

2/R2. The acceleration terms in Eq. 17,
and their related time scales, can be expressed as a power-law in

terms of the Lorentz factor (�):
8>>>>>><
>>>>>>:

Dp(�) = Dp0
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⌘q
, tD =

1
Dp0

⇣
�
�0

⌘2�q

DA(�) = 2Dp0
⇣
�
�0

⌘q�1
, tDA =

1
2Dp0

⇣
�
�0

⌘2�q

A(�) = Ap0�, tA =
1

A0

(A.2)
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where Dp(γ , t) is the momentum-diffusion coefficient,
DA(γ , t) = (2/γ )Dp(γ , t) is the average energy change term
resulting from the momentum-diffusion process, and S(γ , t) =
−C(γ , t) + A(γ , t) is an extra term describing systematic en-
ergy loss (C) and/or gain (A), and Q(γ , t) is the injection term.
In the standard diffusive shock acceleration scenario, there are
several possibilities for which one can expect that energy gain
fluctuations will occur, due to the momentum-diffusion term. In
particular, for the case of a turbulent magnetized medium, the
advection of particles toward the shock due to pitch angle scat-
tering may be accompanied by stochastic momentum-diffusion
mechanism. In this scenario, particles embedded in a magnetic
field with both an ordered (B0) and turbulent (δB) component,
exchange energy with resonant plasma waves, and the related
diffusion coefficient is determined by the spectrum of the plasma
waves. Following the approach of Becker et al. (2006), we de-
scribe the energy distribution W (k) in terms of the wave number
k = 2π/λ with a PL

W (k) = δB(k)2

8π
= δB(k0)2

8π

(
k

k0

)−q

, (12)

with q = 2 for the “hard-sphere” spectrum, q = 5/3 for
the Kolmogorov spectrum, and q = 3/2 for the Kraichnan
spectrum, the total energy density in the fluctuations being

UδB =
∫ kmax

k0

W (k)dk. (13)

Under these assumptions, the momentum-diffusion coefficient
reads (O’Sullivan et al. 2009)

Dp ≈ β2
A

(
δB

B0

)2 ( ρg

λmax

)q−1 p2c2

ρgc
, (14)

where βA = VA/c and VA is the Alfvén waves velocity,
ρg = pc/qB is the Larmor radius, and λmax is the maximum
wavelength of the Alfvén waves spectrum. The acceleration time
for particles with Lorentz factor γ , whose Larmor radii resonate
with one particular magnetic field turbulence length scale, is
dictated by the momentum-diffusion coefficient (Dp) as

tacc ≈ p2

Dp

= ρg(γ0)
cβ2

A

(
B2

0

δB2

)∣∣∣∣
γ0

(
γ

γ0

)2−q

. (15)

The spatial diffusion coefficient relates to the momentum-
diffusion coefficient through the relation, DxDp ≈ p2β2

A
(Skilling 1975), hence the escape time of the particles from the
acceleration region of size R depends on the spatial diffusion
coefficient through the relation

tesc ≈ R2

Dx

≈ R2

(cβA)2 tacc
. (16)

The coefficients in Equation (11), and their related timescales,
can be expressed as a PL in terms of the Lorentz factor (γ )






Dp(γ ) = Dp0

(
γ
γ0

)q

, tD = 1
Dp0

(
γ
γ0

)2−q

DA(γ ) = 2Dp0

(
γ
γ0

)q−1
, tDA = 1

2Dp0

(
γ
γ0

)2−q

A(γ ) = Ap0γ , tA = 1
A0

, (17)

where Dp0 and A0 have the dimension of the inverse of a time.
Analytical solutions of the diffusion equation for relativistic
electrons have frequently been discussed in the literature since
the early work by Kardashev (1962), in particular for the
case of the “hard-sphere” approximation. Neglecting the S and
Tesc terms in Equation (11), and using a mono-energetic and
instantaneous injection (n(γ , 0) = N0δ(γ − γ0)), the solution
of the diffusion equation is (Melrose 1969; Kardashev 1962)

n(γ , t) = N0

γ
√

4πDp0t
exp

{
− [ln(γ /γ0) − (Ap0 − Dp0)t]2

4Dp0t

}
,

(18)
i.e., a log-parabolic distribution, whose curvature term is

r = ce

4Dp0t
∝ 1

Dp0t
. (19)

This result is fully consistent with that found in the statistical
description; indeed, Equations (18) and (8) have the same
functional form in both the statistical and in the diffusion
equation scenario, with t playing the role of ns, Dp0 the role
of the variance of the energy gain (σ 2

ε ), and Ap0 the role of
log ε̄. Hence we can write

Dp0 ∝
(σε

ε̄

)2
. (20)

It is interesting to note that in the case of the “hard-sphere”
approximation, the curvature term is simply dictated by the
ratio of the diffusive acceleration time (tD) to the evolution
time (t).

3. NUMERICAL APPROACH: MONTE CARLO
SIMULATION WITH MAGNETIC TURBULENCE

In this section, we demonstrate explicitly how the introduction
of energy fluctuations leads to curved spectral distributions of
particles. This is carried out using an MC approach.

In our simulations, we considered 105 particles injected into
the system with a cold mono-energetic distribution of Lorentz
factors, with γ0 = 1. To compare these results with the ones
presented in Section 2, we remind the reader that in the MC
approach, the duration of the acceleration process t is the
equivalent of the number of acceleration steps (ns) used in
the statistical picture and that the probability of the particle
to be upscattered or downscattered in the MC realizations
can be expressed in the statistical approach as P (ε > 1)
and P (ε < 1), respectively. The scattering probability of the
particles is dictated by the intensity of resonant waves in the
turbulent magnetic power spectrum. As a working hypothesis,
we assume that particles interact with a turbulent magnetic field
whose power spectrum is expressed by Equation (12). In each
scattering, the particles have a probability of (1 + βA)/2 of
being upscattered and a probability of (1 − βA)/2 of being
downscattered. The energy dispersion of the particle due to
resonant scattering with Alfvén waves will be 〈∆E2〉 ∝ (EβA)2t ,
where E = mec

2γ . Using the very good approximation for
the variance of the product of n uncorrelated random variables
(Goodman 1962)

σ 2(Πxi) = Π〈xi〉2Σ
(

σ 2
xi

〈xi〉2

)

(21)

3

here we add adiabatic cooling

(t=time elapsed from the expansion)
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Appendix A: JetSeT temporal evolution

The cooling terms are given by:
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where UB = B
2/8⇡, is the energy density of the magnetic field,

✏0 = h⌫0/mec
2 is the IC seed photon energy in units of mec

2,
nph(✏0) is the number density of IC seed photons with the corre-
sponding photon energy density Uph = mec

2
R
✏0nph(✏0)d✏0. The

function fKN results from the analytical integration of the Jones
(1968) Compton kernel, fully taking into account Klein-Nishina
(KN) e↵ects for an isotropic seed photon field (see Moderski
et al. 2005, appendix C), and FKN(�) represents its convolution
with the seed photon field. We remark that FKN plays a crucial
role in the cooling process, depending both on the IC regime
(Thomson (TH) limit for 4�✏0 << 1, KN limit for 4�✏0 >> 1),
and on ✏0nph(✏0) / B

2/R2. The acceleration terms in Eq. 17,
and their related time scales, can be expressed as a power-law in

terms of the Lorentz factor (�):
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blob expanding with a constant velocity. We can easily invert
this relation, and solve in terms of R

⇤:

R
⇤ = R0

⇣⌫0
S S A

⌫⇤
S S A

⌘ 
(8)

 =
p + 4

mB(p + 2) � 2
This equation allows to determine the time needed, starting from
texp, to move the initial ⌫0

S S A
to ⌫⇤

S S A
, that is actually time needed

to expand the source from an initial radius R0 to the radius R
⇤,

that is the rising time. In the blob rest frame will read:

trise = �tR0!R⇤ =
R
⇤ � R0

�expc
=

R0

�expc

h⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
i

(9)

The total delay will be given by the sum of texp and trise, i.e:

�t⌫0
S S A
!⌫⇤

S S A

= texp + trise = texp +
R0

�expc

h⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
i

(10)

Finally, the adiabatic decay time,will be proportional to the adi-
abatic cooling time at R

⇤:

t
ad

decay
/ R

⇤

�expc
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It is relevant to notice that the decaying time will be a↵ected also
by the purely geometric factor, depending on B(t) and R(t). This
can be easily derived starting from the $delta-approximation for
the emitted synchrotron flux, and taking into account that, for
confined emitter, N0V(t) is constant:
⌫F⌫(t) / N0V(t)B(t)2 / B(t)2. (12)
Hence, the geometric decay time will scale as :
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Since it is di�cult to discriminate among all these e↵ects, in
particular with observed data (where the incertitude on the value
of R0 and � introduces a further level of complication), we will
use a in place of  a more generic term � that is not explicitly
related to mB and p:
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cooling times, we can substitute the observed timescale variabil-
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where t
obs

exp
= texp(1 + z)/�.

3. Self-consistent temporal evolution of an
expanding blob

To follow the evolution of the emitting particle distribution, and
the radiative fields, we use the JetTimeEvol class from the
jet_timedep module of JetSeT. This class allows to evolve
the particle distribution under the e↵ects of both cooling and ac-
celeration (both systematic and stochastic) process, and to ex-
tract SED, light curves at any given time. The code proceeds
through the numerical solution of a kinetic equation, following
the same approach as in Tramacere et al. (2011) based on the
employment of the quasi-linear approximation with the inclu-
sion of momentum di↵usion term (Ramaty 1979; Becker et al.
2006). The equation governing the temporal evolution of n(�) is
the Fokker-Planck (FP) equation that reads:
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� [S (�, t) + DA(�, t)]n(�, t)

o
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Tesc(�)
� n(�, t)

Tad

+ Q(�, t).

The momentum di↵usion coe�cient Dp(�, t) and the average en-
ergy change term resulting from the momentum-di↵usion pro-
cess DA(�, t) = (2/�)Dp(�, t), represent the contribution from
a stochastic momentum-di↵usion acceleration mechanism The
systematic term S (�, t) = �C(�, t) + A(�, t) describes system-
atic energy loss (C) and/or gain (A), and Q(�, t) is the injection
term. n(�,t)

Tad

corresponds to the decrease in particle density due
to the expansion process, with Tad =

1
3

R(t)
�expc

(Gould 1975), and
n(�,t)

Tesc(�) represents the particle escape term. The injection function
Q(�in j, t) is normalised according to:

Lin j = Vacc

Z
�mec

2
Q(�, t)d� (erg/s), (18)

where Vacc is the volume of the acceleration region. The numer-
ical solution of the FP equation is obtained using the same ap-
proach of Tramacere et al. (2011), that is based on method pro-
posed by Chang & Cooper (1970) as described in Park & Pet-
rosian (1996).

3.1. setup of the simulation

We first generate a flaring event where both cooling and acceler-
ation processes act, in order to reproduce the typical SEDs and
lightcurves observed in HBLs. Then we follow the long-term
evolution under the e↵ects of radiative cooling and adiabatic ex-
pansion, setting a duration of the simulation long enough to fol-
low the particle evolution due to the expansion process. Both
for the flaring and log-term simulation, the time grid for the
solution of the FP equation is tuned to have a temporal mesh
at least two order of magnitude smaller then the shortest cool-
ing/acclearation time scale. We use an energy grid with 1500
points and 1  �  108. Since the total number of time steps
used in the FP numerical solution (Tsize) can be very large, a sub
sample of the time steps of the simulation (NUMS ET ) are stored
in arrays, and can be used to build both lightcurves and SEDs. In
the current simulation we have used NUMS ET = 200 for the flar-
ing stage, NUMS ET = 1000 for the long-term evolution, which
guarantee an adequate time sampling for lightcurves and spectral
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blob expanding with a constant velocity. We can easily invert
this relation, and solve in terms of R
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by the purely geometric factor, depending on B(t) and R(t). This
can be easily derived starting from the $delta-approximation for
the emitted synchrotron flux, and taking into account that, for
confined emitter, N0V(t) is constant:
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3. Self-consistent temporal evolution of an
expanding blob

To follow the evolution of the emitting particle distribution, and
the radiative fields, we use the JetTimeEvol class from the
jet_timedep module of JetSeT. This class allows to evolve
the particle distribution under the e↵ects of both cooling and ac-
celeration (both systematic and stochastic) process, and to ex-
tract SED, light curves at any given time. The code proceeds
through the numerical solution of a kinetic equation, following
the same approach as in Tramacere et al. (2011) based on the
employment of the quasi-linear approximation with the inclu-
sion of momentum di↵usion term (Ramaty 1979; Becker et al.
2006). The equation governing the temporal evolution of n(�) is
the Fokker-Planck (FP) equation that reads:
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ergy change term resulting from the momentum-di↵usion pro-
cess DA(�, t) = (2/�)Dp(�, t), represent the contribution from
a stochastic momentum-di↵usion acceleration mechanism The
systematic term S (�, t) = �C(�, t) + A(�, t) describes system-
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where Vacc is the volume of the acceleration region. The numer-
ical solution of the FP equation is obtained using the same ap-
proach of Tramacere et al. (2011), that is based on method pro-
posed by Chang & Cooper (1970) as described in Park & Pet-
rosian (1996).

3.1. setup of the simulation

We first generate a flaring event where both cooling and acceler-
ation processes act, in order to reproduce the typical SEDs and
lightcurves observed in HBLs. Then we follow the long-term
evolution under the e↵ects of radiative cooling and adiabatic ex-
pansion, setting a duration of the simulation long enough to fol-
low the particle evolution due to the expansion process. Both
for the flaring and log-term simulation, the time grid for the
solution of the FP equation is tuned to have a temporal mesh
at least two order of magnitude smaller then the shortest cool-
ing/acclearation time scale. We use an energy grid with 1500
points and 1  �  108. Since the total number of time steps
used in the FP numerical solution (Tsize) can be very large, a sub
sample of the time steps of the simulation (NUMS ET ) are stored
in arrays, and can be used to build both lightcurves and SEDs. In
the current simulation we have used NUMS ET = 200 for the flar-
ing stage, NUMS ET = 1000 for the long-term evolution, which
guarantee an adequate time sampling for lightcurves and spectral

Article number, page 2 of 9

self-consistent approach



JetSeT

injection
base of the

jet

flaring site

Radiative 
region (RR) 

expanding site

R(t)R0

Rrad=R0

BH

Disk

Acc. region(AR
)

t
texpflare

Δr=texpβcΓ (obs rest frame)

self-consistent approach
RH

• Acc. region+Rad. region

• SSC scenario (R,B similar to those observed in HBLs from MW model fitting)

• Particles are confined in Rad. region

• we limit to mB=1, beaming factor constant across the jet

• we ignore crossing time (<<other time scales in the expanding site)



JetSeT deriving phenomenological trends



JetSeT synch self. abs

A&A proofs: manuscript no. radio_gamma

Fig. 3: Comparison of non-expanding (right panels) vs expanding (left panels) for �exp = 0.1. The top panels show the evolution of
the SEDs, after the flaring stage, where the blue color flags to the non/pre-expansion case, and the the orange one flags the expansion.
The second row of panels show the evolution of the flux density (F⌫). The three bottom panels show the merged lightcurves of both
the flaring and the long-term simulation, in the Fermi-LAT band, and at 5 and 40 GHz. The red dashed lines marks the lightcurve
segment belonging to the flaring stage.

in the expanding case we notice that when the expansion starts,
the patterns, in both the synchrotron and IC components are dif-
ferent. The IC component is mainly a↵ected by a significant drop
in the Compton dominance (CD). This can be better appreciated
in Figure 4, where we plot the CD versus the time of the simu-
lation. The CD is evaluated as the ratio of the peak flux of the
IC component, to the peak flux of the S component. The vertical
dashed line marks the beginning of the expansion (for the ex-
panding case, orange line). It is clear that when the adiabatic ex-
pansion begins, the IC starts to drop rapidly, as a consequence of
the larger volume and lower seed photons density (I might add

some comments regarding the e↵ects also during the flaring

stage). This is a very interesting feature, that might already be
visible during the flaring stage. The most integrating e↵ect, for
our analysis, is the evolution of the S component. On top of the
flux decay dictated by the adiabatic losses, and decreased mag-
netic field, we notice the shift the SSA frequency, oppositely to
the non-expand case. This e↵ect can be better appreciated in the
second row of panels in Figure 3, where we plot the evolution
of the flux density (F⌫). Whilst in the non expanding case the
SSA is almost stable at the initial value of ⇡ 1011 Hz, in the ex-
panding case the SSA is decreasing with time as predicted by
Equation 5. The actual trend will be investigated in details in the
next two sections. The three bottom panels of Figure 3, show the
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on the usual ‘double-humped’ SED shape rather than on the pos-
sible relation with the radio�� delay.

In this paper, we derive phenomenological trends linking the
relevant timescales of the delay to the physical parameters of
the emitting region, and we verify them by means of a self-
consistent numerical modelling. We propose a response func-
tion based on the relevant phenomenological timescales that is
able to reproduce the radio-delayed light curve as a response to
the ��ray, and we validate the phenomenological trends against
the numerical simulations, investigating biases due to the com-
petition between radiative and adiabatic cooling timescales. We
apply this response to Mrk 421, Mrk 501, and 3C237, and ob-
tain good agreement with the long-term radio trends. Finally, we
employ a Monte Carlo Markov Chain (MCMC) approach to es-
timate physical parameters from the comparison between the re-
sponse function convolution parameters and the prediction from
the phenomenological trends. The paper is organised as follows.
In section 2 we derive the phenomenological trends expected un-
der the hypothesis of a moving blob expanding with uniform
velocity, and we characterise the delay in terms of the velocity
of expansion and of the consequent evolution of the SSA, find-
ing a physical link between observed rise and decay timescales
and the physical parameters of the blob and jet. In section 3.1,
we describe our setup of numerical simulations done with the
JetSeT code (Tramacere 2020; Tramacere et al. 2011; Tra-
macere et al. 2009), taking into account radiative, accelerative
processes, and adiabatic expansion. The simulations reproduce
the long-term temporal evolution of a single blob, from the ini-
tial flaring activity, and the subsequent expansion. In section 4
we compare the results for the cases of an expanding versus a
non-expanding blob. In section 5 we follow the spectral evolu-
tion and the corresponding light curves for di↵erent values of
the expansion velocity and for di↵erent radio frequencies. We
propose a response function —embedding the relevant observed
timescales— able to reproduce the radio light curve as a convo-
lution with the �-ray one, and we validate the phenomenologi-
cal trends against the numerical simulations, studying the biases
on the timescales embedded in the response functions result-
ing from competition between radiative and adiabatic cooling
timescales. In section 6 we apply our model to observed data
for Mrk 421, Mrk 501, and 3C 273, and we reproduce long-
term radio light curves as convolution of the �-ray light curve
with the proposed response function. In section 7 we employ a
MCMC approach to estimate physical parameters of the jet from
a comparison between the response function convolution param-
eters and the prediction from the phenomenological trends. More
specifically, we investigate estimates of the source size, the mag-
netic field index, the initial SSA frequency, the expansion veloc-
ity, and the spectral index of the electron distribution. We also
compare our results with similar works in the literature, and dis-
cuss some implications of our model regarding the impact on the
Compton dominance, hadronic models, and polarisation, and we
also speculate on other possible causes of the delays, such as
jet bending and the connection to the jet profile observed in the
VLBI radio analysis. In section 8 we summarise our findings and
discuss our upcoming extension of the presented model. In sec-
tion A we provide instructions to reproduce the analysis and the
numerical modelling presented in this paper.

2. Phenomenological setup of an expanding blob
and synchrotron self-absorption

We assume that a spherical blob, characterised by an initial ra-
dius R0 and magnetic field B0 expands with a constant velocity

�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob.
Quantities expressed in the observer frame are labelled by the
obs flag. The size of the blob can be expressed as

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside step function.
The time-dependent law of the magnetic field, dictated by

flux freezing (Begelman et al. 1984) and energy conservation,
reads

B(t) = B0
⇣ R0

R(t)

⌘mB

, (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for a fully poloidal
configuration, and mB = 1 for a fully toroidal configuration
(Begelman et al. 1984). The adiabatic cooling will read (Lon-
gair 2010)

�̇ad(t) =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
�, (3)

where � is the Lorentz factor of the electrons, and V is the vol-
ume of the region that we assume to be spherical. The corre-
sponding cooling time can be expressed as

t
ad

cooling(t) =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)H(t � texp)

�expc
. (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫SSA(t) = ⌫L(t)
h⇡
p
⇡

4
eR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where e is the electron charge, N(t) is the particle num-
ber density at time t, p is the power-law index of the electron
distribution at the Lorentz factor most contributing to ⌫SSA(t),
and ⌫L(t) = eB(t)

2⇡mec
is the Larmor frequency. The functions fk(p)

are approximated to percent accuracy as reported in Ghisellini
(2013). Assuming that particles are confined (R3

N(t) = N
tot),

and plugging Equation 2 and 1 into Equation 5 we obtain

⌫SSA(t) /
h
B(t)

p+2
2

N
tot

R(t)2

i 2
p+4 . (6)

Setting the initial self-absorption frequency ⌫0SSA ⌘ ⌫SSA(t = 0),
an increase in flux of the synchrotron emission at a given fre-
quency ⌫⇤ > ⌫0SSA is expected at time t

⇤ such that ⌫SSA(t⇤) ⌘
⌫⇤SSA ' ⌫⇤, when the source is characterised by a size R

⇤ = R(t⇤)
and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and B
⇤ are

such that the source is optically thin at frequencies ⌫ � ⌫⇤. We
use Equation 6 to relate the two frequencies ⌫0SSA and ⌫⇤SSA to the
corresponding blob radius R

⇤ :

⌫⇤SSA

⌫0SSA

=
h⇣B⇤

B0

⌘ p+2
2
⇣R0

R⇤
⌘2i 2

p+4
=
hR0

R⇤
i mB(p+2)+4

p+4 . (7)

This equation provides a link between the temporal evolution of
the SSA frequency and source radius, for a homogeneous blob
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Fig. 3: Left panel: SEDs corresponding to the simulation of the flaring state, for the radiative region. The dashed green line
corresponds to the earliest of the SEDs stored by the code, the blue lines correspond to the period when the injection, acceleration,
and radiative process are active, and the red lines correspond to the period when only the radiative processes are active. The times
reported in the label are in the blob frame. Right panel: Same as in left panel, but for the electron energy distribution in the radiative
region.

ning of the expansion (B0 and R0). Hence, we only extrapolate
the evolution of B according to mB and R(t) from the beginning
of the expansion process. We adopte this approximation for the
current approach because we are mostly interested in the deter-
mination of the radio-� response in terms of delay and expan-
sion velocity, and are not interested in investigating the jet struc-
ture before the flaring site. Nevertheless, our model can be easily
generalised to a generic conical jet geometry simply by replac-
ing the temporal law R(t) in order to follow the jet cross-section
as a function of the jet opening angle and of the distance from
the BH, setting a scaling parameter z(t) = RH(t)/RH0, and then
expressing R(t) = R0z(t)mR , and B(t) = B0z(t)�mBmR , where the
expansion index of the jet mR is assumed to be 2 [0, 1]. In the
ballistic case (mR = 1, Kaiser 2006) the initial opening angle of
the jet will be given by tan ✓0 = R0/RH0, and will change with
z according to tan (✓(z)) = tan (✓0)(RH(t)/RH0)mR�1, i.e. will be
constant.

Both for the flaring and long-term (expansion) simulations,
the time grid for the solution of the FP equation is tuned to have a
temporal mesh at least two orders of magnitude smaller than the
shortest cooling and acceleration timescale. We use an energy
grid with 1500 points and 1  �  108. As the total number of
time steps used in the FP numerical solution (Tsize) can be very
large, a subsample of the time steps of the simulation (NUMS ET )
is stored in arrays, and can be used to build both light curves and
SEDs. In the current simulation, we use NUMS ET = 200 for the
flaring stage and NUMS ET 2 [1000, 5000] for the long-term evo-
lution, depending on the duration of the simulation. This guar-
antees an adequate time sampling for light curves and spectral
evolution. SEDs are computed from the stored electron distribu-
tions, and from the blob parameters (according to their tempo-
ral evolution). In our case, the blob variable parameters are the
source radius (R) and magnetic field (B), which evolve accord-
ing to Equations 1 and 2, respectively. Light curves are obtained
by integrating SEDs between two frequencies, or as monochro-
matic. The code o↵ers the possibility to convolve the light curves
with the light-crossing time. In the present analysis, we skip this
option because, as shown in section 2, the light-crossing time
is always shorter than the other competing timescales. This ap-

proximation used in the current approach will be removed in a
forthcoming paper, where it will be treated accurately. We also
decided to use a constant bulk Lorentz factor. We tested and ver-
ified that, for the current scope of the simulations, the di↵erence
between enabling and disabling the IC cooling is negligible, and
therefore to speed up the computational time we use only syn-
chrotron cooling for the radiative terms.

3.2. Flare simulation

To generate the flaring event, we use the JetTimeEvol config-
uration with a separated acceleration and radiative region. With
this configuration, particles are injected into the acceleration re-
gion (AR), and then di↵used toward the radiative region (RR)
for a timescale corresponding to the flare duration. We set the
parameters for the flaring stage in order to reproduce the typi-
cal SED of HBLs, according to Tramacere et al. (2011). We as-
sume that both radiative and first and second-order acceleration
processes, occur in the AR, whilst in the RR region, we only
take cooling processes into account. Particles are injected in the
AR with a quasi-monoenergetic distribution, normalised accord-
ing to Equation 19. This initial distribution evolves under the
e↵ect of radiative and accelerative mechanisms, leading to the
formation of a distribution with a low-energy power-law branch
that bends close to the equilibrium energy. The high-energy
branch exhibits a log-parabolic shape during the acceleration-
dominated stage, and approaches a relativistic Maxwellian cut-
o↵ at the equilibrium. The spectral index of the low-energy
power law is dictated by the ratio of the first-order accelera-
tion timescale to the escape time from the acceleration region,
whilst the curvature during the acceleration-dominated stage is
dictated by the momentum di↵usion term. The acceleration re-
gion is modelled as a cylindrical shell with a radius equal to
the radiative region, and we assume a ten times smaller width.
Particles leaving the acceleration region (shock front) enter the
radiative region with a rate derived for the escape probability
Pescape(�tmesh) = 1�exp�tmesh/Tesc (Park & Petrosian 1996), where
�tmesh is the temporal mesh for the numerical solution of the FP
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Fig. 3: Comparison of non-expanding (right panels) vs expanding (left panels) for �exp = 0.1. The top panels show the evolution of
the SEDs, after the flaring stage, where the blue color flags to the non/pre-expansion case, and the the orange one flags the expansion.
The second row of panels show the evolution of the flux density (F⌫). The three bottom panels show the merged lightcurves of both
the flaring and the long-term simulation, in the Fermi-LAT band, and at 5 and 40 GHz. The red dashed lines marks the lightcurve
segment belonging to the flaring stage.

in the expanding case we notice that when the expansion starts,
the patterns, in both the synchrotron and IC components are dif-
ferent. The IC component is mainly a↵ected by a significant drop
in the Compton dominance (CD). This can be better appreciated
in Figure 4, where we plot the CD versus the time of the simu-
lation. The CD is evaluated as the ratio of the peak flux of the
IC component, to the peak flux of the S component. The vertical
dashed line marks the beginning of the expansion (for the ex-
panding case, orange line). It is clear that when the adiabatic ex-
pansion begins, the IC starts to drop rapidly, as a consequence of
the larger volume and lower seed photons density (I might add

some comments regarding the e↵ects also during the flaring

stage). This is a very interesting feature, that might already be
visible during the flaring stage. The most integrating e↵ect, for
our analysis, is the evolution of the S component. On top of the
flux decay dictated by the adiabatic losses, and decreased mag-
netic field, we notice the shift the SSA frequency, oppositely to
the non-expand case. This e↵ect can be better appreciated in the
second row of panels in Figure 3, where we plot the evolution
of the flux density (F⌫). Whilst in the non expanding case the
SSA is almost stable at the initial value of ⇡ 1011 Hz, in the ex-
panding case the SSA is decreasing with time as predicted by
Equation 5. The actual trend will be investigated in details in the
next two sections. The three bottom panels of Figure 3, show the
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on the usual ‘double-humped’ SED shape rather than on the pos-
sible relation with the radio�� delay.

In this paper, we derive phenomenological trends linking the
relevant timescales of the delay to the physical parameters of
the emitting region, and we verify them by means of a self-
consistent numerical modelling. We propose a response func-
tion based on the relevant phenomenological timescales that is
able to reproduce the radio-delayed light curve as a response to
the ��ray, and we validate the phenomenological trends against
the numerical simulations, investigating biases due to the com-
petition between radiative and adiabatic cooling timescales. We
apply this response to Mrk 421, Mrk 501, and 3C237, and ob-
tain good agreement with the long-term radio trends. Finally, we
employ a Monte Carlo Markov Chain (MCMC) approach to es-
timate physical parameters from the comparison between the re-
sponse function convolution parameters and the prediction from
the phenomenological trends. The paper is organised as follows.
In section 2 we derive the phenomenological trends expected un-
der the hypothesis of a moving blob expanding with uniform
velocity, and we characterise the delay in terms of the velocity
of expansion and of the consequent evolution of the SSA, find-
ing a physical link between observed rise and decay timescales
and the physical parameters of the blob and jet. In section 3.1,
we describe our setup of numerical simulations done with the
JetSeT code (Tramacere 2020; Tramacere et al. 2011; Tra-
macere et al. 2009), taking into account radiative, accelerative
processes, and adiabatic expansion. The simulations reproduce
the long-term temporal evolution of a single blob, from the ini-
tial flaring activity, and the subsequent expansion. In section 4
we compare the results for the cases of an expanding versus a
non-expanding blob. In section 5 we follow the spectral evolu-
tion and the corresponding light curves for di↵erent values of
the expansion velocity and for di↵erent radio frequencies. We
propose a response function —embedding the relevant observed
timescales— able to reproduce the radio light curve as a convo-
lution with the �-ray one, and we validate the phenomenologi-
cal trends against the numerical simulations, studying the biases
on the timescales embedded in the response functions result-
ing from competition between radiative and adiabatic cooling
timescales. In section 6 we apply our model to observed data
for Mrk 421, Mrk 501, and 3C 273, and we reproduce long-
term radio light curves as convolution of the �-ray light curve
with the proposed response function. In section 7 we employ a
MCMC approach to estimate physical parameters of the jet from
a comparison between the response function convolution param-
eters and the prediction from the phenomenological trends. More
specifically, we investigate estimates of the source size, the mag-
netic field index, the initial SSA frequency, the expansion veloc-
ity, and the spectral index of the electron distribution. We also
compare our results with similar works in the literature, and dis-
cuss some implications of our model regarding the impact on the
Compton dominance, hadronic models, and polarisation, and we
also speculate on other possible causes of the delays, such as
jet bending and the connection to the jet profile observed in the
VLBI radio analysis. In section 8 we summarise our findings and
discuss our upcoming extension of the presented model. In sec-
tion A we provide instructions to reproduce the analysis and the
numerical modelling presented in this paper.

2. Phenomenological setup of an expanding blob
and synchrotron self-absorption

We assume that a spherical blob, characterised by an initial ra-
dius R0 and magnetic field B0 expands with a constant velocity

�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob.
Quantities expressed in the observer frame are labelled by the
obs flag. The size of the blob can be expressed as

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside step function.
The time-dependent law of the magnetic field, dictated by

flux freezing (Begelman et al. 1984) and energy conservation,
reads

B(t) = B0
⇣ R0

R(t)

⌘mB

, (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for a fully poloidal
configuration, and mB = 1 for a fully toroidal configuration
(Begelman et al. 1984). The adiabatic cooling will read (Lon-
gair 2010)

�̇ad(t) =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
�, (3)

where � is the Lorentz factor of the electrons, and V is the vol-
ume of the region that we assume to be spherical. The corre-
sponding cooling time can be expressed as

t
ad

cooling(t) =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)H(t � texp)

�expc
. (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫SSA(t) = ⌫L(t)
h⇡
p
⇡

4
eR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where e is the electron charge, N(t) is the particle num-
ber density at time t, p is the power-law index of the electron
distribution at the Lorentz factor most contributing to ⌫SSA(t),
and ⌫L(t) = eB(t)

2⇡mec
is the Larmor frequency. The functions fk(p)

are approximated to percent accuracy as reported in Ghisellini
(2013). Assuming that particles are confined (R3

N(t) = N
tot),

and plugging Equation 2 and 1 into Equation 5 we obtain

⌫SSA(t) /
h
B(t)

p+2
2

N
tot

R(t)2

i 2
p+4 . (6)

Setting the initial self-absorption frequency ⌫0SSA ⌘ ⌫SSA(t = 0),
an increase in flux of the synchrotron emission at a given fre-
quency ⌫⇤ > ⌫0SSA is expected at time t

⇤ such that ⌫SSA(t⇤) ⌘
⌫⇤SSA ' ⌫⇤, when the source is characterised by a size R

⇤ = R(t⇤)
and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and B
⇤ are

such that the source is optically thin at frequencies ⌫ � ⌫⇤. We
use Equation 6 to relate the two frequencies ⌫0SSA and ⌫⇤SSA to the
corresponding blob radius R

⇤ :

⌫⇤SSA

⌫0SSA

=
h⇣B⇤

B0

⌘ p+2
2
⇣R0

R⇤
⌘2i 2

p+4
=
hR0

R⇤
i mB(p+2)+4

p+4 . (7)

This equation provides a link between the temporal evolution of
the SSA frequency and source radius, for a homogeneous blob
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the temporal evolution of a single blob, from the initial flaring activity, and the subsequent expansion. We follow the spectral evolution
and the corresponding light curves, investigating the relations among the observed parameters, rise time, delay, and decay time, and
we identify the link with the physical parameters
Results. We find that, when adiabatic expansion is active, lags due to the shift of the synchrotron frequency occurs. The correspond-
ing time lags has an o↵set equal to the distance in time between the flaring onset and the beginning of the expansion, whilst the
rising and decaying time scales depends on the velocity of the expansion and on time required to the source to exhibit a synchrotron
self-absorption frequency below the relevant radio spectral window. We derive an inter-band response function, embedding the afore-
mentioned parameters, and we compare it with the Radio�� empirical response obtained from observational data of Mrk 421 and Mrk
501.

1. Introduction

2. Phenomenological setup of expanding blob and
synchrotron self-absorption

We assume that a spherical blob, characterized by an initial ra-
dius R0 and magnetic field B0. expands with a constant velocity
�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob,
quantities expressed in the observer frame are labeled by the obs

flag. The size of the blob can be expressed as:

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside function.
The time dependent law of the magnetic field, dictated by

flux freezing and energy conservation, reads:

B(t) = B0(
R0

R(t)
)mB , (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for fully poloidal
configuration, and mB = 1 for fully toroidal configuration. The
adiabatic cooling will read (Longair 2010):

�̇ad =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
� (3)

and the corresponding cooling time can be expressed as:

tad =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)

�expc
H(t � texp) (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫S S A(t) = ⌫L(t)
h⇡
p
⇡

4
qR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where q is the electron charge, where p is the power-law index of
the electron distribution at the Lorentz factor most contributing
to ⌫S S A(t), and ⌫L(t) = qB(t)

2⇡mec
is the Larmor frequency, and where

the functions fk(p) are approximated to percent accuracy as re-
ported in Ghisellini (2013). Assuming that particles are confined
(N(t) = N0), and plugging Equation 2 and 1 into Equation 5 we
obtain:

⌫S S A(t) /
h
B(t)

p+2
2 R(t)N0

i 2
p+4 (6)

Setting the initial self-absorption frequency ⌫0
S S A
⌘ ⌫S S A(t =

0), an increase of flux in the synchrotron emission, at a given
frequency ⌫⇤ > ⌫0

S S A
, is expected a time t

⇤ such that ⌫S S A(t⇤) ⌘
⌫⇤

S S A
' ⌫⇤, when the source will be characterized by a size R

⇤ =
R(t⇤) and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and
B
⇤ are such that the source optically thin at frequencies ⌫ � ⌫⇤.

We use Equation 6 to relate the two frequencies ⌫0
S S A

and ⌫⇤
S S A

,
to the corresponding blob radius R

⇤ :

⌫⇤
S S A

⌫0
S S A

=
h⇣B⇤

B0

⌘ p+2
2 R

⇤

R0

i 2
p+4
=
hR0

R⇤
i mB(p+2)�2

p+4 (7)

This equation provides a link between the temporal evolution
of the SSA frequency and source radius, for an homogeneous
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Fig. 3: Left panel: SEDs corresponding to the simulation of the flaring state, for the radiative region. The dashed green line
corresponds to the earliest of the SEDs stored by the code, the blue lines correspond to the period when the injection, acceleration,
and radiative process are active, and the red lines correspond to the period when only the radiative processes are active. The times
reported in the label are in the blob frame. Right panel: Same as in left panel, but for the electron energy distribution in the radiative
region.

ning of the expansion (B0 and R0). Hence, we only extrapolate
the evolution of B according to mB and R(t) from the beginning
of the expansion process. We adopte this approximation for the
current approach because we are mostly interested in the deter-
mination of the radio-� response in terms of delay and expan-
sion velocity, and are not interested in investigating the jet struc-
ture before the flaring site. Nevertheless, our model can be easily
generalised to a generic conical jet geometry simply by replac-
ing the temporal law R(t) in order to follow the jet cross-section
as a function of the jet opening angle and of the distance from
the BH, setting a scaling parameter z(t) = RH(t)/RH0, and then
expressing R(t) = R0z(t)mR , and B(t) = B0z(t)�mBmR , where the
expansion index of the jet mR is assumed to be 2 [0, 1]. In the
ballistic case (mR = 1, Kaiser 2006) the initial opening angle of
the jet will be given by tan ✓0 = R0/RH0, and will change with
z according to tan (✓(z)) = tan (✓0)(RH(t)/RH0)mR�1, i.e. will be
constant.

Both for the flaring and long-term (expansion) simulations,
the time grid for the solution of the FP equation is tuned to have a
temporal mesh at least two orders of magnitude smaller than the
shortest cooling and acceleration timescale. We use an energy
grid with 1500 points and 1  �  108. As the total number of
time steps used in the FP numerical solution (Tsize) can be very
large, a subsample of the time steps of the simulation (NUMS ET )
is stored in arrays, and can be used to build both light curves and
SEDs. In the current simulation, we use NUMS ET = 200 for the
flaring stage and NUMS ET 2 [1000, 5000] for the long-term evo-
lution, depending on the duration of the simulation. This guar-
antees an adequate time sampling for light curves and spectral
evolution. SEDs are computed from the stored electron distribu-
tions, and from the blob parameters (according to their tempo-
ral evolution). In our case, the blob variable parameters are the
source radius (R) and magnetic field (B), which evolve accord-
ing to Equations 1 and 2, respectively. Light curves are obtained
by integrating SEDs between two frequencies, or as monochro-
matic. The code o↵ers the possibility to convolve the light curves
with the light-crossing time. In the present analysis, we skip this
option because, as shown in section 2, the light-crossing time
is always shorter than the other competing timescales. This ap-

proximation used in the current approach will be removed in a
forthcoming paper, where it will be treated accurately. We also
decided to use a constant bulk Lorentz factor. We tested and ver-
ified that, for the current scope of the simulations, the di↵erence
between enabling and disabling the IC cooling is negligible, and
therefore to speed up the computational time we use only syn-
chrotron cooling for the radiative terms.

3.2. Flare simulation

To generate the flaring event, we use the JetTimeEvol config-
uration with a separated acceleration and radiative region. With
this configuration, particles are injected into the acceleration re-
gion (AR), and then di↵used toward the radiative region (RR)
for a timescale corresponding to the flare duration. We set the
parameters for the flaring stage in order to reproduce the typi-
cal SED of HBLs, according to Tramacere et al. (2011). We as-
sume that both radiative and first and second-order acceleration
processes, occur in the AR, whilst in the RR region, we only
take cooling processes into account. Particles are injected in the
AR with a quasi-monoenergetic distribution, normalised accord-
ing to Equation 19. This initial distribution evolves under the
e↵ect of radiative and accelerative mechanisms, leading to the
formation of a distribution with a low-energy power-law branch
that bends close to the equilibrium energy. The high-energy
branch exhibits a log-parabolic shape during the acceleration-
dominated stage, and approaches a relativistic Maxwellian cut-
o↵ at the equilibrium. The spectral index of the low-energy
power law is dictated by the ratio of the first-order accelera-
tion timescale to the escape time from the acceleration region,
whilst the curvature during the acceleration-dominated stage is
dictated by the momentum di↵usion term. The acceleration re-
gion is modelled as a cylindrical shell with a radius equal to
the radiative region, and we assume a ten times smaller width.
Particles leaving the acceleration region (shock front) enter the
radiative region with a rate derived for the escape probability
Pescape(�tmesh) = 1�exp�tmesh/Tesc (Park & Petrosian 1996), where
�tmesh is the temporal mesh for the numerical solution of the FP
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Fig. 3: Comparison of non-expanding (right panels) vs expanding (left panels) for �exp = 0.1. The top panels show the evolution of
the SEDs, after the flaring stage, where the blue color flags to the non/pre-expansion case, and the the orange one flags the expansion.
The second row of panels show the evolution of the flux density (F⌫). The three bottom panels show the merged lightcurves of both
the flaring and the long-term simulation, in the Fermi-LAT band, and at 5 and 40 GHz. The red dashed lines marks the lightcurve
segment belonging to the flaring stage.

in the expanding case we notice that when the expansion starts,
the patterns, in both the synchrotron and IC components are dif-
ferent. The IC component is mainly a↵ected by a significant drop
in the Compton dominance (CD). This can be better appreciated
in Figure 4, where we plot the CD versus the time of the simu-
lation. The CD is evaluated as the ratio of the peak flux of the
IC component, to the peak flux of the S component. The vertical
dashed line marks the beginning of the expansion (for the ex-
panding case, orange line). It is clear that when the adiabatic ex-
pansion begins, the IC starts to drop rapidly, as a consequence of
the larger volume and lower seed photons density (I might add

some comments regarding the e↵ects also during the flaring

stage). This is a very interesting feature, that might already be
visible during the flaring stage. The most integrating e↵ect, for
our analysis, is the evolution of the S component. On top of the
flux decay dictated by the adiabatic losses, and decreased mag-
netic field, we notice the shift the SSA frequency, oppositely to
the non-expand case. This e↵ect can be better appreciated in the
second row of panels in Figure 3, where we plot the evolution
of the flux density (F⌫). Whilst in the non expanding case the
SSA is almost stable at the initial value of ⇡ 1011 Hz, in the ex-
panding case the SSA is decreasing with time as predicted by
Equation 5. The actual trend will be investigated in details in the
next two sections. The three bottom panels of Figure 3, show the
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on the usual ‘double-humped’ SED shape rather than on the pos-
sible relation with the radio�� delay.

In this paper, we derive phenomenological trends linking the
relevant timescales of the delay to the physical parameters of
the emitting region, and we verify them by means of a self-
consistent numerical modelling. We propose a response func-
tion based on the relevant phenomenological timescales that is
able to reproduce the radio-delayed light curve as a response to
the ��ray, and we validate the phenomenological trends against
the numerical simulations, investigating biases due to the com-
petition between radiative and adiabatic cooling timescales. We
apply this response to Mrk 421, Mrk 501, and 3C237, and ob-
tain good agreement with the long-term radio trends. Finally, we
employ a Monte Carlo Markov Chain (MCMC) approach to es-
timate physical parameters from the comparison between the re-
sponse function convolution parameters and the prediction from
the phenomenological trends. The paper is organised as follows.
In section 2 we derive the phenomenological trends expected un-
der the hypothesis of a moving blob expanding with uniform
velocity, and we characterise the delay in terms of the velocity
of expansion and of the consequent evolution of the SSA, find-
ing a physical link between observed rise and decay timescales
and the physical parameters of the blob and jet. In section 3.1,
we describe our setup of numerical simulations done with the
JetSeT code (Tramacere 2020; Tramacere et al. 2011; Tra-
macere et al. 2009), taking into account radiative, accelerative
processes, and adiabatic expansion. The simulations reproduce
the long-term temporal evolution of a single blob, from the ini-
tial flaring activity, and the subsequent expansion. In section 4
we compare the results for the cases of an expanding versus a
non-expanding blob. In section 5 we follow the spectral evolu-
tion and the corresponding light curves for di↵erent values of
the expansion velocity and for di↵erent radio frequencies. We
propose a response function —embedding the relevant observed
timescales— able to reproduce the radio light curve as a convo-
lution with the �-ray one, and we validate the phenomenologi-
cal trends against the numerical simulations, studying the biases
on the timescales embedded in the response functions result-
ing from competition between radiative and adiabatic cooling
timescales. In section 6 we apply our model to observed data
for Mrk 421, Mrk 501, and 3C 273, and we reproduce long-
term radio light curves as convolution of the �-ray light curve
with the proposed response function. In section 7 we employ a
MCMC approach to estimate physical parameters of the jet from
a comparison between the response function convolution param-
eters and the prediction from the phenomenological trends. More
specifically, we investigate estimates of the source size, the mag-
netic field index, the initial SSA frequency, the expansion veloc-
ity, and the spectral index of the electron distribution. We also
compare our results with similar works in the literature, and dis-
cuss some implications of our model regarding the impact on the
Compton dominance, hadronic models, and polarisation, and we
also speculate on other possible causes of the delays, such as
jet bending and the connection to the jet profile observed in the
VLBI radio analysis. In section 8 we summarise our findings and
discuss our upcoming extension of the presented model. In sec-
tion A we provide instructions to reproduce the analysis and the
numerical modelling presented in this paper.

2. Phenomenological setup of an expanding blob
and synchrotron self-absorption

We assume that a spherical blob, characterised by an initial ra-
dius R0 and magnetic field B0 expands with a constant velocity

�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob.
Quantities expressed in the observer frame are labelled by the
obs flag. The size of the blob can be expressed as

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside step function.
The time-dependent law of the magnetic field, dictated by

flux freezing (Begelman et al. 1984) and energy conservation,
reads

B(t) = B0
⇣ R0

R(t)

⌘mB

, (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for a fully poloidal
configuration, and mB = 1 for a fully toroidal configuration
(Begelman et al. 1984). The adiabatic cooling will read (Lon-
gair 2010)

�̇ad(t) =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
�, (3)

where � is the Lorentz factor of the electrons, and V is the vol-
ume of the region that we assume to be spherical. The corre-
sponding cooling time can be expressed as

t
ad

cooling(t) =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)H(t � texp)

�expc
. (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫SSA(t) = ⌫L(t)
h⇡
p
⇡

4
eR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where e is the electron charge, N(t) is the particle num-
ber density at time t, p is the power-law index of the electron
distribution at the Lorentz factor most contributing to ⌫SSA(t),
and ⌫L(t) = eB(t)

2⇡mec
is the Larmor frequency. The functions fk(p)

are approximated to percent accuracy as reported in Ghisellini
(2013). Assuming that particles are confined (R3

N(t) = N
tot),

and plugging Equation 2 and 1 into Equation 5 we obtain

⌫SSA(t) /
h
B(t)

p+2
2

N
tot

R(t)2

i 2
p+4 . (6)

Setting the initial self-absorption frequency ⌫0SSA ⌘ ⌫SSA(t = 0),
an increase in flux of the synchrotron emission at a given fre-
quency ⌫⇤ > ⌫0SSA is expected at time t

⇤ such that ⌫SSA(t⇤) ⌘
⌫⇤SSA ' ⌫⇤, when the source is characterised by a size R

⇤ = R(t⇤)
and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and B
⇤ are

such that the source is optically thin at frequencies ⌫ � ⌫⇤. We
use Equation 6 to relate the two frequencies ⌫0SSA and ⌫⇤SSA to the
corresponding blob radius R

⇤ :

⌫⇤SSA

⌫0SSA

=
h⇣B⇤

B0

⌘ p+2
2
⇣R0

R⇤
⌘2i 2

p+4
=
hR0

R⇤
i mB(p+2)+4

p+4 . (7)

This equation provides a link between the temporal evolution of
the SSA frequency and source radius, for a homogeneous blob
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Context. Multiwavelengths light curves in long-term campaigns, have shown that, for several blazars, the gamma-ray emission occurs
with a significant delay w.r.t to high-energy bands, with time scales ranging from week to years. Such observational evidence has been
matter of debate for several year, and usually is understood in terms of di↵erent distances of the ��ray and radio transparent region.
Aims. In this paper we show, by means of a self-consistent numerical modeling, that the adiabatic expansion of relativist blob can
explain these delays, reproducing lags compatible with the observed time scales.
Methods. We use the JetSeTframework to reproduce the numerical modeling of the radiative and accelerative processes, reproducing
the temporal evolution of a single blob, from the initial flaring activity, and the subsequent expansion. We follow the spectral evolution
and the corresponding light curves, investigating the relations among the observed parameters, rise time, delay, and decay time, and
we identify the link with the physical parameters
Results. We find that, when adiabatic expansion is active, lags due to the shift of the synchrotron frequency occurs. The correspond-
ing time lags has an o↵set equal to the distance in time between the flaring onset and the beginning of the expansion, whilst the
rising and decaying time scales depends on the velocity of the expansion and on time required to the source to exhibit a synchrotron
self-absorption frequency below the relevant radio spectral window. We derive an inter-band response function, embedding the afore-
mentioned parameters, and we compare it with the Radio�� empirical response obtained from observational data of Mrk 421 and Mrk
501.

1. Introduction

2. Phenomenological setup of expanding blob and
synchrotron self-absorption

We assume that a spherical blob, characterized by an initial ra-
dius R0 and magnetic field B0. expands with a constant velocity
�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob,
quantities expressed in the observer frame are labeled by the obs

flag. The size of the blob can be expressed as:

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside function.
The time dependent law of the magnetic field, dictated by

flux freezing and energy conservation, reads:

B(t) = B0(
R0

R(t)
)mB , (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for fully poloidal
configuration, and mB = 1 for fully toroidal configuration. The
adiabatic cooling will read (Longair 2010):

�̇ad =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
� (3)

and the corresponding cooling time can be expressed as:

tad =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)

�expc
H(t � texp) (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫S S A(t) = ⌫L(t)
h⇡
p
⇡

4
qR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where q is the electron charge, where p is the power-law index of
the electron distribution at the Lorentz factor most contributing
to ⌫S S A(t), and ⌫L(t) = qB(t)

2⇡mec
is the Larmor frequency, and where

the functions fk(p) are approximated to percent accuracy as re-
ported in Ghisellini (2013). Assuming that particles are confined
(N(t) = N0), and plugging Equation 2 and 1 into Equation 5 we
obtain:

⌫S S A(t) /
h
B(t)

p+2
2 R(t)N0

i 2
p+4 (6)

Setting the initial self-absorption frequency ⌫0
S S A
⌘ ⌫S S A(t =

0), an increase of flux in the synchrotron emission, at a given
frequency ⌫⇤ > ⌫0

S S A
, is expected a time t

⇤ such that ⌫S S A(t⇤) ⌘
⌫⇤

S S A
' ⌫⇤, when the source will be characterized by a size R

⇤ =
R(t⇤) and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and
B
⇤ are such that the source optically thin at frequencies ⌫ � ⌫⇤.

We use Equation 6 to relate the two frequencies ⌫0
S S A

and ⌫⇤
S S A

,
to the corresponding blob radius R

⇤ :

⌫⇤
S S A

⌫0
S S A

=
h⇣B⇤

B0

⌘ p+2
2 R

⇤

R0

i 2
p+4
=
hR0

R⇤
i mB(p+2)�2

p+4 (7)

This equation provides a link between the temporal evolution
of the SSA frequency and source radius, for an homogeneous
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1. Introduction

2. Phenomenological setup of expanding blob and
synchrotron self-absorption

We assume that a spherical blob, characterized by an initial ra-
dius R0 and magnetic field B0. expands with a constant velocity
�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob,
quantities expressed in the observer frame are labeled by the obs

flag. The size of the blob can be expressed as:

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside function.
The time dependent law of the magnetic field, dictated by

flux freezing and energy conservation, reads:

B(t) = B0(
R0

R(t)
)mB , (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for fully poloidal
configuration, and mB = 1 for fully toroidal configuration. The
adiabatic cooling will read (Longair 2010):

�̇ad =
1
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V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
� (3)

and the corresponding cooling time can be expressed as:

tad =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)

�expc
H(t � texp) (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫S S A(t) = ⌫L(t)
h⇡
p
⇡

4
qR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where q is the electron charge, where p is the power-law index of
the electron distribution at the Lorentz factor most contributing
to ⌫S S A(t), and ⌫L(t) = qB(t)

2⇡mec
is the Larmor frequency, and where

the functions fk(p) are approximated to percent accuracy as re-
ported in Ghisellini (2013). Assuming that particles are confined
(N(t) = N0), and plugging Equation 2 and 1 into Equation 5 we
obtain:

⌫S S A(t) /
h
B(t)

p+2
2 R(t)N0

i 2
p+4 (6)

Setting the initial self-absorption frequency ⌫0
S S A
⌘ ⌫S S A(t =

0), an increase of flux in the synchrotron emission, at a given
frequency ⌫⇤ > ⌫0

S S A
, is expected a time t

⇤ such that ⌫S S A(t⇤) ⌘
⌫⇤

S S A
' ⌫⇤, when the source will be characterized by a size R

⇤ =
R(t⇤) and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and
B
⇤ are such that the source optically thin at frequencies ⌫ � ⌫⇤.

We use Equation 6 to relate the two frequencies ⌫0
S S A

and ⌫⇤
S S A

,
to the corresponding blob radius R

⇤ :

⌫⇤
S S A

⌫0
S S A

=
h⇣B⇤

B0

⌘ p+2
2 R

⇤
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i 2
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=
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i mB(p+2)�2

p+4 (7)

This equation provides a link between the temporal evolution
of the SSA frequency and source radius, for an homogeneous
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on the usual ‘double-humped’ SED shape rather than on the pos-
sible relation with the radio�� delay.

In this paper, we derive phenomenological trends linking the
relevant timescales of the delay to the physical parameters of
the emitting region, and we verify them by means of a self-
consistent numerical modelling. We propose a response func-
tion based on the relevant phenomenological timescales that is
able to reproduce the radio-delayed light curve as a response to
the ��ray, and we validate the phenomenological trends against
the numerical simulations, investigating biases due to the com-
petition between radiative and adiabatic cooling timescales. We
apply this response to Mrk 421, Mrk 501, and 3C237, and ob-
tain good agreement with the long-term radio trends. Finally, we
employ a Monte Carlo Markov Chain (MCMC) approach to es-
timate physical parameters from the comparison between the re-
sponse function convolution parameters and the prediction from
the phenomenological trends. The paper is organised as follows.
In section 2 we derive the phenomenological trends expected un-
der the hypothesis of a moving blob expanding with uniform
velocity, and we characterise the delay in terms of the velocity
of expansion and of the consequent evolution of the SSA, find-
ing a physical link between observed rise and decay timescales
and the physical parameters of the blob and jet. In section 3.1,
we describe our setup of numerical simulations done with the
JetSeT code (Tramacere 2020; Tramacere et al. 2011; Tra-
macere et al. 2009), taking into account radiative, accelerative
processes, and adiabatic expansion. The simulations reproduce
the long-term temporal evolution of a single blob, from the ini-
tial flaring activity, and the subsequent expansion. In section 4
we compare the results for the cases of an expanding versus a
non-expanding blob. In section 5 we follow the spectral evolu-
tion and the corresponding light curves for di↵erent values of
the expansion velocity and for di↵erent radio frequencies. We
propose a response function —embedding the relevant observed
timescales— able to reproduce the radio light curve as a convo-
lution with the �-ray one, and we validate the phenomenologi-
cal trends against the numerical simulations, studying the biases
on the timescales embedded in the response functions result-
ing from competition between radiative and adiabatic cooling
timescales. In section 6 we apply our model to observed data
for Mrk 421, Mrk 501, and 3C 273, and we reproduce long-
term radio light curves as convolution of the �-ray light curve
with the proposed response function. In section 7 we employ a
MCMC approach to estimate physical parameters of the jet from
a comparison between the response function convolution param-
eters and the prediction from the phenomenological trends. More
specifically, we investigate estimates of the source size, the mag-
netic field index, the initial SSA frequency, the expansion veloc-
ity, and the spectral index of the electron distribution. We also
compare our results with similar works in the literature, and dis-
cuss some implications of our model regarding the impact on the
Compton dominance, hadronic models, and polarisation, and we
also speculate on other possible causes of the delays, such as
jet bending and the connection to the jet profile observed in the
VLBI radio analysis. In section 8 we summarise our findings and
discuss our upcoming extension of the presented model. In sec-
tion A we provide instructions to reproduce the analysis and the
numerical modelling presented in this paper.

2. Phenomenological setup of an expanding blob
and synchrotron self-absorption

We assume that a spherical blob, characterised by an initial ra-
dius R0 and magnetic field B0 expands with a constant velocity

�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob.
Quantities expressed in the observer frame are labelled by the
obs flag. The size of the blob can be expressed as

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside step function.
The time-dependent law of the magnetic field, dictated by

flux freezing (Begelman et al. 1984) and energy conservation,
reads

B(t) = B0
⇣ R0

R(t)

⌘mB

, (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for a fully poloidal
configuration, and mB = 1 for a fully toroidal configuration
(Begelman et al. 1984). The adiabatic cooling will read (Lon-
gair 2010)

�̇ad(t) =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
�, (3)

where � is the Lorentz factor of the electrons, and V is the vol-
ume of the region that we assume to be spherical. The corre-
sponding cooling time can be expressed as

t
ad

cooling(t) =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)H(t � texp)

�expc
. (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫SSA(t) = ⌫L(t)
h⇡
p
⇡

4
eR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where e is the electron charge, N(t) is the particle num-
ber density at time t, p is the power-law index of the electron
distribution at the Lorentz factor most contributing to ⌫SSA(t),
and ⌫L(t) = eB(t)

2⇡mec
is the Larmor frequency. The functions fk(p)

are approximated to percent accuracy as reported in Ghisellini
(2013). Assuming that particles are confined (R3

N(t) = N
tot),

and plugging Equation 2 and 1 into Equation 5 we obtain

⌫SSA(t) /
h
B(t)

p+2
2

N
tot

R(t)2

i 2
p+4 . (6)

Setting the initial self-absorption frequency ⌫0SSA ⌘ ⌫SSA(t = 0),
an increase in flux of the synchrotron emission at a given fre-
quency ⌫⇤ > ⌫0SSA is expected at time t

⇤ such that ⌫SSA(t⇤) ⌘
⌫⇤SSA ' ⌫⇤, when the source is characterised by a size R
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and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and B
⇤ are

such that the source is optically thin at frequencies ⌫ � ⌫⇤. We
use Equation 6 to relate the two frequencies ⌫0SSA and ⌫⇤SSA to the
corresponding blob radius R
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This equation provides a link between the temporal evolution of
the SSA frequency and source radius, for a homogeneous blob
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Fig. 3: Left panel: SEDs corresponding to the simulation of the flaring state, for the radiative region. The dashed green line
corresponds to the earliest of the SEDs stored by the code, the blue lines correspond to the period when the injection, acceleration,
and radiative process are active, and the red lines correspond to the period when only the radiative processes are active. The times
reported in the label are in the blob frame. Right panel: Same as in left panel, but for the electron energy distribution in the radiative
region.

ning of the expansion (B0 and R0). Hence, we only extrapolate
the evolution of B according to mB and R(t) from the beginning
of the expansion process. We adopte this approximation for the
current approach because we are mostly interested in the deter-
mination of the radio-� response in terms of delay and expan-
sion velocity, and are not interested in investigating the jet struc-
ture before the flaring site. Nevertheless, our model can be easily
generalised to a generic conical jet geometry simply by replac-
ing the temporal law R(t) in order to follow the jet cross-section
as a function of the jet opening angle and of the distance from
the BH, setting a scaling parameter z(t) = RH(t)/RH0, and then
expressing R(t) = R0z(t)mR , and B(t) = B0z(t)�mBmR , where the
expansion index of the jet mR is assumed to be 2 [0, 1]. In the
ballistic case (mR = 1, Kaiser 2006) the initial opening angle of
the jet will be given by tan ✓0 = R0/RH0, and will change with
z according to tan (✓(z)) = tan (✓0)(RH(t)/RH0)mR�1, i.e. will be
constant.

Both for the flaring and long-term (expansion) simulations,
the time grid for the solution of the FP equation is tuned to have a
temporal mesh at least two orders of magnitude smaller than the
shortest cooling and acceleration timescale. We use an energy
grid with 1500 points and 1  �  108. As the total number of
time steps used in the FP numerical solution (Tsize) can be very
large, a subsample of the time steps of the simulation (NUMS ET )
is stored in arrays, and can be used to build both light curves and
SEDs. In the current simulation, we use NUMS ET = 200 for the
flaring stage and NUMS ET 2 [1000, 5000] for the long-term evo-
lution, depending on the duration of the simulation. This guar-
antees an adequate time sampling for light curves and spectral
evolution. SEDs are computed from the stored electron distribu-
tions, and from the blob parameters (according to their tempo-
ral evolution). In our case, the blob variable parameters are the
source radius (R) and magnetic field (B), which evolve accord-
ing to Equations 1 and 2, respectively. Light curves are obtained
by integrating SEDs between two frequencies, or as monochro-
matic. The code o↵ers the possibility to convolve the light curves
with the light-crossing time. In the present analysis, we skip this
option because, as shown in section 2, the light-crossing time
is always shorter than the other competing timescales. This ap-

proximation used in the current approach will be removed in a
forthcoming paper, where it will be treated accurately. We also
decided to use a constant bulk Lorentz factor. We tested and ver-
ified that, for the current scope of the simulations, the di↵erence
between enabling and disabling the IC cooling is negligible, and
therefore to speed up the computational time we use only syn-
chrotron cooling for the radiative terms.

3.2. Flare simulation

To generate the flaring event, we use the JetTimeEvol config-
uration with a separated acceleration and radiative region. With
this configuration, particles are injected into the acceleration re-
gion (AR), and then di↵used toward the radiative region (RR)
for a timescale corresponding to the flare duration. We set the
parameters for the flaring stage in order to reproduce the typi-
cal SED of HBLs, according to Tramacere et al. (2011). We as-
sume that both radiative and first and second-order acceleration
processes, occur in the AR, whilst in the RR region, we only
take cooling processes into account. Particles are injected in the
AR with a quasi-monoenergetic distribution, normalised accord-
ing to Equation 19. This initial distribution evolves under the
e↵ect of radiative and accelerative mechanisms, leading to the
formation of a distribution with a low-energy power-law branch
that bends close to the equilibrium energy. The high-energy
branch exhibits a log-parabolic shape during the acceleration-
dominated stage, and approaches a relativistic Maxwellian cut-
o↵ at the equilibrium. The spectral index of the low-energy
power law is dictated by the ratio of the first-order accelera-
tion timescale to the escape time from the acceleration region,
whilst the curvature during the acceleration-dominated stage is
dictated by the momentum di↵usion term. The acceleration re-
gion is modelled as a cylindrical shell with a radius equal to
the radiative region, and we assume a ten times smaller width.
Particles leaving the acceleration region (shock front) enter the
radiative region with a rate derived for the escape probability
Pescape(�tmesh) = 1�exp�tmesh/Tesc (Park & Petrosian 1996), where
�tmesh is the temporal mesh for the numerical solution of the FP
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Fig. 3: Comparison of non-expanding (right panels) vs expanding (left panels) for �exp = 0.1. The top panels show the evolution of
the SEDs, after the flaring stage, where the blue color flags to the non/pre-expansion case, and the the orange one flags the expansion.
The second row of panels show the evolution of the flux density (F⌫). The three bottom panels show the merged lightcurves of both
the flaring and the long-term simulation, in the Fermi-LAT band, and at 5 and 40 GHz. The red dashed lines marks the lightcurve
segment belonging to the flaring stage.

in the expanding case we notice that when the expansion starts,
the patterns, in both the synchrotron and IC components are dif-
ferent. The IC component is mainly a↵ected by a significant drop
in the Compton dominance (CD). This can be better appreciated
in Figure 4, where we plot the CD versus the time of the simu-
lation. The CD is evaluated as the ratio of the peak flux of the
IC component, to the peak flux of the S component. The vertical
dashed line marks the beginning of the expansion (for the ex-
panding case, orange line). It is clear that when the adiabatic ex-
pansion begins, the IC starts to drop rapidly, as a consequence of
the larger volume and lower seed photons density (I might add

some comments regarding the e↵ects also during the flaring

stage). This is a very interesting feature, that might already be
visible during the flaring stage. The most integrating e↵ect, for
our analysis, is the evolution of the S component. On top of the
flux decay dictated by the adiabatic losses, and decreased mag-
netic field, we notice the shift the SSA frequency, oppositely to
the non-expand case. This e↵ect can be better appreciated in the
second row of panels in Figure 3, where we plot the evolution
of the flux density (F⌫). Whilst in the non expanding case the
SSA is almost stable at the initial value of ⇡ 1011 Hz, in the ex-
panding case the SSA is decreasing with time as predicted by
Equation 5. The actual trend will be investigated in details in the
next two sections. The three bottom panels of Figure 3, show the
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on the usual ‘double-humped’ SED shape rather than on the pos-
sible relation with the radio�� delay.

In this paper, we derive phenomenological trends linking the
relevant timescales of the delay to the physical parameters of
the emitting region, and we verify them by means of a self-
consistent numerical modelling. We propose a response func-
tion based on the relevant phenomenological timescales that is
able to reproduce the radio-delayed light curve as a response to
the ��ray, and we validate the phenomenological trends against
the numerical simulations, investigating biases due to the com-
petition between radiative and adiabatic cooling timescales. We
apply this response to Mrk 421, Mrk 501, and 3C237, and ob-
tain good agreement with the long-term radio trends. Finally, we
employ a Monte Carlo Markov Chain (MCMC) approach to es-
timate physical parameters from the comparison between the re-
sponse function convolution parameters and the prediction from
the phenomenological trends. The paper is organised as follows.
In section 2 we derive the phenomenological trends expected un-
der the hypothesis of a moving blob expanding with uniform
velocity, and we characterise the delay in terms of the velocity
of expansion and of the consequent evolution of the SSA, find-
ing a physical link between observed rise and decay timescales
and the physical parameters of the blob and jet. In section 3.1,
we describe our setup of numerical simulations done with the
JetSeT code (Tramacere 2020; Tramacere et al. 2011; Tra-
macere et al. 2009), taking into account radiative, accelerative
processes, and adiabatic expansion. The simulations reproduce
the long-term temporal evolution of a single blob, from the ini-
tial flaring activity, and the subsequent expansion. In section 4
we compare the results for the cases of an expanding versus a
non-expanding blob. In section 5 we follow the spectral evolu-
tion and the corresponding light curves for di↵erent values of
the expansion velocity and for di↵erent radio frequencies. We
propose a response function —embedding the relevant observed
timescales— able to reproduce the radio light curve as a convo-
lution with the �-ray one, and we validate the phenomenologi-
cal trends against the numerical simulations, studying the biases
on the timescales embedded in the response functions result-
ing from competition between radiative and adiabatic cooling
timescales. In section 6 we apply our model to observed data
for Mrk 421, Mrk 501, and 3C 273, and we reproduce long-
term radio light curves as convolution of the �-ray light curve
with the proposed response function. In section 7 we employ a
MCMC approach to estimate physical parameters of the jet from
a comparison between the response function convolution param-
eters and the prediction from the phenomenological trends. More
specifically, we investigate estimates of the source size, the mag-
netic field index, the initial SSA frequency, the expansion veloc-
ity, and the spectral index of the electron distribution. We also
compare our results with similar works in the literature, and dis-
cuss some implications of our model regarding the impact on the
Compton dominance, hadronic models, and polarisation, and we
also speculate on other possible causes of the delays, such as
jet bending and the connection to the jet profile observed in the
VLBI radio analysis. In section 8 we summarise our findings and
discuss our upcoming extension of the presented model. In sec-
tion A we provide instructions to reproduce the analysis and the
numerical modelling presented in this paper.

2. Phenomenological setup of an expanding blob
and synchrotron self-absorption

We assume that a spherical blob, characterised by an initial ra-
dius R0 and magnetic field B0 expands with a constant velocity

�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob.
Quantities expressed in the observer frame are labelled by the
obs flag. The size of the blob can be expressed as

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside step function.
The time-dependent law of the magnetic field, dictated by

flux freezing (Begelman et al. 1984) and energy conservation,
reads

B(t) = B0
⇣ R0

R(t)

⌘mB

, (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for a fully poloidal
configuration, and mB = 1 for a fully toroidal configuration
(Begelman et al. 1984). The adiabatic cooling will read (Lon-
gair 2010)

�̇ad(t) =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
�, (3)

where � is the Lorentz factor of the electrons, and V is the vol-
ume of the region that we assume to be spherical. The corre-
sponding cooling time can be expressed as

t
ad

cooling(t) =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)H(t � texp)

�expc
. (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫SSA(t) = ⌫L(t)
h⇡
p
⇡

4
eR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where e is the electron charge, N(t) is the particle num-
ber density at time t, p is the power-law index of the electron
distribution at the Lorentz factor most contributing to ⌫SSA(t),
and ⌫L(t) = eB(t)

2⇡mec
is the Larmor frequency. The functions fk(p)

are approximated to percent accuracy as reported in Ghisellini
(2013). Assuming that particles are confined (R3

N(t) = N
tot),

and plugging Equation 2 and 1 into Equation 5 we obtain

⌫SSA(t) /
h
B(t)

p+2
2

N
tot

R(t)2

i 2
p+4 . (6)

Setting the initial self-absorption frequency ⌫0SSA ⌘ ⌫SSA(t = 0),
an increase in flux of the synchrotron emission at a given fre-
quency ⌫⇤ > ⌫0SSA is expected at time t

⇤ such that ⌫SSA(t⇤) ⌘
⌫⇤SSA ' ⌫⇤, when the source is characterised by a size R

⇤ = R(t⇤)
and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and B
⇤ are

such that the source is optically thin at frequencies ⌫ � ⌫⇤. We
use Equation 6 to relate the two frequencies ⌫0SSA and ⌫⇤SSA to the
corresponding blob radius R

⇤ :

⌫⇤SSA

⌫0SSA

=
h⇣B⇤

B0

⌘ p+2
2
⇣R0

R⇤
⌘2i 2

p+4
=
hR0

R⇤
i mB(p+2)+4

p+4 . (7)

This equation provides a link between the temporal evolution of
the SSA frequency and source radius, for a homogeneous blob
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ABSTRACT

Context. Multiwavelengths light curves in long-term campaigns, have shown that, for several blazars, the gamma-ray emission occurs
with a significant delay w.r.t to high-energy bands, with time scales ranging from week to years. Such observational evidence has been
matter of debate for several year, and usually is understood in terms of di↵erent distances of the ��ray and radio transparent region.
Aims. In this paper we show, by means of a self-consistent numerical modeling, that the adiabatic expansion of relativist blob can
explain these delays, reproducing lags compatible with the observed time scales.
Methods. We use the JetSeTframework to reproduce the numerical modeling of the radiative and accelerative processes, reproducing
the temporal evolution of a single blob, from the initial flaring activity, and the subsequent expansion. We follow the spectral evolution
and the corresponding light curves, investigating the relations among the observed parameters, rise time, delay, and decay time, and
we identify the link with the physical parameters
Results. We find that, when adiabatic expansion is active, lags due to the shift of the synchrotron frequency occurs. The correspond-
ing time lags has an o↵set equal to the distance in time between the flaring onset and the beginning of the expansion, whilst the
rising and decaying time scales depends on the velocity of the expansion and on time required to the source to exhibit a synchrotron
self-absorption frequency below the relevant radio spectral window. We derive an inter-band response function, embedding the afore-
mentioned parameters, and we compare it with the Radio�� empirical response obtained from observational data of Mrk 421 and Mrk
501.

1. Introduction

2. Phenomenological setup of expanding blob and
synchrotron self-absorption

We assume that a spherical blob, characterized by an initial ra-
dius R0 and magnetic field B0. expands with a constant velocity
�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob,
quantities expressed in the observer frame are labeled by the obs

flag. The size of the blob can be expressed as:

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside function.
The time dependent law of the magnetic field, dictated by

flux freezing and energy conservation, reads:

B(t) = B0(
R0

R(t)
)mB , (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for fully poloidal
configuration, and mB = 1 for fully toroidal configuration. The
adiabatic cooling will read (Longair 2010):

�̇ad =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
� (3)

and the corresponding cooling time can be expressed as:

tad =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)

�expc
H(t � texp) (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫S S A(t) = ⌫L(t)
h⇡
p
⇡

4
qR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where q is the electron charge, where p is the power-law index of
the electron distribution at the Lorentz factor most contributing
to ⌫S S A(t), and ⌫L(t) = qB(t)

2⇡mec
is the Larmor frequency, and where

the functions fk(p) are approximated to percent accuracy as re-
ported in Ghisellini (2013). Assuming that particles are confined
(N(t) = N0), and plugging Equation 2 and 1 into Equation 5 we
obtain:

⌫S S A(t) /
h
B(t)

p+2
2 R(t)N0

i 2
p+4 (6)

Setting the initial self-absorption frequency ⌫0
S S A
⌘ ⌫S S A(t =

0), an increase of flux in the synchrotron emission, at a given
frequency ⌫⇤ > ⌫0

S S A
, is expected a time t

⇤ such that ⌫S S A(t⇤) ⌘
⌫⇤

S S A
' ⌫⇤, when the source will be characterized by a size R

⇤ =
R(t⇤) and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and
B
⇤ are such that the source optically thin at frequencies ⌫ � ⌫⇤.

We use Equation 6 to relate the two frequencies ⌫0
S S A

and ⌫⇤
S S A

,
to the corresponding blob radius R

⇤ :

⌫⇤
S S A

⌫0
S S A

=
h⇣B⇤

B0

⌘ p+2
2 R

⇤

R0

i 2
p+4
=
hR0

R⇤
i mB(p+2)�2

p+4 (7)

This equation provides a link between the temporal evolution
of the SSA frequency and source radius, for an homogeneous
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�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob,
quantities expressed in the observer frame are labeled by the obs

flag. The size of the blob can be expressed as:
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where H is the Heaviside function.
The time dependent law of the magnetic field, dictated by

flux freezing and energy conservation, reads:

B(t) = B0(
R0

R(t)
)mB , (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for fully poloidal
configuration, and mB = 1 for fully toroidal configuration. The
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where q is the electron charge, where p is the power-law index of
the electron distribution at the Lorentz factor most contributing
to ⌫S S A(t), and ⌫L(t) = qB(t)

2⇡mec
is the Larmor frequency, and where

the functions fk(p) are approximated to percent accuracy as re-
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(N(t) = N0), and plugging Equation 2 and 1 into Equation 5 we
obtain:

⌫S S A(t) /
h
B(t)

p+2
2 R(t)N0

i 2
p+4 (6)

Setting the initial self-absorption frequency ⌫0
S S A
⌘ ⌫S S A(t =
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⇤ and
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to the corresponding blob radius R
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on the usual ‘double-humped’ SED shape rather than on the pos-
sible relation with the radio�� delay.

In this paper, we derive phenomenological trends linking the
relevant timescales of the delay to the physical parameters of
the emitting region, and we verify them by means of a self-
consistent numerical modelling. We propose a response func-
tion based on the relevant phenomenological timescales that is
able to reproduce the radio-delayed light curve as a response to
the ��ray, and we validate the phenomenological trends against
the numerical simulations, investigating biases due to the com-
petition between radiative and adiabatic cooling timescales. We
apply this response to Mrk 421, Mrk 501, and 3C237, and ob-
tain good agreement with the long-term radio trends. Finally, we
employ a Monte Carlo Markov Chain (MCMC) approach to es-
timate physical parameters from the comparison between the re-
sponse function convolution parameters and the prediction from
the phenomenological trends. The paper is organised as follows.
In section 2 we derive the phenomenological trends expected un-
der the hypothesis of a moving blob expanding with uniform
velocity, and we characterise the delay in terms of the velocity
of expansion and of the consequent evolution of the SSA, find-
ing a physical link between observed rise and decay timescales
and the physical parameters of the blob and jet. In section 3.1,
we describe our setup of numerical simulations done with the
JetSeT code (Tramacere 2020; Tramacere et al. 2011; Tra-
macere et al. 2009), taking into account radiative, accelerative
processes, and adiabatic expansion. The simulations reproduce
the long-term temporal evolution of a single blob, from the ini-
tial flaring activity, and the subsequent expansion. In section 4
we compare the results for the cases of an expanding versus a
non-expanding blob. In section 5 we follow the spectral evolu-
tion and the corresponding light curves for di↵erent values of
the expansion velocity and for di↵erent radio frequencies. We
propose a response function —embedding the relevant observed
timescales— able to reproduce the radio light curve as a convo-
lution with the �-ray one, and we validate the phenomenologi-
cal trends against the numerical simulations, studying the biases
on the timescales embedded in the response functions result-
ing from competition between radiative and adiabatic cooling
timescales. In section 6 we apply our model to observed data
for Mrk 421, Mrk 501, and 3C 273, and we reproduce long-
term radio light curves as convolution of the �-ray light curve
with the proposed response function. In section 7 we employ a
MCMC approach to estimate physical parameters of the jet from
a comparison between the response function convolution param-
eters and the prediction from the phenomenological trends. More
specifically, we investigate estimates of the source size, the mag-
netic field index, the initial SSA frequency, the expansion veloc-
ity, and the spectral index of the electron distribution. We also
compare our results with similar works in the literature, and dis-
cuss some implications of our model regarding the impact on the
Compton dominance, hadronic models, and polarisation, and we
also speculate on other possible causes of the delays, such as
jet bending and the connection to the jet profile observed in the
VLBI radio analysis. In section 8 we summarise our findings and
discuss our upcoming extension of the presented model. In sec-
tion A we provide instructions to reproduce the analysis and the
numerical modelling presented in this paper.

2. Phenomenological setup of an expanding blob
and synchrotron self-absorption

We assume that a spherical blob, characterised by an initial ra-
dius R0 and magnetic field B0 expands with a constant velocity

�exp = vexp/c, and that the expansion begins at a time texp. All
the quantities are measured in the frame of the emitting blob.
Quantities expressed in the observer frame are labelled by the
obs flag. The size of the blob can be expressed as

R(t) = R0 + �expc(t � texp)H(t � texp), (1)

where H is the Heaviside step function.
The time-dependent law of the magnetic field, dictated by

flux freezing (Begelman et al. 1984) and energy conservation,
reads

B(t) = B0
⇣ R0

R(t)

⌘mB

, (2)

where the index mB 2 [1, 2] depends on the geometric con-
figuration of the magnetic field, with mB = 2 for a fully poloidal
configuration, and mB = 1 for a fully toroidal configuration
(Begelman et al. 1984). The adiabatic cooling will read (Lon-
gair 2010)

�̇ad(t) =
1
3

V̇

V
� =

Ṙ(t)
R(t)
� =
�expc

R(t)
�, (3)

where � is the Lorentz factor of the electrons, and V is the vol-
ume of the region that we assume to be spherical. The corre-
sponding cooling time can be expressed as

t
ad

cooling(t) =
�

�̇
=

R(t)
�expc

=
R0 + �expc(t � texp)H(t � texp)

�expc
. (4)

The evolution of the synchrotron self-absorption frequency can
be expressed as (Rybicki & Lightman 1986)

⌫SSA(t) = ⌫L(t)
h⇡
p
⇡

4
eR(t)N(t)

B(t)
fk(p)
i 2

p+4 , (5)

where e is the electron charge, N(t) is the particle num-
ber density at time t, p is the power-law index of the electron
distribution at the Lorentz factor most contributing to ⌫SSA(t),
and ⌫L(t) = eB(t)

2⇡mec
is the Larmor frequency. The functions fk(p)

are approximated to percent accuracy as reported in Ghisellini
(2013). Assuming that particles are confined (R3

N(t) = N
tot),

and plugging Equation 2 and 1 into Equation 5 we obtain

⌫SSA(t) /
h
B(t)

p+2
2

N
tot

R(t)2

i 2
p+4 . (6)

Setting the initial self-absorption frequency ⌫0SSA ⌘ ⌫SSA(t = 0),
an increase in flux of the synchrotron emission at a given fre-
quency ⌫⇤ > ⌫0SSA is expected at time t

⇤ such that ⌫SSA(t⇤) ⌘
⌫⇤SSA ' ⌫⇤, when the source is characterised by a size R

⇤ = R(t⇤)
and B

⇤ = B(t⇤). Hence, at the time t
⇤ the values of R

⇤ and B
⇤ are

such that the source is optically thin at frequencies ⌫ � ⌫⇤. We
use Equation 6 to relate the two frequencies ⌫0SSA and ⌫⇤SSA to the
corresponding blob radius R

⇤ :

⌫⇤SSA

⌫0SSA

=
h⇣B⇤

B0

⌘ p+2
2
⇣R0

R⇤
⌘2i 2

p+4
=
hR0

R⇤
i mB(p+2)+4

p+4 . (7)

This equation provides a link between the temporal evolution of
the SSA frequency and source radius, for a homogeneous blob
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Fig. 3: Left panel: SEDs corresponding to the simulation of the flaring state, for the radiative region. The dashed green line
corresponds to the earliest of the SEDs stored by the code, the blue lines correspond to the period when the injection, acceleration,
and radiative process are active, and the red lines correspond to the period when only the radiative processes are active. The times
reported in the label are in the blob frame. Right panel: Same as in left panel, but for the electron energy distribution in the radiative
region.

ning of the expansion (B0 and R0). Hence, we only extrapolate
the evolution of B according to mB and R(t) from the beginning
of the expansion process. We adopte this approximation for the
current approach because we are mostly interested in the deter-
mination of the radio-� response in terms of delay and expan-
sion velocity, and are not interested in investigating the jet struc-
ture before the flaring site. Nevertheless, our model can be easily
generalised to a generic conical jet geometry simply by replac-
ing the temporal law R(t) in order to follow the jet cross-section
as a function of the jet opening angle and of the distance from
the BH, setting a scaling parameter z(t) = RH(t)/RH0, and then
expressing R(t) = R0z(t)mR , and B(t) = B0z(t)�mBmR , where the
expansion index of the jet mR is assumed to be 2 [0, 1]. In the
ballistic case (mR = 1, Kaiser 2006) the initial opening angle of
the jet will be given by tan ✓0 = R0/RH0, and will change with
z according to tan (✓(z)) = tan (✓0)(RH(t)/RH0)mR�1, i.e. will be
constant.

Both for the flaring and long-term (expansion) simulations,
the time grid for the solution of the FP equation is tuned to have a
temporal mesh at least two orders of magnitude smaller than the
shortest cooling and acceleration timescale. We use an energy
grid with 1500 points and 1  �  108. As the total number of
time steps used in the FP numerical solution (Tsize) can be very
large, a subsample of the time steps of the simulation (NUMS ET )
is stored in arrays, and can be used to build both light curves and
SEDs. In the current simulation, we use NUMS ET = 200 for the
flaring stage and NUMS ET 2 [1000, 5000] for the long-term evo-
lution, depending on the duration of the simulation. This guar-
antees an adequate time sampling for light curves and spectral
evolution. SEDs are computed from the stored electron distribu-
tions, and from the blob parameters (according to their tempo-
ral evolution). In our case, the blob variable parameters are the
source radius (R) and magnetic field (B), which evolve accord-
ing to Equations 1 and 2, respectively. Light curves are obtained
by integrating SEDs between two frequencies, or as monochro-
matic. The code o↵ers the possibility to convolve the light curves
with the light-crossing time. In the present analysis, we skip this
option because, as shown in section 2, the light-crossing time
is always shorter than the other competing timescales. This ap-

proximation used in the current approach will be removed in a
forthcoming paper, where it will be treated accurately. We also
decided to use a constant bulk Lorentz factor. We tested and ver-
ified that, for the current scope of the simulations, the di↵erence
between enabling and disabling the IC cooling is negligible, and
therefore to speed up the computational time we use only syn-
chrotron cooling for the radiative terms.

3.2. Flare simulation

To generate the flaring event, we use the JetTimeEvol config-
uration with a separated acceleration and radiative region. With
this configuration, particles are injected into the acceleration re-
gion (AR), and then di↵used toward the radiative region (RR)
for a timescale corresponding to the flare duration. We set the
parameters for the flaring stage in order to reproduce the typi-
cal SED of HBLs, according to Tramacere et al. (2011). We as-
sume that both radiative and first and second-order acceleration
processes, occur in the AR, whilst in the RR region, we only
take cooling processes into account. Particles are injected in the
AR with a quasi-monoenergetic distribution, normalised accord-
ing to Equation 19. This initial distribution evolves under the
e↵ect of radiative and accelerative mechanisms, leading to the
formation of a distribution with a low-energy power-law branch
that bends close to the equilibrium energy. The high-energy
branch exhibits a log-parabolic shape during the acceleration-
dominated stage, and approaches a relativistic Maxwellian cut-
o↵ at the equilibrium. The spectral index of the low-energy
power law is dictated by the ratio of the first-order accelera-
tion timescale to the escape time from the acceleration region,
whilst the curvature during the acceleration-dominated stage is
dictated by the momentum di↵usion term. The acceleration re-
gion is modelled as a cylindrical shell with a radius equal to
the radiative region, and we assume a ten times smaller width.
Particles leaving the acceleration region (shock front) enter the
radiative region with a rate derived for the escape probability
Pescape(�tmesh) = 1�exp�tmesh/Tesc (Park & Petrosian 1996), where
�tmesh is the temporal mesh for the numerical solution of the FP
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A. Tramacere et al.: Radio-�-ray response in blazars as a signature of adiabatic blob expansion

Fig. 1: Schematic representation of the model implemented in JetSeT to simulate the flaring stage and the adiabatic expansion.
At time tstart acc, particles are injected and accelerated in the acceleration region where they undergo both cooling and acceleration
processes and di↵use towards the radiative region , where only losses take place. The acceleration process ends at time tstop acc. After
a time texp, the expansion process takes place in the RR region.

expanding with a constant velocity. We can easily invert this re-
lation, and solve it in terms of R

⇤:

R
⇤ = R0

⇣⌫0
SSA

⌫⇤SSA

⌘ 
(8)

 =
p + 4

mB(p + 2) + 4
.

This equation allows us to determine the time needed, starting
from texp, to move the initial ⌫0

SSA to ⌫⇤SSA, which is also the time
needed to expand the source from an initial radius R0 to the ra-
dius R

⇤. The corresponding time to reach the peak of the syn-
chrotron light curve at the frequency ⌫⇤SSA in the blob rest frame
is

tpeak = �tR0!R⇤ =
R
⇤ � R0

�expc
=

R0

�expc

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i
. (9)

We stress that this equation holds as long as the synchrotron
cooling is not the dominant cooling timescale, and we discuss
this topic more in detail in Section 5. The total delay will be
given by the sum of texp and tpeak, that is,

�t⌫0
SSA!⌫⇤SSA

= texp + tpeak = texp +
R0

�expc

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i
. (10)

Finally, the adiabatic decay time will be proportional to the adi-
abatic cooling time at R

⇤:

t
ad

decay(t⇤) / R
⇤

�expc
=

R0

�expc

⇣⌫0
SSA

⌫⇤SSA

⌘ 
. (11)

Of course, this is the relevant timescale at the time t
⇤ such that

R(t⇤) = R
⇤, and will increase according to Equation 4. It is rel-

evant to note that the decaying time will also be a↵ected by
the purely geometric factor, depending on B(t) and R(t), that
is, the flux variation due to a change in B(t) and R(t), ignor-
ing the cooling terms. This can be easily derived from the ex-
pected synchrotron trend for an optical depth ⌧ >> 1, F⌫SSA (t) /
N(t)V(t)B(t)�0.5 (Ghisellini 2013) , and taking into account that,
for confined emitters, N(t)V(t) is constant: F⌫SSA (t) / B(t)�0.5,
where V(t) is the time-dependent value of the blob volume.

Hence, the time-dependent geometric decay time at t = t
⇤ will

read

t
geom

decay(t⇤) / F⌫SSA (t⇤)
Ḟ⌫SSA (t⇤)

/ R
⇤

mB�expc
=

t
ad

decay(t⇤)

mB

. (12)

Therefore, within the assumptions described above, and as
long as the adiabatic cooling timescale dominates over the syn-
chrotron one, we can estimate the final decay timescale as

tdecay(t⇤) / R0

mB�expc

⇣⌫0
SSA

⌫⇤SSA

⌘ 
. (13)

The balance between the relevant timescales is quite complex,
and in Figure 2 we show the trends for di↵erent configurations.
The left panels refer to the case of �exp = 0.1, and the right pan-
els to the case of �exp = 0.001. We select the boundaries � = 10
and � = 1000 to sample typical values of the Lorentz factor
corresponding to electrons radiating by synchrotron emission in
the radio band, for B ranging in [0.001, 1] G, and a broad range
of values of � and z. We notice that for �exp = 0.1, the adiabatic
and geometrical decay timescales dominate over the synchrotron
timescale, except for the initial state of a few configurations. On
the contrary, for the case of �exp = 0.001 the competition be-
tween radiative and adiabatic timescales is more complex. The
e↵ect of this complex interplay among the cooling timescales is
investigated in detail in Section 5. We also notice that, for the
parameter space investigated in the present analysis, the cross-
ing time is always shorter than the other timescales, making the
approximation of ignoring its e↵ect hereafter relatively plausi-
ble.

Finally, we can express these relations —which are valid in
the adiabatic-dominated cooling regime— in the observer frame:

�t
obs
⌫0,obs

SSA !⌫
⇤,obs
SSA

=
1 + z

�

h
texp +

R0

�expc

⇣⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
⌘i

(14)

t
obs
decay =

(1 + z)
�

R0

mB�expc

⇣⌫0
SSA

⌫⇤SSA

⌘ 

t
obs
peak =

(1 + z)
�

R0

�expc

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i
,
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Fig. 3: Comparison of non-expanding (right panels) vs expanding (left panels) for �exp = 0.1. The top panels show the evolution of
the SEDs, after the flaring stage, where the blue color flags to the non/pre-expansion case, and the the orange one flags the expansion.
The second row of panels show the evolution of the flux density (F⌫). The three bottom panels show the merged lightcurves of both
the flaring and the long-term simulation, in the Fermi-LAT band, and at 5 and 40 GHz. The red dashed lines marks the lightcurve
segment belonging to the flaring stage.

in the expanding case we notice that when the expansion starts,
the patterns, in both the synchrotron and IC components are dif-
ferent. The IC component is mainly a↵ected by a significant drop
in the Compton dominance (CD). This can be better appreciated
in Figure 4, where we plot the CD versus the time of the simu-
lation. The CD is evaluated as the ratio of the peak flux of the
IC component, to the peak flux of the S component. The vertical
dashed line marks the beginning of the expansion (for the ex-
panding case, orange line). It is clear that when the adiabatic ex-
pansion begins, the IC starts to drop rapidly, as a consequence of
the larger volume and lower seed photons density (I might add

some comments regarding the e↵ects also during the flaring

stage). This is a very interesting feature, that might already be
visible during the flaring stage. The most integrating e↵ect, for
our analysis, is the evolution of the S component. On top of the
flux decay dictated by the adiabatic losses, and decreased mag-
netic field, we notice the shift the SSA frequency, oppositely to
the non-expand case. This e↵ect can be better appreciated in the
second row of panels in Figure 3, where we plot the evolution
of the flux density (F⌫). Whilst in the non expanding case the
SSA is almost stable at the initial value of ⇡ 1011 Hz, in the ex-
panding case the SSA is decreasing with time as predicted by
Equation 5. The actual trend will be investigated in details in the
next two sections. The three bottom panels of Figure 3, show the
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Fig. 3: Comparison of non-expanding (right panels) vs expanding (left panels) for �exp = 0.1. The top panels show the evolution of
the SEDs, after the flaring stage, where the blue color flags to the non/pre-expansion case, and the the orange one flags the expansion.
The second row of panels show the evolution of the flux density (F⌫). The three bottom panels show the merged lightcurves of both
the flaring and the long-term simulation, in the Fermi-LAT band, and at 5 and 40 GHz. The red dashed lines marks the lightcurve
segment belonging to the flaring stage.

in the expanding case we notice that when the expansion starts,
the patterns, in both the synchrotron and IC components are dif-
ferent. The IC component is mainly a↵ected by a significant drop
in the Compton dominance (CD). This can be better appreciated
in Figure 4, where we plot the CD versus the time of the simu-
lation. The CD is evaluated as the ratio of the peak flux of the
IC component, to the peak flux of the S component. The vertical
dashed line marks the beginning of the expansion (for the ex-
panding case, orange line). It is clear that when the adiabatic ex-
pansion begins, the IC starts to drop rapidly, as a consequence of
the larger volume and lower seed photons density (I might add

some comments regarding the e↵ects also during the flaring

stage). This is a very interesting feature, that might already be
visible during the flaring stage. The most integrating e↵ect, for
our analysis, is the evolution of the S component. On top of the
flux decay dictated by the adiabatic losses, and decreased mag-
netic field, we notice the shift the SSA frequency, oppositely to
the non-expand case. This e↵ect can be better appreciated in the
second row of panels in Figure 3, where we plot the evolution
of the flux density (F⌫). Whilst in the non expanding case the
SSA is almost stable at the initial value of ⇡ 1011 Hz, in the ex-
panding case the SSA is decreasing with time as predicted by
Equation 5. The actual trend will be investigated in details in the
next two sections. The three bottom panels of Figure 3, show the
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Fig. 1: Schematic representation of the model implemented in JetSeT to simulate the flaring stage and the adiabatic expansion.
At time tstart acc, particles are injected and accelerated in the acceleration region where they undergo both cooling and acceleration
processes and di↵use towards the radiative region , where only losses take place. The acceleration process ends at time tstop acc. After
a time texp, the expansion process takes place in the RR region.

expanding with a constant velocity. We can easily invert this re-
lation, and solve it in terms of R

⇤:

R
⇤ = R0

⇣⌫0
SSA

⌫⇤SSA

⌘ 
(8)

 =
p + 4

mB(p + 2) + 4
.

This equation allows us to determine the time needed, starting
from texp, to move the initial ⌫0

SSA to ⌫⇤SSA, which is also the time
needed to expand the source from an initial radius R0 to the ra-
dius R

⇤. The corresponding time to reach the peak of the syn-
chrotron light curve at the frequency ⌫⇤SSA in the blob rest frame
is

tpeak = �tR0!R⇤ =
R
⇤ � R0

�expc
=

R0

�expc

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i
. (9)

We stress that this equation holds as long as the synchrotron
cooling is not the dominant cooling timescale, and we discuss
this topic more in detail in Section 5. The total delay will be
given by the sum of texp and tpeak, that is,

�t⌫0
SSA!⌫⇤SSA

= texp + tpeak = texp +
R0

�expc

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i
. (10)

Finally, the adiabatic decay time will be proportional to the adi-
abatic cooling time at R

⇤:

t
ad

decay(t⇤) / R
⇤

�expc
=

R0

�expc

⇣⌫0
SSA

⌫⇤SSA

⌘ 
. (11)

Of course, this is the relevant timescale at the time t
⇤ such that

R(t⇤) = R
⇤, and will increase according to Equation 4. It is rel-

evant to note that the decaying time will also be a↵ected by
the purely geometric factor, depending on B(t) and R(t), that
is, the flux variation due to a change in B(t) and R(t), ignor-
ing the cooling terms. This can be easily derived from the ex-
pected synchrotron trend for an optical depth ⌧ >> 1, F⌫SSA (t) /
N(t)V(t)B(t)�0.5 (Ghisellini 2013) , and taking into account that,
for confined emitters, N(t)V(t) is constant: F⌫SSA (t) / B(t)�0.5,
where V(t) is the time-dependent value of the blob volume.

Hence, the time-dependent geometric decay time at t = t
⇤ will

read

t
geom

decay(t⇤) / F⌫SSA (t⇤)
Ḟ⌫SSA (t⇤)

/ R
⇤

mB�expc
=

t
ad

decay(t⇤)

mB

. (12)

Therefore, within the assumptions described above, and as
long as the adiabatic cooling timescale dominates over the syn-
chrotron one, we can estimate the final decay timescale as

tdecay(t⇤) / R0

mB�expc

⇣⌫0
SSA

⌫⇤SSA

⌘ 
. (13)

The balance between the relevant timescales is quite complex,
and in Figure 2 we show the trends for di↵erent configurations.
The left panels refer to the case of �exp = 0.1, and the right pan-
els to the case of �exp = 0.001. We select the boundaries � = 10
and � = 1000 to sample typical values of the Lorentz factor
corresponding to electrons radiating by synchrotron emission in
the radio band, for B ranging in [0.001, 1] G, and a broad range
of values of � and z. We notice that for �exp = 0.1, the adiabatic
and geometrical decay timescales dominate over the synchrotron
timescale, except for the initial state of a few configurations. On
the contrary, for the case of �exp = 0.001 the competition be-
tween radiative and adiabatic timescales is more complex. The
e↵ect of this complex interplay among the cooling timescales is
investigated in detail in Section 5. We also notice that, for the
parameter space investigated in the present analysis, the cross-
ing time is always shorter than the other timescales, making the
approximation of ignoring its e↵ect hereafter relatively plausi-
ble.

Finally, we can express these relations —which are valid in
the adiabatic-dominated cooling regime— in the observer frame:
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Fig. 1: Schematic representation of the model implemented in JetSeT to simulate the flaring stage and the adiabatic expansion.
At time tstart acc, particles are injected and accelerated in the acceleration region where they undergo both cooling and acceleration
processes and di↵use towards the radiative region , where only losses take place. The acceleration process ends at time tstop acc. After
a time texp, the expansion process takes place in the RR region.

expanding with a constant velocity. We can easily invert this re-
lation, and solve it in terms of R

⇤:

R
⇤ = R0

⇣⌫0
SSA

⌫⇤SSA

⌘ 
(8)

 =
p + 4

mB(p + 2) + 4
.

This equation allows us to determine the time needed, starting
from texp, to move the initial ⌫0

SSA to ⌫⇤SSA, which is also the time
needed to expand the source from an initial radius R0 to the ra-
dius R

⇤. The corresponding time to reach the peak of the syn-
chrotron light curve at the frequency ⌫⇤SSA in the blob rest frame
is

tpeak = �tR0!R⇤ =
R
⇤ � R0

�expc
=
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⌫⇤SSA
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. (9)

We stress that this equation holds as long as the synchrotron
cooling is not the dominant cooling timescale, and we discuss
this topic more in detail in Section 5. The total delay will be
given by the sum of texp and tpeak, that is,
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= texp + tpeak = texp +
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Finally, the adiabatic decay time will be proportional to the adi-
abatic cooling time at R

⇤:
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=
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Of course, this is the relevant timescale at the time t
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The balance between the relevant timescales is quite complex,
and in Figure 2 we show the trends for di↵erent configurations.
The left panels refer to the case of �exp = 0.1, and the right pan-
els to the case of �exp = 0.001. We select the boundaries � = 10
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the radio band, for B ranging in [0.001, 1] G, and a broad range
of values of � and z. We notice that for �exp = 0.1, the adiabatic
and geometrical decay timescales dominate over the synchrotron
timescale, except for the initial state of a few configurations. On
the contrary, for the case of �exp = 0.001 the competition be-
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investigated in detail in Section 5. We also notice that, for the
parameter space investigated in the present analysis, the cross-
ing time is always shorter than the other timescales, making the
approximation of ignoring its e↵ect hereafter relatively plausi-
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Finally, we can express these relations —which are valid in
the adiabatic-dominated cooling regime— in the observer frame:

�t
obs
⌫0,obs

SSA !⌫
⇤,obs
SSA

=
1 + z

�

h
texp +

R0

�expc

⇣⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
⌘i

(14)

t
obs
decay =

(1 + z)
�

R0

mB�expc

⇣⌫0
SSA

⌫⇤SSA

⌘ 

t
obs
peak =

(1 + z)
�

R0

�expc

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i
,

Article number, page 3 of 27

A&A proofs: manuscript no. radio_gamma

Fig. 3: Comparison of non-expanding (right panels) vs expanding (left panels) for �exp = 0.1. The top panels show the evolution of
the SEDs, after the flaring stage, where the blue color flags to the non/pre-expansion case, and the the orange one flags the expansion.
The second row of panels show the evolution of the flux density (F⌫). The three bottom panels show the merged lightcurves of both
the flaring and the long-term simulation, in the Fermi-LAT band, and at 5 and 40 GHz. The red dashed lines marks the lightcurve
segment belonging to the flaring stage.

in the expanding case we notice that when the expansion starts,
the patterns, in both the synchrotron and IC components are dif-
ferent. The IC component is mainly a↵ected by a significant drop
in the Compton dominance (CD). This can be better appreciated
in Figure 4, where we plot the CD versus the time of the simu-
lation. The CD is evaluated as the ratio of the peak flux of the
IC component, to the peak flux of the S component. The vertical
dashed line marks the beginning of the expansion (for the ex-
panding case, orange line). It is clear that when the adiabatic ex-
pansion begins, the IC starts to drop rapidly, as a consequence of
the larger volume and lower seed photons density (I might add

some comments regarding the e↵ects also during the flaring

stage). This is a very interesting feature, that might already be
visible during the flaring stage. The most integrating e↵ect, for
our analysis, is the evolution of the S component. On top of the
flux decay dictated by the adiabatic losses, and decreased mag-
netic field, we notice the shift the SSA frequency, oppositely to
the non-expand case. This e↵ect can be better appreciated in the
second row of panels in Figure 3, where we plot the evolution
of the flux density (F⌫). Whilst in the non expanding case the
SSA is almost stable at the initial value of ⇡ 1011 Hz, in the ex-
panding case the SSA is decreasing with time as predicted by
Equation 5. The actual trend will be investigated in details in the
next two sections. The three bottom panels of Figure 3, show the
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A. Tramacere et al.: Radio-�-ray response in blazars as a signature of adiabatic blob expansion

Fig. 1: Schematic representation of the model implemented in JetSeT to simulate the flaring stage and the adiabatic expansion.
At time tstart acc, particles are injected and accelerated in the acceleration region where they undergo both cooling and acceleration
processes and di↵use towards the radiative region , where only losses take place. The acceleration process ends at time tstop acc. After
a time texp, the expansion process takes place in the RR region.

expanding with a constant velocity. We can easily invert this re-
lation, and solve it in terms of R

⇤:
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This equation allows us to determine the time needed, starting
from texp, to move the initial ⌫0

SSA to ⌫⇤SSA, which is also the time
needed to expand the source from an initial radius R0 to the ra-
dius R

⇤. The corresponding time to reach the peak of the syn-
chrotron light curve at the frequency ⌫⇤SSA in the blob rest frame
is
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We stress that this equation holds as long as the synchrotron
cooling is not the dominant cooling timescale, and we discuss
this topic more in detail in Section 5. The total delay will be
given by the sum of texp and tpeak, that is,
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Finally, the adiabatic decay time will be proportional to the adi-
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Of course, this is the relevant timescale at the time t
⇤ such that

R(t⇤) = R
⇤, and will increase according to Equation 4. It is rel-

evant to note that the decaying time will also be a↵ected by
the purely geometric factor, depending on B(t) and R(t), that
is, the flux variation due to a change in B(t) and R(t), ignor-
ing the cooling terms. This can be easily derived from the ex-
pected synchrotron trend for an optical depth ⌧ >> 1, F⌫SSA (t) /
N(t)V(t)B(t)�0.5 (Ghisellini 2013) , and taking into account that,
for confined emitters, N(t)V(t) is constant: F⌫SSA (t) / B(t)�0.5,
where V(t) is the time-dependent value of the blob volume.

Hence, the time-dependent geometric decay time at t = t
⇤ will

read
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Therefore, within the assumptions described above, and as
long as the adiabatic cooling timescale dominates over the syn-
chrotron one, we can estimate the final decay timescale as
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The balance between the relevant timescales is quite complex,
and in Figure 2 we show the trends for di↵erent configurations.
The left panels refer to the case of �exp = 0.1, and the right pan-
els to the case of �exp = 0.001. We select the boundaries � = 10
and � = 1000 to sample typical values of the Lorentz factor
corresponding to electrons radiating by synchrotron emission in
the radio band, for B ranging in [0.001, 1] G, and a broad range
of values of � and z. We notice that for �exp = 0.1, the adiabatic
and geometrical decay timescales dominate over the synchrotron
timescale, except for the initial state of a few configurations. On
the contrary, for the case of �exp = 0.001 the competition be-
tween radiative and adiabatic timescales is more complex. The
e↵ect of this complex interplay among the cooling timescales is
investigated in detail in Section 5. We also notice that, for the
parameter space investigated in the present analysis, the cross-
ing time is always shorter than the other timescales, making the
approximation of ignoring its e↵ect hereafter relatively plausi-
ble.

Finally, we can express these relations —which are valid in
the adiabatic-dominated cooling regime— in the observer frame:
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Fig. 1: Schematic representation of the model implemented in JetSeT to simulate the flaring stage and the adiabatic expansion.
At time tstart acc, particles are injected and accelerated in the acceleration region where they undergo both cooling and acceleration
processes and di↵use towards the radiative region , where only losses take place. The acceleration process ends at time tstop acc. After
a time texp, the expansion process takes place in the RR region.
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This equation allows us to determine the time needed, starting
from texp, to move the initial ⌫0

SSA to ⌫⇤SSA, which is also the time
needed to expand the source from an initial radius R0 to the ra-
dius R
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chrotron light curve at the frequency ⌫⇤SSA in the blob rest frame
is

tpeak = �tR0!R⇤ =
R
⇤ � R0

�expc
=

R0

�expc

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i
. (9)

We stress that this equation holds as long as the synchrotron
cooling is not the dominant cooling timescale, and we discuss
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Of course, this is the relevant timescale at the time t
⇤ such that

R(t⇤) = R
⇤, and will increase according to Equation 4. It is rel-

evant to note that the decaying time will also be a↵ected by
the purely geometric factor, depending on B(t) and R(t), that
is, the flux variation due to a change in B(t) and R(t), ignor-
ing the cooling terms. This can be easily derived from the ex-
pected synchrotron trend for an optical depth ⌧ >> 1, F⌫SSA (t) /
N(t)V(t)B(t)�0.5 (Ghisellini 2013) , and taking into account that,
for confined emitters, N(t)V(t) is constant: F⌫SSA (t) / B(t)�0.5,
where V(t) is the time-dependent value of the blob volume.

Hence, the time-dependent geometric decay time at t = t
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Therefore, within the assumptions described above, and as
long as the adiabatic cooling timescale dominates over the syn-
chrotron one, we can estimate the final decay timescale as
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The balance between the relevant timescales is quite complex,
and in Figure 2 we show the trends for di↵erent configurations.
The left panels refer to the case of �exp = 0.1, and the right pan-
els to the case of �exp = 0.001. We select the boundaries � = 10
and � = 1000 to sample typical values of the Lorentz factor
corresponding to electrons radiating by synchrotron emission in
the radio band, for B ranging in [0.001, 1] G, and a broad range
of values of � and z. We notice that for �exp = 0.1, the adiabatic
and geometrical decay timescales dominate over the synchrotron
timescale, except for the initial state of a few configurations. On
the contrary, for the case of �exp = 0.001 the competition be-
tween radiative and adiabatic timescales is more complex. The
e↵ect of this complex interplay among the cooling timescales is
investigated in detail in Section 5. We also notice that, for the
parameter space investigated in the present analysis, the cross-
ing time is always shorter than the other timescales, making the
approximation of ignoring its e↵ect hereafter relatively plausi-
ble.

Finally, we can express these relations —which are valid in
the adiabatic-dominated cooling regime— in the observer frame:
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blob expanding with a constant velocity. We can easily invert
this relation, and solve in terms of R
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This equation allows to determine the time needed, starting from
texp, to move the initial ⌫0
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, that is actually time needed

to expand the source from an initial radius R0 to the radius R
⇤,

that is the rising time. In the blob rest frame will read:
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The total delay will be given by the sum of texp and trise, i.e:
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Finally, the adiabatic decay time,will be proportional to the adi-
abatic cooling time at R
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It is relevant to notice that the decaying time will be a↵ected also
by the purely geometric factor, depending on B(t) and R(t). This
can be easily derived starting from the $delta-approximation for
the emitted synchrotron flux, and taking into account that, for
confined emitter, N0V(t) is constant:
⌫F⌫(t) / N0V(t)B(t)2 / B(t)2. (12)
Hence, the geometric decay time will scale as :
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Since it is di�cult to discriminate among all these e↵ects, in
particular with observed data (where the incertitude on the value
of R0 and � introduces a further level of complication), we will
use a in place of  a more generic term � that is not explicitly
related to mB and p:
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We can express these relations in the observer frame:
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where ⌫obs=⌫ �
z+1 . If the light crossing times (R/c) are larger then

cooling times, we can substitute the observed timescale variabil-
ity t

obs
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= (1+z)R0

�c in the equations above:
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where t
obs

exp
= texp(1 + z)/�.

3. Self-consistent temporal evolution of an
expanding blob

To follow the evolution of the emitting particle distribution, and
the radiative fields, we use the JetTimeEvol class from the
jet_timedep module of JetSeT. This class allows to evolve
the particle distribution under the e↵ects of both cooling and ac-
celeration (both systematic and stochastic) process, and to ex-
tract SED, light curves at any given time. The code proceeds
through the numerical solution of a kinetic equation, following
the same approach as in Tramacere et al. (2011) based on the
employment of the quasi-linear approximation with the inclu-
sion of momentum di↵usion term (Ramaty 1979; Becker et al.
2006). The equation governing the temporal evolution of n(�) is
the Fokker-Planck (FP) equation that reads:

@n(�, t)
@t

=
@

@�

n
� [S (�, t) + DA(�, t)]n(�, t)

o
(17)

+
@

@�

n
Dp(�, t)

@n(�, t)
@�

o
� n(�, t)

Tesc(�)
� n(�, t)

Tad

+ Q(�, t).

The momentum di↵usion coe�cient Dp(�, t) and the average en-
ergy change term resulting from the momentum-di↵usion pro-
cess DA(�, t) = (2/�)Dp(�, t), represent the contribution from
a stochastic momentum-di↵usion acceleration mechanism The
systematic term S (�, t) = �C(�, t) + A(�, t) describes system-
atic energy loss (C) and/or gain (A), and Q(�, t) is the injection
term. n(�,t)

Tad

corresponds to the decrease in particle density due
to the expansion process, with Tad =

1
3

R(t)
�expc

(Gould 1975), and
n(�,t)

Tesc(�) represents the particle escape term. The injection function
Q(�in j, t) is normalised according to:

Lin j = Vacc

Z
�mec

2
Q(�, t)d� (erg/s), (18)

where Vacc is the volume of the acceleration region. The numer-
ical solution of the FP equation is obtained using the same ap-
proach of Tramacere et al. (2011), that is based on method pro-
posed by Chang & Cooper (1970) as described in Park & Pet-
rosian (1996).

3.1. setup of the simulation

We first generate a flaring event where both cooling and acceler-
ation processes act, in order to reproduce the typical SEDs and
lightcurves observed in HBLs. Then we follow the long-term
evolution under the e↵ects of radiative cooling and adiabatic ex-
pansion, setting a duration of the simulation long enough to fol-
low the particle evolution due to the expansion process. Both
for the flaring and log-term simulation, the time grid for the
solution of the FP equation is tuned to have a temporal mesh
at least two order of magnitude smaller then the shortest cool-
ing/acclearation time scale. We use an energy grid with 1500
points and 1  �  108. Since the total number of time steps
used in the FP numerical solution (Tsize) can be very large, a sub
sample of the time steps of the simulation (NUMS ET ) are stored
in arrays, and can be used to build both lightcurves and SEDs. In
the current simulation we have used NUMS ET = 200 for the flar-
ing stage, NUMS ET = 1000 for the long-term evolution, which
guarantee an adequate time sampling for lightcurves and spectral
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Fig. 1: Schematic representation of the model implemented in JetSeT to simulate the flaring stage and the adiabatic expansion.
At time tstart acc, particles are injected and accelerated in the acceleration region where they undergo both cooling and acceleration
processes and di↵use towards the radiative region , where only losses take place. The acceleration process ends at time tstop acc. After
a time texp, the expansion process takes place in the RR region.

expanding with a constant velocity. We can easily invert this re-
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This equation allows us to determine the time needed, starting
from texp, to move the initial ⌫0

SSA to ⌫⇤SSA, which is also the time
needed to expand the source from an initial radius R0 to the ra-
dius R

⇤. The corresponding time to reach the peak of the syn-
chrotron light curve at the frequency ⌫⇤SSA in the blob rest frame
is
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ing the cooling terms. This can be easily derived from the ex-
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N(t)V(t)B(t)�0.5 (Ghisellini 2013) , and taking into account that,
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The left panels refer to the case of �exp = 0.1, and the right pan-
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and geometrical decay timescales dominate over the synchrotron
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investigated in detail in Section 5. We also notice that, for the
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approximation of ignoring its e↵ect hereafter relatively plausi-
ble.
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Fig. 3: Comparison of non-expanding (right panels) vs expanding (left panels) for �exp = 0.1. The top panels show the evolution of
the SEDs, after the flaring stage, where the blue color flags to the non/pre-expansion case, and the the orange one flags the expansion.
The second row of panels show the evolution of the flux density (F⌫). The three bottom panels show the merged lightcurves of both
the flaring and the long-term simulation, in the Fermi-LAT band, and at 5 and 40 GHz. The red dashed lines marks the lightcurve
segment belonging to the flaring stage.

in the expanding case we notice that when the expansion starts,
the patterns, in both the synchrotron and IC components are dif-
ferent. The IC component is mainly a↵ected by a significant drop
in the Compton dominance (CD). This can be better appreciated
in Figure 4, where we plot the CD versus the time of the simu-
lation. The CD is evaluated as the ratio of the peak flux of the
IC component, to the peak flux of the S component. The vertical
dashed line marks the beginning of the expansion (for the ex-
panding case, orange line). It is clear that when the adiabatic ex-
pansion begins, the IC starts to drop rapidly, as a consequence of
the larger volume and lower seed photons density (I might add

some comments regarding the e↵ects also during the flaring

stage). This is a very interesting feature, that might already be
visible during the flaring stage. The most integrating e↵ect, for
our analysis, is the evolution of the S component. On top of the
flux decay dictated by the adiabatic losses, and decreased mag-
netic field, we notice the shift the SSA frequency, oppositely to
the non-expand case. This e↵ect can be better appreciated in the
second row of panels in Figure 3, where we plot the evolution
of the flux density (F⌫). Whilst in the non expanding case the
SSA is almost stable at the initial value of ⇡ 1011 Hz, in the ex-
panding case the SSA is decreasing with time as predicted by
Equation 5. The actual trend will be investigated in details in the
next two sections. The three bottom panels of Figure 3, show the
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A. Tramacere et al.: Radio-�-ray response in blazars as a signature of adiabatic blob expansion

Fig. 1: Schematic representation of the model implemented in JetSeT to simulate the flaring stage and the adiabatic expansion.
At time tstart acc, particles are injected and accelerated in the acceleration region where they undergo both cooling and acceleration
processes and di↵use towards the radiative region , where only losses take place. The acceleration process ends at time tstop acc. After
a time texp, the expansion process takes place in the RR region.
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This equation allows us to determine the time needed, starting
from texp, to move the initial ⌫0

SSA to ⌫⇤SSA, which is also the time
needed to expand the source from an initial radius R0 to the ra-
dius R

⇤. The corresponding time to reach the peak of the syn-
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We stress that this equation holds as long as the synchrotron
cooling is not the dominant cooling timescale, and we discuss
this topic more in detail in Section 5. The total delay will be
given by the sum of texp and tpeak, that is,
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Of course, this is the relevant timescale at the time t
⇤ such that

R(t⇤) = R
⇤, and will increase according to Equation 4. It is rel-

evant to note that the decaying time will also be a↵ected by
the purely geometric factor, depending on B(t) and R(t), that
is, the flux variation due to a change in B(t) and R(t), ignor-
ing the cooling terms. This can be easily derived from the ex-
pected synchrotron trend for an optical depth ⌧ >> 1, F⌫SSA (t) /
N(t)V(t)B(t)�0.5 (Ghisellini 2013) , and taking into account that,
for confined emitters, N(t)V(t) is constant: F⌫SSA (t) / B(t)�0.5,
where V(t) is the time-dependent value of the blob volume.
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Therefore, within the assumptions described above, and as
long as the adiabatic cooling timescale dominates over the syn-
chrotron one, we can estimate the final decay timescale as
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The balance between the relevant timescales is quite complex,
and in Figure 2 we show the trends for di↵erent configurations.
The left panels refer to the case of �exp = 0.1, and the right pan-
els to the case of �exp = 0.001. We select the boundaries � = 10
and � = 1000 to sample typical values of the Lorentz factor
corresponding to electrons radiating by synchrotron emission in
the radio band, for B ranging in [0.001, 1] G, and a broad range
of values of � and z. We notice that for �exp = 0.1, the adiabatic
and geometrical decay timescales dominate over the synchrotron
timescale, except for the initial state of a few configurations. On
the contrary, for the case of �exp = 0.001 the competition be-
tween radiative and adiabatic timescales is more complex. The
e↵ect of this complex interplay among the cooling timescales is
investigated in detail in Section 5. We also notice that, for the
parameter space investigated in the present analysis, the cross-
ing time is always shorter than the other timescales, making the
approximation of ignoring its e↵ect hereafter relatively plausi-
ble.

Finally, we can express these relations —which are valid in
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Fig. 1: Schematic representation of the model implemented in JetSeT to simulate the flaring stage and the adiabatic expansion.
At time tstart acc, particles are injected and accelerated in the acceleration region where they undergo both cooling and acceleration
processes and di↵use towards the radiative region , where only losses take place. The acceleration process ends at time tstop acc. After
a time texp, the expansion process takes place in the RR region.
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This equation allows us to determine the time needed, starting
from texp, to move the initial ⌫0

SSA to ⌫⇤SSA, which is also the time
needed to expand the source from an initial radius R0 to the ra-
dius R

⇤. The corresponding time to reach the peak of the syn-
chrotron light curve at the frequency ⌫⇤SSA in the blob rest frame
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We stress that this equation holds as long as the synchrotron
cooling is not the dominant cooling timescale, and we discuss
this topic more in detail in Section 5. The total delay will be
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Of course, this is the relevant timescale at the time t
⇤ such that

R(t⇤) = R
⇤, and will increase according to Equation 4. It is rel-

evant to note that the decaying time will also be a↵ected by
the purely geometric factor, depending on B(t) and R(t), that
is, the flux variation due to a change in B(t) and R(t), ignor-
ing the cooling terms. This can be easily derived from the ex-
pected synchrotron trend for an optical depth ⌧ >> 1, F⌫SSA (t) /
N(t)V(t)B(t)�0.5 (Ghisellini 2013) , and taking into account that,
for confined emitters, N(t)V(t) is constant: F⌫SSA (t) / B(t)�0.5,
where V(t) is the time-dependent value of the blob volume.
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chrotron one, we can estimate the final decay timescale as
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The balance between the relevant timescales is quite complex,
and in Figure 2 we show the trends for di↵erent configurations.
The left panels refer to the case of �exp = 0.1, and the right pan-
els to the case of �exp = 0.001. We select the boundaries � = 10
and � = 1000 to sample typical values of the Lorentz factor
corresponding to electrons radiating by synchrotron emission in
the radio band, for B ranging in [0.001, 1] G, and a broad range
of values of � and z. We notice that for �exp = 0.1, the adiabatic
and geometrical decay timescales dominate over the synchrotron
timescale, except for the initial state of a few configurations. On
the contrary, for the case of �exp = 0.001 the competition be-
tween radiative and adiabatic timescales is more complex. The
e↵ect of this complex interplay among the cooling timescales is
investigated in detail in Section 5. We also notice that, for the
parameter space investigated in the present analysis, the cross-
ing time is always shorter than the other timescales, making the
approximation of ignoring its e↵ect hereafter relatively plausi-
ble.

Finally, we can express these relations —which are valid in
the adiabatic-dominated cooling regime— in the observer frame:
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Fig. 1: Schematic representation of the model implemented in JetSeT to simulate the flaring stage and the adiabatic expansion.
At time tstart acc, particles are injected and accelerated in the acceleration region where they undergo both cooling and acceleration
processes and di↵use towards the radiative region , where only losses take place. The acceleration process ends at time tstop acc. After
a time texp, the expansion process takes place in the RR region.

expanding with a constant velocity. We can easily invert this re-
lation, and solve it in terms of R
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This equation allows us to determine the time needed, starting
from texp, to move the initial ⌫0

SSA to ⌫⇤SSA, which is also the time
needed to expand the source from an initial radius R0 to the ra-
dius R

⇤. The corresponding time to reach the peak of the syn-
chrotron light curve at the frequency ⌫⇤SSA in the blob rest frame
is
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We stress that this equation holds as long as the synchrotron
cooling is not the dominant cooling timescale, and we discuss
this topic more in detail in Section 5. The total delay will be
given by the sum of texp and tpeak, that is,
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Of course, this is the relevant timescale at the time t
⇤ such that
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⇤, and will increase according to Equation 4. It is rel-

evant to note that the decaying time will also be a↵ected by
the purely geometric factor, depending on B(t) and R(t), that
is, the flux variation due to a change in B(t) and R(t), ignor-
ing the cooling terms. This can be easily derived from the ex-
pected synchrotron trend for an optical depth ⌧ >> 1, F⌫SSA (t) /
N(t)V(t)B(t)�0.5 (Ghisellini 2013) , and taking into account that,
for confined emitters, N(t)V(t) is constant: F⌫SSA (t) / B(t)�0.5,
where V(t) is the time-dependent value of the blob volume.
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The balance between the relevant timescales is quite complex,
and in Figure 2 we show the trends for di↵erent configurations.
The left panels refer to the case of �exp = 0.1, and the right pan-
els to the case of �exp = 0.001. We select the boundaries � = 10
and � = 1000 to sample typical values of the Lorentz factor
corresponding to electrons radiating by synchrotron emission in
the radio band, for B ranging in [0.001, 1] G, and a broad range
of values of � and z. We notice that for �exp = 0.1, the adiabatic
and geometrical decay timescales dominate over the synchrotron
timescale, except for the initial state of a few configurations. On
the contrary, for the case of �exp = 0.001 the competition be-
tween radiative and adiabatic timescales is more complex. The
e↵ect of this complex interplay among the cooling timescales is
investigated in detail in Section 5. We also notice that, for the
parameter space investigated in the present analysis, the cross-
ing time is always shorter than the other timescales, making the
approximation of ignoring its e↵ect hereafter relatively plausi-
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Fig. 1: Schematic representation of the model implemented in JetSeT to simulate the flaring stage and the adiabatic expansion.
At time tstart acc, particles are injected and accelerated in the acceleration region where they undergo both cooling and acceleration
processes and di↵use towards the radiative region , where only losses take place. The acceleration process ends at time tstop acc. After
a time texp, the expansion process takes place in the RR region.
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This equation allows us to determine the time needed, starting
from texp, to move the initial ⌫0

SSA to ⌫⇤SSA, which is also the time
needed to expand the source from an initial radius R0 to the ra-
dius R

⇤. The corresponding time to reach the peak of the syn-
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We stress that this equation holds as long as the synchrotron
cooling is not the dominant cooling timescale, and we discuss
this topic more in detail in Section 5. The total delay will be
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Of course, this is the relevant timescale at the time t
⇤ such that

R(t⇤) = R
⇤, and will increase according to Equation 4. It is rel-

evant to note that the decaying time will also be a↵ected by
the purely geometric factor, depending on B(t) and R(t), that
is, the flux variation due to a change in B(t) and R(t), ignor-
ing the cooling terms. This can be easily derived from the ex-
pected synchrotron trend for an optical depth ⌧ >> 1, F⌫SSA (t) /
N(t)V(t)B(t)�0.5 (Ghisellini 2013) , and taking into account that,
for confined emitters, N(t)V(t) is constant: F⌫SSA (t) / B(t)�0.5,
where V(t) is the time-dependent value of the blob volume.

Hence, the time-dependent geometric decay time at t = t
⇤ will

read

t
geom

decay(t⇤) / F⌫SSA (t⇤)
Ḟ⌫SSA (t⇤)

/ R
⇤

mB�expc
=

t
ad

decay(t⇤)

mB

. (12)

Therefore, within the assumptions described above, and as
long as the adiabatic cooling timescale dominates over the syn-
chrotron one, we can estimate the final decay timescale as

tdecay(t⇤) / R0

mB�expc

⇣⌫0
SSA

⌫⇤SSA

⌘ 
. (13)

The balance between the relevant timescales is quite complex,
and in Figure 2 we show the trends for di↵erent configurations.
The left panels refer to the case of �exp = 0.1, and the right pan-
els to the case of �exp = 0.001. We select the boundaries � = 10
and � = 1000 to sample typical values of the Lorentz factor
corresponding to electrons radiating by synchrotron emission in
the radio band, for B ranging in [0.001, 1] G, and a broad range
of values of � and z. We notice that for �exp = 0.1, the adiabatic
and geometrical decay timescales dominate over the synchrotron
timescale, except for the initial state of a few configurations. On
the contrary, for the case of �exp = 0.001 the competition be-
tween radiative and adiabatic timescales is more complex. The
e↵ect of this complex interplay among the cooling timescales is
investigated in detail in Section 5. We also notice that, for the
parameter space investigated in the present analysis, the cross-
ing time is always shorter than the other timescales, making the
approximation of ignoring its e↵ect hereafter relatively plausi-
ble.

Finally, we can express these relations —which are valid in
the adiabatic-dominated cooling regime— in the observer frame:

�t
obs
⌫0,obs

SSA !⌫
⇤,obs
SSA

=
1 + z

�

h
texp +

R0

�expc

⇣⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
⌘i

(14)

t
obs
decay =

(1 + z)
�

R0

mB�expc

⇣⌫0
SSA

⌫⇤SSA

⌘ 

t
obs
peak =

(1 + z)
�

R0

�expc

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i
,
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blob expanding with a constant velocity. We can easily invert
this relation, and solve in terms of R

⇤:

R
⇤ = R0

⇣⌫0
S S A

⌫⇤
S S A

⌘ 
(8)

 =
p + 4

mB(p + 2) � 2
This equation allows to determine the time needed, starting from
texp, to move the initial ⌫0

S S A
to ⌫⇤

S S A
, that is actually time needed

to expand the source from an initial radius R0 to the radius R
⇤,

that is the rising time. In the blob rest frame will read:

trise = �tR0!R⇤ =
R
⇤ � R0

�expc
=

R0

�expc

h⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
i

(9)

The total delay will be given by the sum of texp and trise, i.e:

�t⌫0
S S A
!⌫⇤

S S A

= texp + trise = texp +
R0

�expc

h⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
i

(10)

Finally, the adiabatic decay time,will be proportional to the adi-
abatic cooling time at R

⇤:

t
ad

decay
/ R

⇤

�expc
=

R0

�expc

⇣⌫0
S S A

⌫⇤
S S A

⌘ 
(11)

It is relevant to notice that the decaying time will be a↵ected also
by the purely geometric factor, depending on B(t) and R(t). This
can be easily derived starting from the $delta-approximation for
the emitted synchrotron flux, and taking into account that, for
confined emitter, N0V(t) is constant:
⌫F⌫(t) / N0V(t)B(t)2 / B(t)2. (12)
Hence, the geometric decay time will scale as :

t
geom

decay
/
⇣⌫0

S S A

⌫⇤
S S A

⌘2(mB� )
(13)

Since it is di�cult to discriminate among all these e↵ects, in
particular with observed data (where the incertitude on the value
of R0 and � introduces a further level of complication), we will
use a in place of  a more generic term � that is not explicitly
related to mB and p:

tdecay / R0

�expc

⇣⌫0
S S A

⌫⇤
S S A

⌘�
(14)

We can express these relations in the observer frame:

�t
obs

⌫0
S S A
!⌫⇤

S S A

=
1 + z

�

h
t
blob

exp
+

R0

�expc

⇣⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
⌘i

(15)

t
obs

decayd
=

(1 + z)
�

R0

�expc

⇣⌫0
S S A

⌫⇤
S S A

⌘�

t
obs

rise
=

(1 + z)
�

R0

�expc

h⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
i

where ⌫obs=⌫ �
z+1 . If the light crossing times (R/c) are larger then

cooling times, we can substitute the observed timescale variabil-
ity t

obs

var
= (1+z)R0

�c in the equations above:

�t
obs

⌫0,obs

S S A
!⌫⇤,obs

S S A

= t
obs

exp
+

t
obs

var

�exp

h⇣⌫0
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⌫⇤
S S A

⌘ � 1
i

(16)

t
obs

decay
=

t
obs

var

�exp

⇣⌫0
S S A

⌫⇤
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⌘�

t
obs

rise
=

t
obs

var

�exp

h⇣⌫0
S S A

⌫⇤
S S A

⌘ � 1
i

where t
obs

exp
= texp(1 + z)/�.

3. Self-consistent temporal evolution of an
expanding blob

To follow the evolution of the emitting particle distribution, and
the radiative fields, we use the JetTimeEvol class from the
jet_timedep module of JetSeT. This class allows to evolve
the particle distribution under the e↵ects of both cooling and ac-
celeration (both systematic and stochastic) process, and to ex-
tract SED, light curves at any given time. The code proceeds
through the numerical solution of a kinetic equation, following
the same approach as in Tramacere et al. (2011) based on the
employment of the quasi-linear approximation with the inclu-
sion of momentum di↵usion term (Ramaty 1979; Becker et al.
2006). The equation governing the temporal evolution of n(�) is
the Fokker-Planck (FP) equation that reads:

@n(�, t)
@t

=
@

@�

n
� [S (�, t) + DA(�, t)]n(�, t)

o
(17)

+
@

@�

n
Dp(�, t)

@n(�, t)
@�

o
� n(�, t)

Tesc(�)
� n(�, t)

Tad

+ Q(�, t).

The momentum di↵usion coe�cient Dp(�, t) and the average en-
ergy change term resulting from the momentum-di↵usion pro-
cess DA(�, t) = (2/�)Dp(�, t), represent the contribution from
a stochastic momentum-di↵usion acceleration mechanism The
systematic term S (�, t) = �C(�, t) + A(�, t) describes system-
atic energy loss (C) and/or gain (A), and Q(�, t) is the injection
term. n(�,t)

Tad

corresponds to the decrease in particle density due
to the expansion process, with Tad =

1
3

R(t)
�expc

(Gould 1975), and
n(�,t)

Tesc(�) represents the particle escape term. The injection function
Q(�in j, t) is normalised according to:

Lin j = Vacc

Z
�mec

2
Q(�, t)d� (erg/s), (18)

where Vacc is the volume of the acceleration region. The numer-
ical solution of the FP equation is obtained using the same ap-
proach of Tramacere et al. (2011), that is based on method pro-
posed by Chang & Cooper (1970) as described in Park & Pet-
rosian (1996).

3.1. setup of the simulation

We first generate a flaring event where both cooling and acceler-
ation processes act, in order to reproduce the typical SEDs and
lightcurves observed in HBLs. Then we follow the long-term
evolution under the e↵ects of radiative cooling and adiabatic ex-
pansion, setting a duration of the simulation long enough to fol-
low the particle evolution due to the expansion process. Both
for the flaring and log-term simulation, the time grid for the
solution of the FP equation is tuned to have a temporal mesh
at least two order of magnitude smaller then the shortest cool-
ing/acclearation time scale. We use an energy grid with 1500
points and 1  �  108. Since the total number of time steps
used in the FP numerical solution (Tsize) can be very large, a sub
sample of the time steps of the simulation (NUMS ET ) are stored
in arrays, and can be used to build both lightcurves and SEDs. In
the current simulation we have used NUMS ET = 200 for the flar-
ing stage, NUMS ET = 1000 for the long-term evolution, which
guarantee an adequate time sampling for lightcurves and spectral
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Fig. 3: Comparison of non-expanding (right panels) vs expanding (left panels) for �exp = 0.1. The top panels show the evolution of
the SEDs, after the flaring stage, where the blue color flags to the non/pre-expansion case, and the the orange one flags the expansion.
The second row of panels show the evolution of the flux density (F⌫). The three bottom panels show the merged lightcurves of both
the flaring and the long-term simulation, in the Fermi-LAT band, and at 5 and 40 GHz. The red dashed lines marks the lightcurve
segment belonging to the flaring stage.

in the expanding case we notice that when the expansion starts,
the patterns, in both the synchrotron and IC components are dif-
ferent. The IC component is mainly a↵ected by a significant drop
in the Compton dominance (CD). This can be better appreciated
in Figure 4, where we plot the CD versus the time of the simu-
lation. The CD is evaluated as the ratio of the peak flux of the
IC component, to the peak flux of the S component. The vertical
dashed line marks the beginning of the expansion (for the ex-
panding case, orange line). It is clear that when the adiabatic ex-
pansion begins, the IC starts to drop rapidly, as a consequence of
the larger volume and lower seed photons density (I might add

some comments regarding the e↵ects also during the flaring

stage). This is a very interesting feature, that might already be
visible during the flaring stage. The most integrating e↵ect, for
our analysis, is the evolution of the S component. On top of the
flux decay dictated by the adiabatic losses, and decreased mag-
netic field, we notice the shift the SSA frequency, oppositely to
the non-expand case. This e↵ect can be better appreciated in the
second row of panels in Figure 3, where we plot the evolution
of the flux density (F⌫). Whilst in the non expanding case the
SSA is almost stable at the initial value of ⇡ 1011 Hz, in the ex-
panding case the SSA is decreasing with time as predicted by
Equation 5. The actual trend will be investigated in details in the
next two sections. The three bottom panels of Figure 3, show the
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the SEDs, after the flaring stage, where the blue color flags to the non/pre-expansion case, and the the orange one flags the expansion.
The second row of panels show the evolution of the flux density (F⌫). The three bottom panels show the merged lightcurves of both
the flaring and the long-term simulation, in the Fermi-LAT band, and at 5 and 40 GHz. The red dashed lines marks the lightcurve
segment belonging to the flaring stage.
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IC component, to the peak flux of the S component. The vertical
dashed line marks the beginning of the expansion (for the ex-
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our analysis, is the evolution of the S component. On top of the
flux decay dictated by the adiabatic losses, and decreased mag-
netic field, we notice the shift the SSA frequency, oppositely to
the non-expand case. This e↵ect can be better appreciated in the
second row of panels in Figure 3, where we plot the evolution
of the flux density (F⌫). Whilst in the non expanding case the
SSA is almost stable at the initial value of ⇡ 1011 Hz, in the ex-
panding case the SSA is decreasing with time as predicted by
Equation 5. The actual trend will be investigated in details in the
next two sections. The three bottom panels of Figure 3, show the
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where ⌫obs=⌫ �
z+1 , and the � is a beaming factor:

� =
1

�(1 � �� cos(✓))
, (15)

where � is the bulk Lorentz factor of the blob moving with veloc-
ity ��c, and ✓ is the observing angle of the jet. We can substitute
the observed timescale variability t

obs
var
= (1+z)R0

�c in the equations
above:

�t
obs
⌫0,obs

SSA !⌫
⇤,obs
SSA

= t
obs
exp +

t
obs
var

�exp

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i

(16)

t
obs
peak =

t
obs
var

�exp

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i

t
obs
decay =

t
obs
var

mB�exp

⇣⌫0
SSA

⌫⇤SSA

⌘ 
,

where t
obs
exp = texp(1 + z)/�. The distance travelled along the jet

during the time interval �t
obs
⌫0,obs

SSA
will be

�r = ��t⌫0
SSA!⌫⇤SSA

��c =
����c�t

obs
⌫0,obs

SSA

1 + z
, (17)

which is in agreement with the phenomenological derivations
by Pushkarev et al. (2010) and Max-Moerbeck et al. (2014), if
⌫0,obs

SSA corresponds to the initial observed SSA frequency at the
time of the flaring episode, and ⌫⇤,obs

SSA corresponds to the observed
frequency of the delayed radio flare.

3. Self-consistent temporal evolution of an
expanding blob with the JetSeT code.

To follow the evolution of the emitting particle distribution, and
the radiative fields, we use the JetTimeEvol class from the
jet_timedep module of the open-source JetSeT1 framework
(Tramacere 2020; Tramacere et al. 2011; Tramacere et al. 2009).
This class allows the user to evolve the particle distribution under
the e↵ects of radiative cooling, adiabatic expansion, and accel-
eration processes (both systematic and stochastic), and to extract
SEDs and light curves at any given time (see Appendix A for fur-
ther details on code availability and reproducibility). The code
proceeds through the numerical solution of a kinetic equation,
following the same approach as in Tramacere et al. (2011) based
on the employment of the quasi-linear approximation with the
inclusion of a momentum di↵usion term (Ramaty 1979; Becker
et al. 2006). The equation governing the temporal evolution of
the particle energy distribution n(�) = dN(�)/d� is the Fokker-
Planck (FP) equation that reads

@n(�, t)
@t

=
@

@�

n
� [S (�, t) + DA(�, t)]n(�, t)

o
(18)

+
@

@�

n
Dp(�, t)

@n(�, t)
@�

o
� n(�, t)

Tesc(�)
� n(�, t)

Tad(t)
+ Q(�, t).

The momentum di↵usion coe�cient Dp(�, t) / (�q) (Becker
et al. 2006) and the average energy change term resulting
from the momentum-di↵usion process DA(�, t) = (2/�)Dp(�, t)
(Becker et al. 2006) represent the contribution from a stochastic
momentum-di↵usion acceleration mechanism (Kardashev 1962;
1 https://github.com/andreatramacere/jetset

Melrose 1969; Katarzyński et al. 2006; Stawarz & Petrosian
2008). The systematic term S (�, t) = �C(�, t)+ A(�, t) describes
systematic energy loss (C) and/or gain (A), and Q(�, t) is the in-
jection term. A detailed description of the cooling terms and the
di↵usion coe�cient is provided in Appendix B. The term n(�,t)

Tad

corresponds to the decrease in particle density due to the expan-
sion process, with Tad(t) = 1

3
R(t)
�expc

(Gould 1975). This term is
connected to source geometry and should not be confused with
the cooling term defined in Equation 4 and plugged in the C(�, t)
term (see Appendix B). The term n(�,t)

Tesc(�) represents the particle
escape term. The injection function Q(�in j, t) is normalised ac-
cording to

Lin j = Vacc

Z
�mec

2
Q(�, t)d� (erg/s), (19)

where Vacc is the volume of the acceleration region, and the inte-
gration is performed over the numerical grid used to solve Equa-
tion 18 (see the following section for further details). The numer-
ical solution of the FP equation is obtained using the same ap-
proach as Tramacere et al. (2011), which is based on the method
proposed by Chang & Cooper (1970) as described in Park &
Petrosian (1996).

Table 1: Parameters for the flaring simulation

rad. region acc. region
R (cm) 5 ⇥ 1015 5 ⇥ 1015

�acc

R
(cm) - 5 ⇥ 1014

RH0 (cm) - 1017

B (G) 0.2 0.2
� 30 30
z 0.03 0.03
Lin j (erg/s) 5 ⇥ 1039 -
q - 2
tA (s) - 2.5 ⇥ 104

tD0 = 1/DP0 (s) - 1.5 ⇥ 105

Tesc (s) 1 5 ⇥ 104

Duration (s) 106 106

Duration acc. (s) - 105

Duration inj. (s) - 105

Tsize 2 ⇥ 104 2 ⇥ 104

NUMS ET 200 200
�in j - 10.0

Table 2: Parameters for the long-term simulation with expansion

expanding rad. region
R0 (cm) 5 ⇥ 1015

B0 (G) 0.2
� 30
mB 1
�exp (c) [0.001 � 0.3]
texp (s) 1 ⇥ 107

Tesc (s) 1
Duration (s) [1.6 ⇥ 107 � 1.9 ⇥ 109]
Tsize [1.6 ⇥ 104 � 1.8 ⇥ 106]
NUMS ET [1000, 5000]
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where ⌫obs=⌫ �
z+1 , and the � is a beaming factor:

� =
1

�(1 � �� cos(✓))
, (15)

where � is the bulk Lorentz factor of the blob moving with veloc-
ity ��c, and ✓ is the observing angle of the jet. We can substitute
the observed timescale variability t

obs
var
= (1+z)R0

�c in the equations
above:
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where t
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exp = texp(1 + z)/�. The distance travelled along the jet

during the time interval �t
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SSA
will be

�r = ��t⌫0
SSA!⌫⇤SSA
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SSA

1 + z
, (17)

which is in agreement with the phenomenological derivations
by Pushkarev et al. (2010) and Max-Moerbeck et al. (2014), if
⌫0,obs

SSA corresponds to the initial observed SSA frequency at the
time of the flaring episode, and ⌫⇤,obs

SSA corresponds to the observed
frequency of the delayed radio flare.

3. Self-consistent temporal evolution of an
expanding blob with the JetSeT code.

To follow the evolution of the emitting particle distribution, and
the radiative fields, we use the JetTimeEvol class from the
jet_timedep module of the open-source JetSeT1 framework
(Tramacere 2020; Tramacere et al. 2011; Tramacere et al. 2009).
This class allows the user to evolve the particle distribution under
the e↵ects of radiative cooling, adiabatic expansion, and accel-
eration processes (both systematic and stochastic), and to extract
SEDs and light curves at any given time (see Appendix A for fur-
ther details on code availability and reproducibility). The code
proceeds through the numerical solution of a kinetic equation,
following the same approach as in Tramacere et al. (2011) based
on the employment of the quasi-linear approximation with the
inclusion of a momentum di↵usion term (Ramaty 1979; Becker
et al. 2006). The equation governing the temporal evolution of
the particle energy distribution n(�) = dN(�)/d� is the Fokker-
Planck (FP) equation that reads

@n(�, t)
@t

=
@

@�

n
� [S (�, t) + DA(�, t)]n(�, t)

o
(18)

+
@

@�

n
Dp(�, t)

@n(�, t)
@�

o
� n(�, t)

Tesc(�)
� n(�, t)

Tad(t)
+ Q(�, t).

The momentum di↵usion coe�cient Dp(�, t) / (�q) (Becker
et al. 2006) and the average energy change term resulting
from the momentum-di↵usion process DA(�, t) = (2/�)Dp(�, t)
(Becker et al. 2006) represent the contribution from a stochastic
momentum-di↵usion acceleration mechanism (Kardashev 1962;
1 https://github.com/andreatramacere/jetset

Melrose 1969; Katarzyński et al. 2006; Stawarz & Petrosian
2008). The systematic term S (�, t) = �C(�, t)+ A(�, t) describes
systematic energy loss (C) and/or gain (A), and Q(�, t) is the in-
jection term. A detailed description of the cooling terms and the
di↵usion coe�cient is provided in Appendix B. The term n(�,t)

Tad

corresponds to the decrease in particle density due to the expan-
sion process, with Tad(t) = 1

3
R(t)
�expc

(Gould 1975). This term is
connected to source geometry and should not be confused with
the cooling term defined in Equation 4 and plugged in the C(�, t)
term (see Appendix B). The term n(�,t)

Tesc(�) represents the particle
escape term. The injection function Q(�in j, t) is normalised ac-
cording to

Lin j = Vacc

Z
�mec

2
Q(�, t)d� (erg/s), (19)

where Vacc is the volume of the acceleration region, and the inte-
gration is performed over the numerical grid used to solve Equa-
tion 18 (see the following section for further details). The numer-
ical solution of the FP equation is obtained using the same ap-
proach as Tramacere et al. (2011), which is based on the method
proposed by Chang & Cooper (1970) as described in Park &
Petrosian (1996).

Table 1: Parameters for the flaring simulation

rad. region acc. region
R (cm) 5 ⇥ 1015 5 ⇥ 1015

�acc

R
(cm) - 5 ⇥ 1014

RH0 (cm) - 1017

B (G) 0.2 0.2
� 30 30
z 0.03 0.03
Lin j (erg/s) 5 ⇥ 1039 -
q - 2
tA (s) - 2.5 ⇥ 104

tD0 = 1/DP0 (s) - 1.5 ⇥ 105

Tesc (s) 1 5 ⇥ 104

Duration (s) 106 106

Duration acc. (s) - 105

Duration inj. (s) - 105

Tsize 2 ⇥ 104 2 ⇥ 104

NUMS ET 200 200
�in j - 10.0

Table 2: Parameters for the long-term simulation with expansion

expanding rad. region
R0 (cm) 5 ⇥ 1015

B0 (G) 0.2
� 30
mB 1
�exp (c) [0.001 � 0.3]
texp (s) 1 ⇥ 107

Tesc (s) 1
Duration (s) [1.6 ⇥ 107 � 1.9 ⇥ 109]
Tsize [1.6 ⇥ 104 � 1.8 ⇥ 106]
NUMS ET [1000, 5000]
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z+1 , and the � is a beaming factor:
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where � is the bulk Lorentz factor of the blob moving with veloc-
ity ��c, and ✓ is the observing angle of the jet. We can substitute
the observed timescale variability t

obs
var
= (1+z)R0

�c in the equations
above:

�t
obs
⌫0,obs

SSA !⌫
⇤,obs
SSA

= t
obs
exp +

t
obs
var

�exp

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i

(16)

t
obs
peak =
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var

�exp
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SSA

⌫⇤SSA
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i

t
obs
decay =

t
obs
var

mB�exp

⇣⌫0
SSA

⌫⇤SSA

⌘ 
,

where t
obs
exp = texp(1 + z)/�. The distance travelled along the jet

during the time interval �t
obs
⌫0,obs

SSA
will be

�r = ��t⌫0
SSA!⌫⇤SSA

��c =
����c�t

obs
⌫0,obs

SSA

1 + z
, (17)

which is in agreement with the phenomenological derivations
by Pushkarev et al. (2010) and Max-Moerbeck et al. (2014), if
⌫0,obs

SSA corresponds to the initial observed SSA frequency at the
time of the flaring episode, and ⌫⇤,obs

SSA corresponds to the observed
frequency of the delayed radio flare.

3. Self-consistent temporal evolution of an
expanding blob with the JetSeT code.

To follow the evolution of the emitting particle distribution, and
the radiative fields, we use the JetTimeEvol class from the
jet_timedep module of the open-source JetSeT1 framework
(Tramacere 2020; Tramacere et al. 2011; Tramacere et al. 2009).
This class allows the user to evolve the particle distribution under
the e↵ects of radiative cooling, adiabatic expansion, and accel-
eration processes (both systematic and stochastic), and to extract
SEDs and light curves at any given time (see Appendix A for fur-
ther details on code availability and reproducibility). The code
proceeds through the numerical solution of a kinetic equation,
following the same approach as in Tramacere et al. (2011) based
on the employment of the quasi-linear approximation with the
inclusion of a momentum di↵usion term (Ramaty 1979; Becker
et al. 2006). The equation governing the temporal evolution of
the particle energy distribution n(�) = dN(�)/d� is the Fokker-
Planck (FP) equation that reads

@n(�, t)
@t

=
@

@�

n
� [S (�, t) + DA(�, t)]n(�, t)

o
(18)

+
@

@�

n
Dp(�, t)

@n(�, t)
@�

o
� n(�, t)

Tesc(�)
� n(�, t)

Tad(t)
+ Q(�, t).

The momentum di↵usion coe�cient Dp(�, t) / (�q) (Becker
et al. 2006) and the average energy change term resulting
from the momentum-di↵usion process DA(�, t) = (2/�)Dp(�, t)
(Becker et al. 2006) represent the contribution from a stochastic
momentum-di↵usion acceleration mechanism (Kardashev 1962;
1 https://github.com/andreatramacere/jetset

Melrose 1969; Katarzyński et al. 2006; Stawarz & Petrosian
2008). The systematic term S (�, t) = �C(�, t)+ A(�, t) describes
systematic energy loss (C) and/or gain (A), and Q(�, t) is the in-
jection term. A detailed description of the cooling terms and the
di↵usion coe�cient is provided in Appendix B. The term n(�,t)

Tad

corresponds to the decrease in particle density due to the expan-
sion process, with Tad(t) = 1

3
R(t)
�expc

(Gould 1975). This term is
connected to source geometry and should not be confused with
the cooling term defined in Equation 4 and plugged in the C(�, t)
term (see Appendix B). The term n(�,t)

Tesc(�) represents the particle
escape term. The injection function Q(�in j, t) is normalised ac-
cording to

Lin j = Vacc

Z
�mec

2
Q(�, t)d� (erg/s), (19)

where Vacc is the volume of the acceleration region, and the inte-
gration is performed over the numerical grid used to solve Equa-
tion 18 (see the following section for further details). The numer-
ical solution of the FP equation is obtained using the same ap-
proach as Tramacere et al. (2011), which is based on the method
proposed by Chang & Cooper (1970) as described in Park &
Petrosian (1996).

Table 1: Parameters for the flaring simulation

rad. region acc. region
R (cm) 5 ⇥ 1015 5 ⇥ 1015

�acc

R
(cm) - 5 ⇥ 1014

RH0 (cm) - 1017

B (G) 0.2 0.2
� 30 30
z 0.03 0.03
Lin j (erg/s) 5 ⇥ 1039 -
q - 2
tA (s) - 2.5 ⇥ 104

tD0 = 1/DP0 (s) - 1.5 ⇥ 105

Tesc (s) 1 5 ⇥ 104

Duration (s) 106 106

Duration acc. (s) - 105

Duration inj. (s) - 105

Tsize 2 ⇥ 104 2 ⇥ 104

NUMS ET 200 200
�in j - 10.0

Table 2: Parameters for the long-term simulation with expansion

expanding rad. region
R0 (cm) 5 ⇥ 1015

B0 (G) 0.2
� 30
mB 1
�exp (c) [0.001 � 0.3]
texp (s) 1 ⇥ 107

Tesc (s) 1
Duration (s) [1.6 ⇥ 107 � 1.9 ⇥ 109]
Tsize [1.6 ⇥ 104 � 1.8 ⇥ 106]
NUMS ET [1000, 5000]
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Fig. 3: Comparison of non-expanding (right panels) vs expanding (left panels) for �exp = 0.1. The top panels show the evolution of
the SEDs, after the flaring stage, where the blue color flags to the non/pre-expansion case, and the the orange one flags the expansion.
The second row of panels show the evolution of the flux density (F⌫). The three bottom panels show the merged lightcurves of both
the flaring and the long-term simulation, in the Fermi-LAT band, and at 5 and 40 GHz. The red dashed lines marks the lightcurve
segment belonging to the flaring stage.

in the expanding case we notice that when the expansion starts,
the patterns, in both the synchrotron and IC components are dif-
ferent. The IC component is mainly a↵ected by a significant drop
in the Compton dominance (CD). This can be better appreciated
in Figure 4, where we plot the CD versus the time of the simu-
lation. The CD is evaluated as the ratio of the peak flux of the
IC component, to the peak flux of the S component. The vertical
dashed line marks the beginning of the expansion (for the ex-
panding case, orange line). It is clear that when the adiabatic ex-
pansion begins, the IC starts to drop rapidly, as a consequence of
the larger volume and lower seed photons density (I might add

some comments regarding the e↵ects also during the flaring

stage). This is a very interesting feature, that might already be
visible during the flaring stage. The most integrating e↵ect, for
our analysis, is the evolution of the S component. On top of the
flux decay dictated by the adiabatic losses, and decreased mag-
netic field, we notice the shift the SSA frequency, oppositely to
the non-expand case. This e↵ect can be better appreciated in the
second row of panels in Figure 3, where we plot the evolution
of the flux density (F⌫). Whilst in the non expanding case the
SSA is almost stable at the initial value of ⇡ 1011 Hz, in the ex-
panding case the SSA is decreasing with time as predicted by
Equation 5. The actual trend will be investigated in details in the
next two sections. The three bottom panels of Figure 3, show the
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Fig. 1: Schematic representation of the model implemented in JetSeT to simulate the flaring stage and the adiabatic expansion.
At time tstart acc, particles are injected and accelerated in the acceleration region where they undergo both cooling and acceleration
processes and di↵use towards the radiative region , where only losses take place. The acceleration process ends at time tstop acc. After
a time texp, the expansion process takes place in the RR region.

expanding with a constant velocity. We can easily invert this re-
lation, and solve it in terms of R

⇤:

R
⇤ = R0

⇣⌫0
SSA

⌫⇤SSA

⌘ 
(8)

 =
p + 4

mB(p + 2) + 4
.

This equation allows us to determine the time needed, starting
from texp, to move the initial ⌫0

SSA to ⌫⇤SSA, which is also the time
needed to expand the source from an initial radius R0 to the ra-
dius R

⇤. The corresponding time to reach the peak of the syn-
chrotron light curve at the frequency ⌫⇤SSA in the blob rest frame
is

tpeak = �tR0!R⇤ =
R
⇤ � R0

�expc
=

R0

�expc

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i
. (9)

We stress that this equation holds as long as the synchrotron
cooling is not the dominant cooling timescale, and we discuss
this topic more in detail in Section 5. The total delay will be
given by the sum of texp and tpeak, that is,

�t⌫0
SSA!⌫⇤SSA

= texp + tpeak = texp +
R0

�expc

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i
. (10)

Finally, the adiabatic decay time will be proportional to the adi-
abatic cooling time at R

⇤:

t
ad

decay(t⇤) / R
⇤

�expc
=

R0

�expc

⇣⌫0
SSA

⌫⇤SSA

⌘ 
. (11)

Of course, this is the relevant timescale at the time t
⇤ such that

R(t⇤) = R
⇤, and will increase according to Equation 4. It is rel-

evant to note that the decaying time will also be a↵ected by
the purely geometric factor, depending on B(t) and R(t), that
is, the flux variation due to a change in B(t) and R(t), ignor-
ing the cooling terms. This can be easily derived from the ex-
pected synchrotron trend for an optical depth ⌧ >> 1, F⌫SSA (t) /
N(t)V(t)B(t)�0.5 (Ghisellini 2013) , and taking into account that,
for confined emitters, N(t)V(t) is constant: F⌫SSA (t) / B(t)�0.5,
where V(t) is the time-dependent value of the blob volume.

Hence, the time-dependent geometric decay time at t = t
⇤ will

read

t
geom

decay(t⇤) / F⌫SSA (t⇤)
Ḟ⌫SSA (t⇤)

/ R
⇤

mB�expc
=

t
ad

decay(t⇤)

mB

. (12)

Therefore, within the assumptions described above, and as
long as the adiabatic cooling timescale dominates over the syn-
chrotron one, we can estimate the final decay timescale as

tdecay(t⇤) / R0

mB�expc

⇣⌫0
SSA

⌫⇤SSA

⌘ 
. (13)

The balance between the relevant timescales is quite complex,
and in Figure 2 we show the trends for di↵erent configurations.
The left panels refer to the case of �exp = 0.1, and the right pan-
els to the case of �exp = 0.001. We select the boundaries � = 10
and � = 1000 to sample typical values of the Lorentz factor
corresponding to electrons radiating by synchrotron emission in
the radio band, for B ranging in [0.001, 1] G, and a broad range
of values of � and z. We notice that for �exp = 0.1, the adiabatic
and geometrical decay timescales dominate over the synchrotron
timescale, except for the initial state of a few configurations. On
the contrary, for the case of �exp = 0.001 the competition be-
tween radiative and adiabatic timescales is more complex. The
e↵ect of this complex interplay among the cooling timescales is
investigated in detail in Section 5. We also notice that, for the
parameter space investigated in the present analysis, the cross-
ing time is always shorter than the other timescales, making the
approximation of ignoring its e↵ect hereafter relatively plausi-
ble.

Finally, we can express these relations —which are valid in
the adiabatic-dominated cooling regime— in the observer frame:

�t
obs
⌫0,obs

SSA !⌫
⇤,obs
SSA

=
1 + z

�

h
texp +

R0

�expc

⇣⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
⌘i

(14)

t
obs
decay =

(1 + z)
�

R0

mB�expc

⇣⌫0
SSA

⌫⇤SSA

⌘ 

t
obs
peak =

(1 + z)
�

R0

�expc

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i
,
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where ⌫obs=⌫ �
z+1 , and the � is a beaming factor:

� =
1

�(1 � �� cos(✓))
, (15)

where � is the bulk Lorentz factor of the blob moving with veloc-
ity ��c, and ✓ is the observing angle of the jet. We can substitute
the observed timescale variability t

obs
var
= (1+z)R0

�c in the equations
above:

�t
obs
⌫0,obs

SSA !⌫
⇤,obs
SSA

= t
obs
exp +

t
obs
var

�exp

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i

(16)

t
obs
peak =

t
obs
var

�exp

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i

t
obs
decay =

t
obs
var

mB�exp

⇣⌫0
SSA

⌫⇤SSA

⌘ 
,

where t
obs
exp = texp(1 + z)/�. The distance travelled along the jet

during the time interval �t
obs
⌫0,obs

SSA
will be

�r = ��t⌫0
SSA!⌫⇤SSA

��c =
����c�t

obs
⌫0,obs

SSA

1 + z
, (17)

which is in agreement with the phenomenological derivations
by Pushkarev et al. (2010) and Max-Moerbeck et al. (2014), if
⌫0,obs

SSA corresponds to the initial observed SSA frequency at the
time of the flaring episode, and ⌫⇤,obs

SSA corresponds to the observed
frequency of the delayed radio flare.

3. Self-consistent temporal evolution of an
expanding blob with the JetSeT code.

To follow the evolution of the emitting particle distribution, and
the radiative fields, we use the JetTimeEvol class from the
jet_timedep module of the open-source JetSeT1 framework
(Tramacere 2020; Tramacere et al. 2011; Tramacere et al. 2009).
This class allows the user to evolve the particle distribution under
the e↵ects of radiative cooling, adiabatic expansion, and accel-
eration processes (both systematic and stochastic), and to extract
SEDs and light curves at any given time (see Appendix A for fur-
ther details on code availability and reproducibility). The code
proceeds through the numerical solution of a kinetic equation,
following the same approach as in Tramacere et al. (2011) based
on the employment of the quasi-linear approximation with the
inclusion of a momentum di↵usion term (Ramaty 1979; Becker
et al. 2006). The equation governing the temporal evolution of
the particle energy distribution n(�) = dN(�)/d� is the Fokker-
Planck (FP) equation that reads

@n(�, t)
@t

=
@

@�

n
� [S (�, t) + DA(�, t)]n(�, t)

o
(18)

+
@

@�

n
Dp(�, t)

@n(�, t)
@�

o
� n(�, t)

Tesc(�)
� n(�, t)

Tad(t)
+ Q(�, t).

The momentum di↵usion coe�cient Dp(�, t) / (�q) (Becker
et al. 2006) and the average energy change term resulting
from the momentum-di↵usion process DA(�, t) = (2/�)Dp(�, t)
(Becker et al. 2006) represent the contribution from a stochastic
momentum-di↵usion acceleration mechanism (Kardashev 1962;
1 https://github.com/andreatramacere/jetset

Melrose 1969; Katarzyński et al. 2006; Stawarz & Petrosian
2008). The systematic term S (�, t) = �C(�, t)+ A(�, t) describes
systematic energy loss (C) and/or gain (A), and Q(�, t) is the in-
jection term. A detailed description of the cooling terms and the
di↵usion coe�cient is provided in Appendix B. The term n(�,t)

Tad

corresponds to the decrease in particle density due to the expan-
sion process, with Tad(t) = 1

3
R(t)
�expc

(Gould 1975). This term is
connected to source geometry and should not be confused with
the cooling term defined in Equation 4 and plugged in the C(�, t)
term (see Appendix B). The term n(�,t)

Tesc(�) represents the particle
escape term. The injection function Q(�in j, t) is normalised ac-
cording to

Lin j = Vacc

Z
�mec

2
Q(�, t)d� (erg/s), (19)

where Vacc is the volume of the acceleration region, and the inte-
gration is performed over the numerical grid used to solve Equa-
tion 18 (see the following section for further details). The numer-
ical solution of the FP equation is obtained using the same ap-
proach as Tramacere et al. (2011), which is based on the method
proposed by Chang & Cooper (1970) as described in Park &
Petrosian (1996).

Table 1: Parameters for the flaring simulation

rad. region acc. region
R (cm) 5 ⇥ 1015 5 ⇥ 1015

�acc

R
(cm) - 5 ⇥ 1014

RH0 (cm) - 1017

B (G) 0.2 0.2
� 30 30
z 0.03 0.03
Lin j (erg/s) 5 ⇥ 1039 -
q - 2
tA (s) - 2.5 ⇥ 104

tD0 = 1/DP0 (s) - 1.5 ⇥ 105

Tesc (s) 1 5 ⇥ 104

Duration (s) 106 106

Duration acc. (s) - 105

Duration inj. (s) - 105

Tsize 2 ⇥ 104 2 ⇥ 104

NUMS ET 200 200
�in j - 10.0

Table 2: Parameters for the long-term simulation with expansion

expanding rad. region
R0 (cm) 5 ⇥ 1015

B0 (G) 0.2
� 30
mB 1
�exp (c) [0.001 � 0.3]
texp (s) 1 ⇥ 107

Tesc (s) 1
Duration (s) [1.6 ⇥ 107 � 1.9 ⇥ 109]
Tsize [1.6 ⇥ 104 � 1.8 ⇥ 106]
NUMS ET [1000, 5000]
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where ⌫obs=⌫ �
z+1 , and the � is a beaming factor:

� =
1

�(1 � �� cos(✓))
, (15)

where � is the bulk Lorentz factor of the blob moving with veloc-
ity ��c, and ✓ is the observing angle of the jet. We can substitute
the observed timescale variability t

obs
var
= (1+z)R0

�c in the equations
above:
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where t
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which is in agreement with the phenomenological derivations
by Pushkarev et al. (2010) and Max-Moerbeck et al. (2014), if
⌫0,obs

SSA corresponds to the initial observed SSA frequency at the
time of the flaring episode, and ⌫⇤,obs

SSA corresponds to the observed
frequency of the delayed radio flare.

3. Self-consistent temporal evolution of an
expanding blob with the JetSeT code.

To follow the evolution of the emitting particle distribution, and
the radiative fields, we use the JetTimeEvol class from the
jet_timedep module of the open-source JetSeT1 framework
(Tramacere 2020; Tramacere et al. 2011; Tramacere et al. 2009).
This class allows the user to evolve the particle distribution under
the e↵ects of radiative cooling, adiabatic expansion, and accel-
eration processes (both systematic and stochastic), and to extract
SEDs and light curves at any given time (see Appendix A for fur-
ther details on code availability and reproducibility). The code
proceeds through the numerical solution of a kinetic equation,
following the same approach as in Tramacere et al. (2011) based
on the employment of the quasi-linear approximation with the
inclusion of a momentum di↵usion term (Ramaty 1979; Becker
et al. 2006). The equation governing the temporal evolution of
the particle energy distribution n(�) = dN(�)/d� is the Fokker-
Planck (FP) equation that reads
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The momentum di↵usion coe�cient Dp(�, t) / (�q) (Becker
et al. 2006) and the average energy change term resulting
from the momentum-di↵usion process DA(�, t) = (2/�)Dp(�, t)
(Becker et al. 2006) represent the contribution from a stochastic
momentum-di↵usion acceleration mechanism (Kardashev 1962;
1 https://github.com/andreatramacere/jetset

Melrose 1969; Katarzyński et al. 2006; Stawarz & Petrosian
2008). The systematic term S (�, t) = �C(�, t)+ A(�, t) describes
systematic energy loss (C) and/or gain (A), and Q(�, t) is the in-
jection term. A detailed description of the cooling terms and the
di↵usion coe�cient is provided in Appendix B. The term n(�,t)

Tad

corresponds to the decrease in particle density due to the expan-
sion process, with Tad(t) = 1

3
R(t)
�expc

(Gould 1975). This term is
connected to source geometry and should not be confused with
the cooling term defined in Equation 4 and plugged in the C(�, t)
term (see Appendix B). The term n(�,t)

Tesc(�) represents the particle
escape term. The injection function Q(�in j, t) is normalised ac-
cording to

Lin j = Vacc

Z
�mec

2
Q(�, t)d� (erg/s), (19)

where Vacc is the volume of the acceleration region, and the inte-
gration is performed over the numerical grid used to solve Equa-
tion 18 (see the following section for further details). The numer-
ical solution of the FP equation is obtained using the same ap-
proach as Tramacere et al. (2011), which is based on the method
proposed by Chang & Cooper (1970) as described in Park &
Petrosian (1996).

Table 1: Parameters for the flaring simulation

rad. region acc. region
R (cm) 5 ⇥ 1015 5 ⇥ 1015

�acc

R
(cm) - 5 ⇥ 1014

RH0 (cm) - 1017

B (G) 0.2 0.2
� 30 30
z 0.03 0.03
Lin j (erg/s) 5 ⇥ 1039 -
q - 2
tA (s) - 2.5 ⇥ 104

tD0 = 1/DP0 (s) - 1.5 ⇥ 105

Tesc (s) 1 5 ⇥ 104

Duration (s) 106 106
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Duration inj. (s) - 105

Tsize 2 ⇥ 104 2 ⇥ 104

NUMS ET 200 200
�in j - 10.0

Table 2: Parameters for the long-term simulation with expansion

expanding rad. region
R0 (cm) 5 ⇥ 1015

B0 (G) 0.2
� 30
mB 1
�exp (c) [0.001 � 0.3]
texp (s) 1 ⇥ 107

Tesc (s) 1
Duration (s) [1.6 ⇥ 107 � 1.9 ⇥ 109]
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NUMS ET [1000, 5000]
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Fig. 1: Schematic representation of the model implemented in JetSeT to simulate the flaring stage and the adiabatic expansion.
At time tstart acc, particles are injected and accelerated in the acceleration region where they undergo both cooling and acceleration
processes and di↵use towards the radiative region , where only losses take place. The acceleration process ends at time tstop acc. After
a time texp, the expansion process takes place in the RR region.

expanding with a constant velocity. We can easily invert this re-
lation, and solve it in terms of R

⇤:

R
⇤ = R0

⇣⌫0
SSA

⌫⇤SSA

⌘ 
(8)

 =
p + 4

mB(p + 2) + 4
.

This equation allows us to determine the time needed, starting
from texp, to move the initial ⌫0

SSA to ⌫⇤SSA, which is also the time
needed to expand the source from an initial radius R0 to the ra-
dius R

⇤. The corresponding time to reach the peak of the syn-
chrotron light curve at the frequency ⌫⇤SSA in the blob rest frame
is

tpeak = �tR0!R⇤ =
R
⇤ � R0

�expc
=

R0

�expc

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i
. (9)

We stress that this equation holds as long as the synchrotron
cooling is not the dominant cooling timescale, and we discuss
this topic more in detail in Section 5. The total delay will be
given by the sum of texp and tpeak, that is,

�t⌫0
SSA!⌫⇤SSA

= texp + tpeak = texp +
R0

�expc

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i
. (10)

Finally, the adiabatic decay time will be proportional to the adi-
abatic cooling time at R

⇤:

t
ad

decay(t⇤) / R
⇤

�expc
=

R0

�expc

⇣⌫0
SSA

⌫⇤SSA

⌘ 
. (11)

Of course, this is the relevant timescale at the time t
⇤ such that

R(t⇤) = R
⇤, and will increase according to Equation 4. It is rel-

evant to note that the decaying time will also be a↵ected by
the purely geometric factor, depending on B(t) and R(t), that
is, the flux variation due to a change in B(t) and R(t), ignor-
ing the cooling terms. This can be easily derived from the ex-
pected synchrotron trend for an optical depth ⌧ >> 1, F⌫SSA (t) /
N(t)V(t)B(t)�0.5 (Ghisellini 2013) , and taking into account that,
for confined emitters, N(t)V(t) is constant: F⌫SSA (t) / B(t)�0.5,
where V(t) is the time-dependent value of the blob volume.

Hence, the time-dependent geometric decay time at t = t
⇤ will

read

t
geom

decay(t⇤) / F⌫SSA (t⇤)
Ḟ⌫SSA (t⇤)

/ R
⇤

mB�expc
=

t
ad

decay(t⇤)

mB

. (12)

Therefore, within the assumptions described above, and as
long as the adiabatic cooling timescale dominates over the syn-
chrotron one, we can estimate the final decay timescale as

tdecay(t⇤) / R0

mB�expc

⇣⌫0
SSA

⌫⇤SSA

⌘ 
. (13)

The balance between the relevant timescales is quite complex,
and in Figure 2 we show the trends for di↵erent configurations.
The left panels refer to the case of �exp = 0.1, and the right pan-
els to the case of �exp = 0.001. We select the boundaries � = 10
and � = 1000 to sample typical values of the Lorentz factor
corresponding to electrons radiating by synchrotron emission in
the radio band, for B ranging in [0.001, 1] G, and a broad range
of values of � and z. We notice that for �exp = 0.1, the adiabatic
and geometrical decay timescales dominate over the synchrotron
timescale, except for the initial state of a few configurations. On
the contrary, for the case of �exp = 0.001 the competition be-
tween radiative and adiabatic timescales is more complex. The
e↵ect of this complex interplay among the cooling timescales is
investigated in detail in Section 5. We also notice that, for the
parameter space investigated in the present analysis, the cross-
ing time is always shorter than the other timescales, making the
approximation of ignoring its e↵ect hereafter relatively plausi-
ble.

Finally, we can express these relations —which are valid in
the adiabatic-dominated cooling regime— in the observer frame:

�t
obs
⌫0,obs

SSA !⌫
⇤,obs
SSA

=
1 + z

�

h
texp +

R0

�expc

⇣⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
⌘i

(14)

t
obs
decay =

(1 + z)
�

R0

mB�expc

⇣⌫0
SSA

⌫⇤SSA

⌘ 

t
obs
peak =

(1 + z)
�

R0

�expc

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i
,
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(l�) as a convolution (Türler et al. 1999; Sliusar et al. 2019a,b)
according to

lR(t) = S (t) ⇤ l�(t), (20)

where the S is an empirical function that depends on parameters
that can be related to the observable quantities investigated in
Section 2. We propose the following response function:

S (t) = A

exp �(t��)
tf

1 + exp �(t��)
tf

, (21)

where tf is the decay time, and tf is the rise time.
This is the combination of a logistic function for the rising

part and an exponential decay for the decaying part, with A be-
ing a scaling factor. The scaling factor depends mainly on the
initial value of the Compton dominance, on the observed radio
frequency, and on mB. In the present analysis, we are not investi-
gating its impact. The peak of S (t), corresponding to the radio-�
delay, reads

�t = � � tu ln
⇣ tu

tf � tu

⌘
. (22)

The actual determination of the rise and decay time is analyti-
cally complicated. We estimated trise and tdecay numerically by
imposing the condition S (t) = A

2 for trise and S (t) = A

e
for tdecay,

and verified that within a maximum deviation of 5% for trise, and
of 0.2% for tdecay, these timescales can be evaluated according to

trise = tu

⇣
0.54 + 1.34

⇣ t f

tu

⌘1/4⌘
(23)

tdecay = t f

⇣
1.00 + 1.33

⇣ t f

tu

⌘�1.11⌘
. (24)

For the propagation of the uncertainties we used the
Uncertainties2 Python package.

5.1. Validation of phenomenological relations

Before investigating the phenomenological trends, we validate
the relations in Section 2 using long-term simulations with ten
di↵erent values of �exp evaluated on a logarithmic grid rang-
ing [0.001, 0.3]. We use two scenarios: one where we disable
only the radiative cooling term in the FP equation, and one with
both radiative and adiabatic cooling terms enabled. As the phe-
nomenological relations derived in Section 2 are valid when the
adiabatic cooling is dominant, the deviations in the trends with
the radiative cooling enabled will highlight the e↵ect of the com-
petition between the synchrotron cooling and time the adiabatic
time already discussed in Section 2. In order to estimate the
trends, we minimise the right-hand side of Equation 20 with re-
spect to the left-hand side, where l� and lR are the light curves
produced in the simulations, leaving as free parameters A, �, tu,
and tf . To perform the analysis in the observer frame, we express
Equations 14 in terms of R

0
obs = R0

1+z

� and of the observed radio
frequencies:

2 Uncertainties: a Python package for calculations with uncertainties,
Eric O. LEBIGOT, http://pythonhosted.org/uncertainties/

t
obs
decay =

R
obs
0

mB�expc

⇣⌫0,obs
SSA

⌫⇤,obs
SSA

⌘�
(25)

t
obs
rise =

1
2

t
obs
peak =

8>>>>><
>>>>>:

1
2

R
obs
0

�expc

h⇣⌫0,obs
SSA

⌫⇤,obs
SSA

⌘� � 1
i

if ⌫0,obs
SSA > ⌫

⇤,obs
SSA

0 otherwise

�t
obs = t

obs
exp + t

obs
peak = t

obs
exp +

R
obs
0

�expc

h⇣⌫0,obs
SSA

⌫⇤,obs
SSA

⌘� � 1
i
.

As we show later, as the value of the electron index p evolves
with time, the use of  as a function of a constant p during the
fit is inappropriate. Hence, we use a generic index � that is not
related directly to p during the fit but still preserves the behaviour
of the trends. In any case, we can still estimate the value of p

from the best-fit parameters using the second Equation 8.
An example of best-fit convolution is reported in Figure 6,

where we show the results of the best fit for the response at 15
GHz for the case with the cooling terms active, for �exp = 0.084
(top panel) and �exp = 0.001 (bottom panel), and texp = 1 ⇥ 107

s; all the other parameters are the same as reported in Table 2.
The light curves are in the observer frame.

The results of the validation of Equations 25 are summarised
in Figure 7, where we show the ratio of the timescales predicted
by Equations 25 to the actual results obtained by the best fit of
the radio-� response applied to the numerical simulations. The
blue lines correspond to the case of only adiabatic cooling, and
the orange lines to the case of only adiabatic plus radiative cool-
ing. The green shaded area corresponds to the ±10% region with
respect to the prediction from Equation 25. For the decay time,
we note that in the case of only adiabatic cooling, the trends
in Equation 25 are valid within a maximum derivation of time
. 1% for the delay time. This is consistent with our expecta-
tions, because Equation 25 takes into account only the contri-
bution from adiabatic cooling and from flux variations related
to the geometrical expansion. When the radiative cooling is also
enabled, the deviations are larger (by up to a factor of 2), with
a trend that decreases for larger values of �exp. This trend in the
deviations is due to the di↵erent interplay between radiative and
adiabatic cooling timescales for di↵erent expansion velocities,
which we investigate in more detail below. For the rise time we
observe a deviation by up to ⇡ 40% for the cases of only adia-
batic cooling and radiative plus adiabatic cooling. For the delay
time, the deviations are ⇡ 20% to ⇡ 30% for the case of only
adiabatic cooling, and ⇡ 20% to ⇡ 160% for the case of radia-
tive plus adiabatic cooling. The variations in the decay are larger
than those observed in the rise time, because the peak of the re-
sponse is a↵ected both by decay and rise times (see Equation
22). The validation shows that the phenomenological trends pre-
dict the timescales of the response when the adiabatic cooling
is dominant with good accuracy, and, as anticipated in Section
5.2, can be biased by the competition between the radiative cool-
ing time and adiabatic cooling time. A di↵erent balance between
adiabatic and radiative cooling will cause not only deviation in
the adiabatic-dominated trends but also significant changes in
the electron energy distribution at the radio peak time for dif-
ferent values of �exp. For the purpose of illustration, we show
in Figure 8 the di↵erent states of the electron distributions at
the time corresponding to the peak of the ⌫obs = 15 GHz light
curves, for the values of �exp ranging [0.001, 0.3] used in our
simulations. We note that, for smaller values of �exp, the expan-
sion process lasts longer, and the slower temporal decrease of
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where ⌫obs=⌫ �
z+1 , and the � is a beaming factor:

� =
1

�(1 � �� cos(✓))
, (15)

where � is the bulk Lorentz factor of the blob moving with veloc-
ity ��c, and ✓ is the observing angle of the jet. We can substitute
the observed timescale variability t

obs
var
= (1+z)R0

�c in the equations
above:

�t
obs
⌫0,obs

SSA !⌫
⇤,obs
SSA

= t
obs
exp +

t
obs
var

�exp

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i

(16)

t
obs
peak =

t
obs
var

�exp

h⇣⌫0
SSA

⌫⇤SSA

⌘ � 1
i

t
obs
decay =

t
obs
var

mB�exp

⇣⌫0
SSA

⌫⇤SSA

⌘ 
,

where t
obs
exp = texp(1 + z)/�. The distance travelled along the jet

during the time interval �t
obs
⌫0,obs

SSA
will be

�r = ��t⌫0
SSA!⌫⇤SSA

��c =
����c�t

obs
⌫0,obs

SSA

1 + z
, (17)

which is in agreement with the phenomenological derivations
by Pushkarev et al. (2010) and Max-Moerbeck et al. (2014), if
⌫0,obs

SSA corresponds to the initial observed SSA frequency at the
time of the flaring episode, and ⌫⇤,obs

SSA corresponds to the observed
frequency of the delayed radio flare.

3. Self-consistent temporal evolution of an
expanding blob with the JetSeT code.

To follow the evolution of the emitting particle distribution, and
the radiative fields, we use the JetTimeEvol class from the
jet_timedep module of the open-source JetSeT1 framework
(Tramacere 2020; Tramacere et al. 2011; Tramacere et al. 2009).
This class allows the user to evolve the particle distribution under
the e↵ects of radiative cooling, adiabatic expansion, and accel-
eration processes (both systematic and stochastic), and to extract
SEDs and light curves at any given time (see Appendix A for fur-
ther details on code availability and reproducibility). The code
proceeds through the numerical solution of a kinetic equation,
following the same approach as in Tramacere et al. (2011) based
on the employment of the quasi-linear approximation with the
inclusion of a momentum di↵usion term (Ramaty 1979; Becker
et al. 2006). The equation governing the temporal evolution of
the particle energy distribution n(�) = dN(�)/d� is the Fokker-
Planck (FP) equation that reads

@n(�, t)
@t

=
@

@�

n
� [S (�, t) + DA(�, t)]n(�, t)

o
(18)

+
@

@�

n
Dp(�, t)

@n(�, t)
@�

o
� n(�, t)

Tesc(�)
� n(�, t)

Tad(t)
+ Q(�, t).

The momentum di↵usion coe�cient Dp(�, t) / (�q) (Becker
et al. 2006) and the average energy change term resulting
from the momentum-di↵usion process DA(�, t) = (2/�)Dp(�, t)
(Becker et al. 2006) represent the contribution from a stochastic
momentum-di↵usion acceleration mechanism (Kardashev 1962;
1 https://github.com/andreatramacere/jetset

Melrose 1969; Katarzyński et al. 2006; Stawarz & Petrosian
2008). The systematic term S (�, t) = �C(�, t)+ A(�, t) describes
systematic energy loss (C) and/or gain (A), and Q(�, t) is the in-
jection term. A detailed description of the cooling terms and the
di↵usion coe�cient is provided in Appendix B. The term n(�,t)

Tad

corresponds to the decrease in particle density due to the expan-
sion process, with Tad(t) = 1

3
R(t)
�expc

(Gould 1975). This term is
connected to source geometry and should not be confused with
the cooling term defined in Equation 4 and plugged in the C(�, t)
term (see Appendix B). The term n(�,t)

Tesc(�) represents the particle
escape term. The injection function Q(�in j, t) is normalised ac-
cording to

Lin j = Vacc

Z
�mec

2
Q(�, t)d� (erg/s), (19)

where Vacc is the volume of the acceleration region, and the inte-
gration is performed over the numerical grid used to solve Equa-
tion 18 (see the following section for further details). The numer-
ical solution of the FP equation is obtained using the same ap-
proach as Tramacere et al. (2011), which is based on the method
proposed by Chang & Cooper (1970) as described in Park &
Petrosian (1996).

Table 1: Parameters for the flaring simulation

rad. region acc. region
R (cm) 5 ⇥ 1015 5 ⇥ 1015

�acc

R
(cm) - 5 ⇥ 1014

RH0 (cm) - 1017

B (G) 0.2 0.2
� 30 30
z 0.03 0.03
Lin j (erg/s) 5 ⇥ 1039 -
q - 2
tA (s) - 2.5 ⇥ 104

tD0 = 1/DP0 (s) - 1.5 ⇥ 105

Tesc (s) 1 5 ⇥ 104

Duration (s) 106 106

Duration acc. (s) - 105

Duration inj. (s) - 105

Tsize 2 ⇥ 104 2 ⇥ 104

NUMS ET 200 200
�in j - 10.0

Table 2: Parameters for the long-term simulation with expansion

expanding rad. region
R0 (cm) 5 ⇥ 1015

B0 (G) 0.2
� 30
mB 1
�exp (c) [0.001 � 0.3]
texp (s) 1 ⇥ 107

Tesc (s) 1
Duration (s) [1.6 ⇥ 107 � 1.9 ⇥ 109]
Tsize [1.6 ⇥ 104 � 1.8 ⇥ 106]
NUMS ET [1000, 5000]
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Fig. 11: Expanding trends for �exp obtained from the simulations. Top left panel: t
obs
decay (blue solid points) obtained from the best fit

for the radio-� response for the ten simulations with �exp ranging [0.001, 0.3]. The dashed line represents the best fit with the first
equation of Equation 25. Top right panel: Same as in the top left panel, but for the case of t

obs
rise. The dashed line corresponds to the

best fit with the second equation of Equation 25. Bottom right panel: Same as in the top left panel, but for �obs
t

. The dashed line
corresponds to the best fit with the third equation of Equation 25. Bottom left panel: Strong correlation between the fit model-to-data
ratios and the cooling ratios in Figure 9.

Table 3: Best-fit results, for the �exp simulations

actual values values from � trend best fit
blob obs t

obs
rise t

obs
decay �t

obs

R0 cm 5 ⇥ 1015 1.66 ⇥ 1014 (1.9 ± 0.5) ⇥ 1014 (1.7 ± 0.1) ⇥ 1014 (1.8 ± 0.1) ⇥ 1014

⌫0SSA GHz 3 90 110 ± 40 100 ± 10 100 ± 5
texp s 1 ⇥ 107 3.3 ⇥ 105 (3.57 ± 0.01) ⇥ 105

mB 1 0.96 ± 0.06
� 0.6 ± 0.1 0.52 ± 0.04 0.54 ± 0.02
p 1.46 1.6 ± 0.3 1.5 ± 0.01 1.57 ± 0.05

Notes. Best-fit results, for the �exp simulations of the trends reported in Equation 25 for t
obs
rise, t

obs
decay, and �t

obs, and shown in the top left, top right, and
bottom left panels of Figure 11, respectively. The parameter p, i.e. the electron distribution spectral index, is evaluated from the best-fit parameters
using the second equation of Equation 8.

of �exp = 0.09 ± 0.01 and the estimate of mB1.0 ± 0.1 are in ex-
cellent agreement with the simulation values. The trise trend (top
right panel of Figure 12) returns a value of R

obs
0 = 2.4±1.0⇥1014,

which is ⇡ 60% larger than the simulation value, but still com-
patible within one sigma. The �exp = 0.03 ± 0.01 is significantly
lower than the simulated one. The value of ⌫0,obs

SSA ' 90 ± 10 pro-
vides a very good estimate of the simulation value ⌫0,obs

SSA = 90
GHz, but, as mentioned in the previous section, this value repre-

sents a lower bound. In the top left panel of Figure 12, the green
shaded area shows the 1-� the interval from the best fit, and the
vertical red dashed line represents the simulation value. The de-
lay trend (bottom left panel of Figure 12) returns an estimate of
�exp = 0.06 ± 0.01, which is ⇡ 40% lower than the simulation
value, and an estimate of ⌫0,obs

SSA ' 90±10 GHz, which is in agree-
ment with the simulation value. In this case, we also estimate the
value of t

obs
exp = (3.4 ± 0.1) ⇥ 105s with good accuracy, which is
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Table 3: Best-fit results, for the �exp simulations

actual values values from � trend best fit
blob obs t

obs
rise t

obs
decay �t

obs

R0 cm 5 ⇥ 1015 1.66 ⇥ 1014 (1.9 ± 0.5) ⇥ 1014 (1.7 ± 0.1) ⇥ 1014 (1.8 ± 0.1) ⇥ 1014

⌫0SSA GHz 3 90 110 ± 40 100 ± 10 100 ± 5
texp s 1 ⇥ 107 3.3 ⇥ 105 (3.57 ± 0.01) ⇥ 105

mB 1 0.96 ± 0.06
� 0.6 ± 0.1 0.52 ± 0.04 0.54 ± 0.02
p 1.46 1.6 ± 0.3 1.5 ± 0.01 1.57 ± 0.05

Notes. Best-fit results, for the �exp simulations of the trends reported in Equation 25 for t
obs
rise, t

obs
decay, and �t

obs, and shown in the top left, top right, and
bottom left panels of Figure 11, respectively. The parameter p, i.e. the electron distribution spectral index, is evaluated from the best-fit parameters
using the second equation of Equation 8.

of �exp = 0.09 ± 0.01 and the estimate of mB1.0 ± 0.1 are in ex-
cellent agreement with the simulation values. The trise trend (top
right panel of Figure 12) returns a value of R

obs
0 = 2.4±1.0⇥1014,

which is ⇡ 60% larger than the simulation value, but still com-
patible within one sigma. The �exp = 0.03 ± 0.01 is significantly
lower than the simulated one. The value of ⌫0,obs

SSA ' 90 ± 10 pro-
vides a very good estimate of the simulation value ⌫0,obs

SSA = 90
GHz, but, as mentioned in the previous section, this value repre-

sents a lower bound. In the top left panel of Figure 12, the green
shaded area shows the 1-� the interval from the best fit, and the
vertical red dashed line represents the simulation value. The de-
lay trend (bottom left panel of Figure 12) returns an estimate of
�exp = 0.06 ± 0.01, which is ⇡ 40% lower than the simulation
value, and an estimate of ⌫0,obs

SSA ' 90±10 GHz, which is in agree-
ment with the simulation value. In this case, we also estimate the
value of t

obs
exp = (3.4 ± 0.1) ⇥ 105s with good accuracy, which is
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(l�) as a convolution (Türler et al. 1999; Sliusar et al. 2019a,b)
according to

lR(t) = S (t) ⇤ l�(t), (20)

where the S is an empirical function that depends on parameters
that can be related to the observable quantities investigated in
Section 2. We propose the following response function:

S (t) = A

exp �(t��)
tf

1 + exp �(t��)
tf

, (21)

where tf is the decay time, and tf is the rise time.
This is the combination of a logistic function for the rising

part and an exponential decay for the decaying part, with A be-
ing a scaling factor. The scaling factor depends mainly on the
initial value of the Compton dominance, on the observed radio
frequency, and on mB. In the present analysis, we are not investi-
gating its impact. The peak of S (t), corresponding to the radio-�
delay, reads

�t = � � tu ln
⇣ tu

tf � tu

⌘
. (22)

The actual determination of the rise and decay time is analyti-
cally complicated. We estimated trise and tdecay numerically by
imposing the condition S (t) = A

2 for trise and S (t) = A

e
for tdecay,

and verified that within a maximum deviation of 5% for trise, and
of 0.2% for tdecay, these timescales can be evaluated according to

trise = tu

⇣
0.54 + 1.34

⇣ t f

tu

⌘1/4⌘
(23)

tdecay = t f

⇣
1.00 + 1.33

⇣ t f

tu

⌘�1.11⌘
. (24)

For the propagation of the uncertainties we used the
Uncertainties2 Python package.

5.1. Validation of phenomenological relations

Before investigating the phenomenological trends, we validate
the relations in Section 2 using long-term simulations with ten
di↵erent values of �exp evaluated on a logarithmic grid rang-
ing [0.001, 0.3]. We use two scenarios: one where we disable
only the radiative cooling term in the FP equation, and one with
both radiative and adiabatic cooling terms enabled. As the phe-
nomenological relations derived in Section 2 are valid when the
adiabatic cooling is dominant, the deviations in the trends with
the radiative cooling enabled will highlight the e↵ect of the com-
petition between the synchrotron cooling and time the adiabatic
time already discussed in Section 2. In order to estimate the
trends, we minimise the right-hand side of Equation 20 with re-
spect to the left-hand side, where l� and lR are the light curves
produced in the simulations, leaving as free parameters A, �, tu,
and tf . To perform the analysis in the observer frame, we express
Equations 14 in terms of R

0
obs = R0

1+z

� and of the observed radio
frequencies:

2 Uncertainties: a Python package for calculations with uncertainties,
Eric O. LEBIGOT, http://pythonhosted.org/uncertainties/
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As we show later, as the value of the electron index p evolves
with time, the use of  as a function of a constant p during the
fit is inappropriate. Hence, we use a generic index � that is not
related directly to p during the fit but still preserves the behaviour
of the trends. In any case, we can still estimate the value of p

from the best-fit parameters using the second Equation 8.
An example of best-fit convolution is reported in Figure 6,

where we show the results of the best fit for the response at 15
GHz for the case with the cooling terms active, for �exp = 0.084
(top panel) and �exp = 0.001 (bottom panel), and texp = 1 ⇥ 107

s; all the other parameters are the same as reported in Table 2.
The light curves are in the observer frame.

The results of the validation of Equations 25 are summarised
in Figure 7, where we show the ratio of the timescales predicted
by Equations 25 to the actual results obtained by the best fit of
the radio-� response applied to the numerical simulations. The
blue lines correspond to the case of only adiabatic cooling, and
the orange lines to the case of only adiabatic plus radiative cool-
ing. The green shaded area corresponds to the ±10% region with
respect to the prediction from Equation 25. For the decay time,
we note that in the case of only adiabatic cooling, the trends
in Equation 25 are valid within a maximum derivation of time
. 1% for the delay time. This is consistent with our expecta-
tions, because Equation 25 takes into account only the contri-
bution from adiabatic cooling and from flux variations related
to the geometrical expansion. When the radiative cooling is also
enabled, the deviations are larger (by up to a factor of 2), with
a trend that decreases for larger values of �exp. This trend in the
deviations is due to the di↵erent interplay between radiative and
adiabatic cooling timescales for di↵erent expansion velocities,
which we investigate in more detail below. For the rise time we
observe a deviation by up to ⇡ 40% for the cases of only adia-
batic cooling and radiative plus adiabatic cooling. For the delay
time, the deviations are ⇡ 20% to ⇡ 30% for the case of only
adiabatic cooling, and ⇡ 20% to ⇡ 160% for the case of radia-
tive plus adiabatic cooling. The variations in the decay are larger
than those observed in the rise time, because the peak of the re-
sponse is a↵ected both by decay and rise times (see Equation
22). The validation shows that the phenomenological trends pre-
dict the timescales of the response when the adiabatic cooling
is dominant with good accuracy, and, as anticipated in Section
5.2, can be biased by the competition between the radiative cool-
ing time and adiabatic cooling time. A di↵erent balance between
adiabatic and radiative cooling will cause not only deviation in
the adiabatic-dominated trends but also significant changes in
the electron energy distribution at the radio peak time for dif-
ferent values of �exp. For the purpose of illustration, we show
in Figure 8 the di↵erent states of the electron distributions at
the time corresponding to the peak of the ⌫obs = 15 GHz light
curves, for the values of �exp ranging [0.001, 0.3] used in our
simulations. We note that, for smaller values of �exp, the expan-
sion process lasts longer, and the slower temporal decrease of
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Fig. 11: Expanding trends for �exp obtained from the simulations. Top left panel: t
obs
decay (blue solid points) obtained from the best fit

for the radio-� response for the ten simulations with �exp ranging [0.001, 0.3]. The dashed line represents the best fit with the first
equation of Equation 25. Top right panel: Same as in the top left panel, but for the case of t

obs
rise. The dashed line corresponds to the

best fit with the second equation of Equation 25. Bottom right panel: Same as in the top left panel, but for �obs
t

. The dashed line
corresponds to the best fit with the third equation of Equation 25. Bottom left panel: Strong correlation between the fit model-to-data
ratios and the cooling ratios in Figure 9.

Table 3: Best-fit results, for the �exp simulations

actual values values from � trend best fit
blob obs t

obs
rise t

obs
decay �t

obs

R0 cm 5 ⇥ 1015 1.66 ⇥ 1014 (1.9 ± 0.5) ⇥ 1014 (1.7 ± 0.1) ⇥ 1014 (1.8 ± 0.1) ⇥ 1014

⌫0SSA GHz 3 90 110 ± 40 100 ± 10 100 ± 5
texp s 1 ⇥ 107 3.3 ⇥ 105 (3.57 ± 0.01) ⇥ 105

mB 1 0.96 ± 0.06
� 0.6 ± 0.1 0.52 ± 0.04 0.54 ± 0.02
p 1.46 1.6 ± 0.3 1.5 ± 0.01 1.57 ± 0.05

Notes. Best-fit results, for the �exp simulations of the trends reported in Equation 25 for t
obs
rise, t

obs
decay, and �t

obs, and shown in the top left, top right, and
bottom left panels of Figure 11, respectively. The parameter p, i.e. the electron distribution spectral index, is evaluated from the best-fit parameters
using the second equation of Equation 8.

of �exp = 0.09 ± 0.01 and the estimate of mB1.0 ± 0.1 are in ex-
cellent agreement with the simulation values. The trise trend (top
right panel of Figure 12) returns a value of R

obs
0 = 2.4±1.0⇥1014,

which is ⇡ 60% larger than the simulation value, but still com-
patible within one sigma. The �exp = 0.03 ± 0.01 is significantly
lower than the simulated one. The value of ⌫0,obs

SSA ' 90 ± 10 pro-
vides a very good estimate of the simulation value ⌫0,obs

SSA = 90
GHz, but, as mentioned in the previous section, this value repre-

sents a lower bound. In the top left panel of Figure 12, the green
shaded area shows the 1-� the interval from the best fit, and the
vertical red dashed line represents the simulation value. The de-
lay trend (bottom left panel of Figure 12) returns an estimate of
�exp = 0.06 ± 0.01, which is ⇡ 40% lower than the simulation
value, and an estimate of ⌫0,obs

SSA ' 90±10 GHz, which is in agree-
ment with the simulation value. In this case, we also estimate the
value of t

obs
exp = (3.4 ± 0.1) ⇥ 105s with good accuracy, which is
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Fig. 12: Expanding trends for ⌫ obtained from the simulations. Top left panel: Decay times (blue solid points) obtained from the best
fit for the radio-� response, for the simulation with �exp = 0.1 and ranging ⌫obs = [5, 45] GHz. The orange dashed line represents
the best fit with first equation of Equation 25. Top right panel: Same as in the top left panel, but for the case of t

obs
rise. The dashed

line corresponds to the best fit with the second equation of Equation 25. Bottom left panel: Same as in the top left panel, but for
�t

obs. The dashed line corresponds to the best fit with the third equation of Equation 25. Bottom right panel: Trend of t
obs
rise/t

obs
decay

as observed in the simulations (solid blue points) compared to the expectation from the individual best-fit trends of t
obs
rise and t

obs
decay

(dashed line).

Table 4: Best fit results, for the ⌫obs simulations

actual values values from ⌫ trend best fit
blob obs t

obs
rise t

obs
decay �t

obs

R0 cm 5 ⇥ 1015 1.66 ⇥ 1014 (2.4 ± 1.0) ⇥ 1014 (1.7 ± 0.2) ⇥ 1014 (1.6 ± 0.1) ⇥ 1014

⌫0SSA GHz 3 90 90 ± 10 100 ± 20 90 ± 10
texp s 1 ⇥ 107 3.3 ⇥ 105 (3.4 ± 0.1) ⇥ 105

mB 1 1.0 ± 0.1
�exp c 0.1 0.03 ± 0.01 0.09 ± 0.01 0.06 ± 0.01
� 0.24 ± 0.07 0.58 ± 0.02 0.50 ± 0.02
p 1.46 0.6 ± 0.2 1.7 ± 0.1 1.4 ± 0.1

Notes. Best fit results, for the ⌫obs simulations, of the trends reported in Equation 25 for t
obs
rise, t

obs
decay, and �t

obs, and shown in the top left, top right, and
bottom left panels of Figure 12, respectively. The parameter p, i.e. the electron distribution spectral index, is evaluated from the best-fit parameters
using the second equation of Equations 8.

in agreement with the simulation value within a few percent. Fi-
nally, we comment on the e↵ect of the initial SSA frequency on
the rising time. As already noted, the rising time decreases to
zero as ⌫⇤SSA approaches ⌫0SSA. This implies that even if we ob-
tain a long decay time because of the low expansion rate, we
might expect a short rising time if ⌫⇤SSA is close to ⌫0SSA. As in

the case of the �exp trends, we estimate the electron distribution
index p from the best-fit parameters using the second equation
of Equation 8. The agreement with the simulation value is lower
than in the case of the �exp trends, in particular for the case of
the rise time trend, but nevertheless both delay and decay times
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Fig. 12: Expanding trends for ⌫ obtained from the simulations. Top left panel: Decay times (blue solid points) obtained from the best
fit for the radio-� response, for the simulation with �exp = 0.1 and ranging ⌫obs = [5, 45] GHz. The orange dashed line represents
the best fit with first equation of Equation 25. Top right panel: Same as in the top left panel, but for the case of t

obs
rise. The dashed

line corresponds to the best fit with the second equation of Equation 25. Bottom left panel: Same as in the top left panel, but for
�t

obs. The dashed line corresponds to the best fit with the third equation of Equation 25. Bottom right panel: Trend of t
obs
rise/t

obs
decay

as observed in the simulations (solid blue points) compared to the expectation from the individual best-fit trends of t
obs
rise and t

obs
decay

(dashed line).

Table 4: Best fit results, for the ⌫obs simulations

actual values values from ⌫ trend best fit
blob obs t

obs
rise t

obs
decay �t

obs

R0 cm 5 ⇥ 1015 1.66 ⇥ 1014 (2.4 ± 1.0) ⇥ 1014 (1.7 ± 0.2) ⇥ 1014 (1.6 ± 0.1) ⇥ 1014

⌫0SSA GHz 3 90 90 ± 10 100 ± 20 90 ± 10
texp s 1 ⇥ 107 3.3 ⇥ 105 (3.4 ± 0.1) ⇥ 105

mB 1 1.0 ± 0.1
�exp c 0.1 0.03 ± 0.01 0.09 ± 0.01 0.06 ± 0.01
� 0.24 ± 0.07 0.58 ± 0.02 0.50 ± 0.02
p 1.46 0.6 ± 0.2 1.7 ± 0.1 1.4 ± 0.1

Notes. Best fit results, for the ⌫obs simulations, of the trends reported in Equation 25 for t
obs
rise, t

obs
decay, and �t

obs, and shown in the top left, top right, and
bottom left panels of Figure 12, respectively. The parameter p, i.e. the electron distribution spectral index, is evaluated from the best-fit parameters
using the second equation of Equations 8.

in agreement with the simulation value within a few percent. Fi-
nally, we comment on the e↵ect of the initial SSA frequency on
the rising time. As already noted, the rising time decreases to
zero as ⌫⇤SSA approaches ⌫0SSA. This implies that even if we ob-
tain a long decay time because of the low expansion rate, we
might expect a short rising time if ⌫⇤SSA is close to ⌫0SSA. As in

the case of the �exp trends, we estimate the electron distribution
index p from the best-fit parameters using the second equation
of Equation 8. The agreement with the simulation value is lower
than in the case of the �exp trends, in particular for the case of
the rise time trend, but nevertheless both delay and decay times
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(l�) as a convolution (Türler et al. 1999; Sliusar et al. 2019a,b)
according to

lR(t) = S (t) ⇤ l�(t), (20)

where the S is an empirical function that depends on parameters
that can be related to the observable quantities investigated in
Section 2. We propose the following response function:

S (t) = A

exp �(t��)
tf

1 + exp �(t��)
tf

, (21)

where tf is the decay time, and tf is the rise time.
This is the combination of a logistic function for the rising

part and an exponential decay for the decaying part, with A be-
ing a scaling factor. The scaling factor depends mainly on the
initial value of the Compton dominance, on the observed radio
frequency, and on mB. In the present analysis, we are not investi-
gating its impact. The peak of S (t), corresponding to the radio-�
delay, reads

�t = � � tu ln
⇣ tu

tf � tu

⌘
. (22)

The actual determination of the rise and decay time is analyti-
cally complicated. We estimated trise and tdecay numerically by
imposing the condition S (t) = A

2 for trise and S (t) = A

e
for tdecay,

and verified that within a maximum deviation of 5% for trise, and
of 0.2% for tdecay, these timescales can be evaluated according to

trise = tu

⇣
0.54 + 1.34

⇣ t f

tu

⌘1/4⌘
(23)

tdecay = t f

⇣
1.00 + 1.33

⇣ t f

tu

⌘�1.11⌘
. (24)

For the propagation of the uncertainties we used the
Uncertainties2 Python package.

5.1. Validation of phenomenological relations

Before investigating the phenomenological trends, we validate
the relations in Section 2 using long-term simulations with ten
di↵erent values of �exp evaluated on a logarithmic grid rang-
ing [0.001, 0.3]. We use two scenarios: one where we disable
only the radiative cooling term in the FP equation, and one with
both radiative and adiabatic cooling terms enabled. As the phe-
nomenological relations derived in Section 2 are valid when the
adiabatic cooling is dominant, the deviations in the trends with
the radiative cooling enabled will highlight the e↵ect of the com-
petition between the synchrotron cooling and time the adiabatic
time already discussed in Section 2. In order to estimate the
trends, we minimise the right-hand side of Equation 20 with re-
spect to the left-hand side, where l� and lR are the light curves
produced in the simulations, leaving as free parameters A, �, tu,
and tf . To perform the analysis in the observer frame, we express
Equations 14 in terms of R

0
obs = R0

1+z

� and of the observed radio
frequencies:

2 Uncertainties: a Python package for calculations with uncertainties,
Eric O. LEBIGOT, http://pythonhosted.org/uncertainties/

t
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R
obs
0
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As we show later, as the value of the electron index p evolves
with time, the use of  as a function of a constant p during the
fit is inappropriate. Hence, we use a generic index � that is not
related directly to p during the fit but still preserves the behaviour
of the trends. In any case, we can still estimate the value of p

from the best-fit parameters using the second Equation 8.
An example of best-fit convolution is reported in Figure 6,

where we show the results of the best fit for the response at 15
GHz for the case with the cooling terms active, for �exp = 0.084
(top panel) and �exp = 0.001 (bottom panel), and texp = 1 ⇥ 107

s; all the other parameters are the same as reported in Table 2.
The light curves are in the observer frame.

The results of the validation of Equations 25 are summarised
in Figure 7, where we show the ratio of the timescales predicted
by Equations 25 to the actual results obtained by the best fit of
the radio-� response applied to the numerical simulations. The
blue lines correspond to the case of only adiabatic cooling, and
the orange lines to the case of only adiabatic plus radiative cool-
ing. The green shaded area corresponds to the ±10% region with
respect to the prediction from Equation 25. For the decay time,
we note that in the case of only adiabatic cooling, the trends
in Equation 25 are valid within a maximum derivation of time
. 1% for the delay time. This is consistent with our expecta-
tions, because Equation 25 takes into account only the contri-
bution from adiabatic cooling and from flux variations related
to the geometrical expansion. When the radiative cooling is also
enabled, the deviations are larger (by up to a factor of 2), with
a trend that decreases for larger values of �exp. This trend in the
deviations is due to the di↵erent interplay between radiative and
adiabatic cooling timescales for di↵erent expansion velocities,
which we investigate in more detail below. For the rise time we
observe a deviation by up to ⇡ 40% for the cases of only adia-
batic cooling and radiative plus adiabatic cooling. For the delay
time, the deviations are ⇡ 20% to ⇡ 30% for the case of only
adiabatic cooling, and ⇡ 20% to ⇡ 160% for the case of radia-
tive plus adiabatic cooling. The variations in the decay are larger
than those observed in the rise time, because the peak of the re-
sponse is a↵ected both by decay and rise times (see Equation
22). The validation shows that the phenomenological trends pre-
dict the timescales of the response when the adiabatic cooling
is dominant with good accuracy, and, as anticipated in Section
5.2, can be biased by the competition between the radiative cool-
ing time and adiabatic cooling time. A di↵erent balance between
adiabatic and radiative cooling will cause not only deviation in
the adiabatic-dominated trends but also significant changes in
the electron energy distribution at the radio peak time for dif-
ferent values of �exp. For the purpose of illustration, we show
in Figure 8 the di↵erent states of the electron distributions at
the time corresponding to the peak of the ⌫obs = 15 GHz light
curves, for the values of �exp ranging [0.001, 0.3] used in our
simulations. We note that, for smaller values of �exp, the expan-
sion process lasts longer, and the slower temporal decrease of
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Fig. 15: 3C 273 synthetic radio light curve (middle), created as a convolution of the 3-days-binned Fermi-LAT 0.1-300 GeV light
curve (top) and of the radio response (inset panel), compared with the OVRO 15 GHz radio light curve (bottom). Amplitude fitting
time range is highlighted in grey. The shape of the response profile (Table 7) was determined using the �-ray flaring period 54710 -
54890 MJD. The dotted line shows a slowly varying background radio flux, which cannot be reproduced by the response convolution
approach. The response amplitude was adjusted for di↵erent time intervals.

Table 8: Response amplitude multiplicative factor for di↵erent
flaring periods of 3C 273.

Period, MJD Value
54684-54890 1.07 ± 0.11
54890-55340 0.69 ± 0.04
55340-56125 1.39 ± 0.08
56125-56530 5.31 ± 0.16
56530-56920 0.46 ± 0.15
56920-57250 5.3 ± 0.4
57250-57710 2.71 ± 0.12
57710-57910 0.88 ± 0.17
57910-58110 3.5 ± 0.3
58110-58610 2.4 ± 0.3

in the radio emission with respect to the �-ray activity observed
in several blazars. The development of a flaring episode, fol-
lowed taking into account radiative and acceleration processes,
results in an initial self-absorption frequency of above 1011 Hz
(according to our initial setup), and therefore the radio delay will
occur under the hypothesis of an expanding blob when the source
size is large enough to move the SSA at frequencies comparable
to or lower than the observed radio light curve. The particles

need to be confined in order to observe a delayed peak in the ra-
dio light curve. In our analysis, we decoupled the acceleration re-
gion from the radiative region, and this is why escape timescales
acting in the radiative region do not impact the accelerated elec-
trons. Moreover, because of the expansion, it is natural to expect
the escape time of the particles to increase.

Similar analyses and comparable results have been presented
by Boula et al. (2018) and Potter (2018) but only a qualitative
comparison could be performed with our results as these latter
works did not present a quantitative analysis of the delays or the
phenomenological relations linking the delay to the physical pa-
rameters of the jet, and assume an arbitrary electron distribution
in the flaring region. The time lags versus the expansion velocity
presented in Boula et al. (2018) follows a similar trend to that
reported in the bottom left panel of Figure 11, with a delay go-
ing asymptotically to �t = 0, as predicted by our model and con-
firmed by our simulations. The time lags versus the initial source
size R0 (Fig. 3 of Boula et al. 2018) is the result of the change
in the SSA frequency with the source size and can therefore be
compared with our result shown in the bottom left panel of Fig-
ure 12. Potter (2018) used a large-scale parabolic to conical jet
structure in qualitative agreement with our results. Even if the
agreement with these models can only be qualitative —because

Article number, page 17 of 27

A. Tramacere et al.: Radio-�-ray response in blazars as a signature of adiabatic blob expansion

Fig. 15: 3C 273 synthetic radio light curve (middle), created as a convolution of the 3-days-binned Fermi-LAT 0.1-300 GeV light
curve (top) and of the radio response (inset panel), compared with the OVRO 15 GHz radio light curve (bottom). Amplitude fitting
time range is highlighted in grey. The shape of the response profile (Table 7) was determined using the �-ray flaring period 54710 -
54890 MJD. The dotted line shows a slowly varying background radio flux, which cannot be reproduced by the response convolution
approach. The response amplitude was adjusted for di↵erent time intervals.

Table 8: Response amplitude multiplicative factor for di↵erent
flaring periods of 3C 273.

Period, MJD Value
54684-54890 1.07 ± 0.11
54890-55340 0.69 ± 0.04
55340-56125 1.39 ± 0.08
56125-56530 5.31 ± 0.16
56530-56920 0.46 ± 0.15
56920-57250 5.3 ± 0.4
57250-57710 2.71 ± 0.12
57710-57910 0.88 ± 0.17
57910-58110 3.5 ± 0.3
58110-58610 2.4 ± 0.3

in the radio emission with respect to the �-ray activity observed
in several blazars. The development of a flaring episode, fol-
lowed taking into account radiative and acceleration processes,
results in an initial self-absorption frequency of above 1011 Hz
(according to our initial setup), and therefore the radio delay will
occur under the hypothesis of an expanding blob when the source
size is large enough to move the SSA at frequencies comparable
to or lower than the observed radio light curve. The particles

need to be confined in order to observe a delayed peak in the ra-
dio light curve. In our analysis, we decoupled the acceleration re-
gion from the radiative region, and this is why escape timescales
acting in the radiative region do not impact the accelerated elec-
trons. Moreover, because of the expansion, it is natural to expect
the escape time of the particles to increase.

Similar analyses and comparable results have been presented
by Boula et al. (2018) and Potter (2018) but only a qualitative
comparison could be performed with our results as these latter
works did not present a quantitative analysis of the delays or the
phenomenological relations linking the delay to the physical pa-
rameters of the jet, and assume an arbitrary electron distribution
in the flaring region. The time lags versus the expansion velocity
presented in Boula et al. (2018) follows a similar trend to that
reported in the bottom left panel of Figure 11, with a delay go-
ing asymptotically to �t = 0, as predicted by our model and con-
firmed by our simulations. The time lags versus the initial source
size R0 (Fig. 3 of Boula et al. 2018) is the result of the change
in the SSA frequency with the source size and can therefore be
compared with our result shown in the bottom left panel of Fig-
ure 12. Potter (2018) used a large-scale parabolic to conical jet
structure in qualitative agreement with our results. Even if the
agreement with these models can only be qualitative —because
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Fig. 14: Mrk 501 synthetic radio light curve (middle), created as a convolution of the weekly binned Fermi-LAT 1-300 GeV light
curve (top) and of the radio response (inset of the middle panel), compared with the OVRO 15 GHz radio light curve (bottom). The
fitting time range is highlighted in grey.

tudes of the response for the individual flaring periods (listed in
Tab. 8) were determined on the full range of radio observations.
The variations of the response amplitude during di↵erent flares
can be explained by two possible factors:

– A transition from a SSC- to an external Compton (EC)-
dominated IC emission regime. Indeed, the amplitude of the
response strongly depends on the initial radiative output of
both the IC and S components at the flaring state. Hence, a
di↵erent contribution from the EC emission can impact the
response amplitude.

– As shown in Section 5, and in particular in Figure 10, there is
a strong e↵ect of the competition between synchrotron and
adiabatic cooling times on the modulation of the response
amplitude. In particular, we notice that, for changes in �exp,
variations on the response amplitude of up to one order of
magnitude are possible, whilst for changes in ⌫obs the varia-
tions can be up to 40%. As for 3C 373, the modulation of the
amplitude ranges form ⇡ 0.5 to ⇡ 5 (see Table 8), we can as-
sume that the observed modulation can also be explained as
a change in �exp. Moreover, a change in the EC contribution
can impact the radiative–adiabatic balance, producing e↵ects
similar to those produced by changes in �exp.

We also note that the slowly changing background (dotted
line in the middle and bottom panels of Figure 15) needed for
the radio emission does not a↵ect the ��ray component. This

discrepancy seems to be unrelated to the EC/SSC transition, be-
cause the radio-� response reproduces the detrended radio light
curves. A possible explanation could be provided by a change in
the baseline of the radio emission at the expansion site, possibly
related to a change in the beaming factor and therefore related to
the jet–blob geometry. In any case, the fact that the modulated
baseline alone allows us to reproduce the trend suggests that the
physical cause of the modulation is not a↵ecting the physical
mechanism of the response.

Table 7: Best-fit parameters of the �-ray(Fermi-LAT)-to-radio
response profile for 3C 273.

Parameter Value
A0 174+12

�11 ⇥ 103 Jy cm2 s/ph
trise 37+2

�2 days
tdecay 69+3

�3 days
�t 276+10

�10 days

Notes. Best-fit parameters of the �-ray(Fermi-LAT)-to-radio response
profile (see Eq. 21).

7. Discussion

The results presented in the present analysis provide a self-
consistent framework with which to explain the observed delay
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(l�) as a convolution (Türler et al. 1999; Sliusar et al. 2019a,b)
according to

lR(t) = S (t) ⇤ l�(t), (20)

where the S is an empirical function that depends on parameters
that can be related to the observable quantities investigated in
Section 2. We propose the following response function:

S (t) = A

exp �(t��)
tf

1 + exp �(t��)
tf

, (21)

where tf is the decay time, and tf is the rise time.
This is the combination of a logistic function for the rising

part and an exponential decay for the decaying part, with A be-
ing a scaling factor. The scaling factor depends mainly on the
initial value of the Compton dominance, on the observed radio
frequency, and on mB. In the present analysis, we are not investi-
gating its impact. The peak of S (t), corresponding to the radio-�
delay, reads

�t = � � tu ln
⇣ tu

tf � tu

⌘
. (22)

The actual determination of the rise and decay time is analyti-
cally complicated. We estimated trise and tdecay numerically by
imposing the condition S (t) = A

2 for trise and S (t) = A

e
for tdecay,

and verified that within a maximum deviation of 5% for trise, and
of 0.2% for tdecay, these timescales can be evaluated according to

trise = tu

⇣
0.54 + 1.34

⇣ t f

tu

⌘1/4⌘
(23)

tdecay = t f

⇣
1.00 + 1.33

⇣ t f

tu

⌘�1.11⌘
. (24)

For the propagation of the uncertainties we used the
Uncertainties2 Python package.

5.1. Validation of phenomenological relations

Before investigating the phenomenological trends, we validate
the relations in Section 2 using long-term simulations with ten
di↵erent values of �exp evaluated on a logarithmic grid rang-
ing [0.001, 0.3]. We use two scenarios: one where we disable
only the radiative cooling term in the FP equation, and one with
both radiative and adiabatic cooling terms enabled. As the phe-
nomenological relations derived in Section 2 are valid when the
adiabatic cooling is dominant, the deviations in the trends with
the radiative cooling enabled will highlight the e↵ect of the com-
petition between the synchrotron cooling and time the adiabatic
time already discussed in Section 2. In order to estimate the
trends, we minimise the right-hand side of Equation 20 with re-
spect to the left-hand side, where l� and lR are the light curves
produced in the simulations, leaving as free parameters A, �, tu,
and tf . To perform the analysis in the observer frame, we express
Equations 14 in terms of R

0
obs = R0

1+z

� and of the observed radio
frequencies:

2 Uncertainties: a Python package for calculations with uncertainties,
Eric O. LEBIGOT, http://pythonhosted.org/uncertainties/

t
obs
decay =

R
obs
0

mB�expc

⇣⌫0,obs
SSA

⌫⇤,obs
SSA

⌘�
(25)

t
obs
rise =

1
2

t
obs
peak =

8>>>>><
>>>>>:

1
2

R
obs
0

�expc

h⇣⌫0,obs
SSA

⌫⇤,obs
SSA

⌘� � 1
i

if ⌫0,obs
SSA > ⌫

⇤,obs
SSA

0 otherwise

�t
obs = t

obs
exp + t

obs
peak = t

obs
exp +

R
obs
0

�expc

h⇣⌫0,obs
SSA

⌫⇤,obs
SSA

⌘� � 1
i
.

As we show later, as the value of the electron index p evolves
with time, the use of  as a function of a constant p during the
fit is inappropriate. Hence, we use a generic index � that is not
related directly to p during the fit but still preserves the behaviour
of the trends. In any case, we can still estimate the value of p

from the best-fit parameters using the second Equation 8.
An example of best-fit convolution is reported in Figure 6,

where we show the results of the best fit for the response at 15
GHz for the case with the cooling terms active, for �exp = 0.084
(top panel) and �exp = 0.001 (bottom panel), and texp = 1 ⇥ 107

s; all the other parameters are the same as reported in Table 2.
The light curves are in the observer frame.

The results of the validation of Equations 25 are summarised
in Figure 7, where we show the ratio of the timescales predicted
by Equations 25 to the actual results obtained by the best fit of
the radio-� response applied to the numerical simulations. The
blue lines correspond to the case of only adiabatic cooling, and
the orange lines to the case of only adiabatic plus radiative cool-
ing. The green shaded area corresponds to the ±10% region with
respect to the prediction from Equation 25. For the decay time,
we note that in the case of only adiabatic cooling, the trends
in Equation 25 are valid within a maximum derivation of time
. 1% for the delay time. This is consistent with our expecta-
tions, because Equation 25 takes into account only the contri-
bution from adiabatic cooling and from flux variations related
to the geometrical expansion. When the radiative cooling is also
enabled, the deviations are larger (by up to a factor of 2), with
a trend that decreases for larger values of �exp. This trend in the
deviations is due to the di↵erent interplay between radiative and
adiabatic cooling timescales for di↵erent expansion velocities,
which we investigate in more detail below. For the rise time we
observe a deviation by up to ⇡ 40% for the cases of only adia-
batic cooling and radiative plus adiabatic cooling. For the delay
time, the deviations are ⇡ 20% to ⇡ 30% for the case of only
adiabatic cooling, and ⇡ 20% to ⇡ 160% for the case of radia-
tive plus adiabatic cooling. The variations in the decay are larger
than those observed in the rise time, because the peak of the re-
sponse is a↵ected both by decay and rise times (see Equation
22). The validation shows that the phenomenological trends pre-
dict the timescales of the response when the adiabatic cooling
is dominant with good accuracy, and, as anticipated in Section
5.2, can be biased by the competition between the radiative cool-
ing time and adiabatic cooling time. A di↵erent balance between
adiabatic and radiative cooling will cause not only deviation in
the adiabatic-dominated trends but also significant changes in
the electron energy distribution at the radio peak time for dif-
ferent values of �exp. For the purpose of illustration, we show
in Figure 8 the di↵erent states of the electron distributions at
the time corresponding to the peak of the ⌫obs = 15 GHz light
curves, for the values of �exp ranging [0.001, 0.3] used in our
simulations. We note that, for smaller values of �exp, the expan-
sion process lasts longer, and the slower temporal decrease of
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the analyses were performed with di↵erent methods and numer-
ical codes (Potter 2018; Boula et al. 2018)—, the comparison
provides orthogonal checks, the results of which appear to sup-
port the hypothesis of an expanding blob related to the radio-�
connection in blazars.

One of the main novelties of our analysis, and one that is
missing in previous studies, is the determination of the single
flare response, and its verification via a self-consistent numerical
model, taking into account both acceleration and radiation pro-
cess, and the determination of the phenomenological relations
that link not only the delay but also the rise and decay time to
the expansion velocity, magnetic field index, and initial SSA fre-
quency. The proposed single-flare response is able to reproduce
the radio light curve as a convolution of the ��ray light curve,
and we verified that the timescales of the response follow the
phenomenological trends. This allowed us to establish a link be-
tween some physical parameters, such as the emitting region ini-
tial size, R0, the jet magnetic field index mB, and the observed
response. In particular, the derivation of the initial source size
can provide an orthogonal method compared to the determina-
tion based on MW SED fitting or variability timescales.

We also investigated other e↵ects of the adiabatic expansion.
In particular, we analysed the impact on the CD, verifying that
as the source size increases, the consequent decrease in photon
and electron density leads to a drop in the CD. This e↵ect, if
present at the time of the flare (texp = 0), can provide a hint
for the blob expansion before the observation of the radio de-
lay. It is extremely interesting that, very recently, MAGIC Col-
laboration et al. (2021) presented an analysis of the correlation
patterns of Mrk 421 in 2017, finding that adiabatic expansion
without significant particle losses can be invoked to explain the
pattern of the CD evolution. The authors also verified that the
adiabatic cooling timescales should be longer than those neces-
sary to explain a cooling break compatible with their MW data,
requiring adiabatic timescales of the order of weeks to months
in the observer frame that are in good agreement with our pro-
posed scenario. Moreover, the authors also state that the expand-
ing blob can explain �-ray orphan flares. The scenario proposed
in MAGIC Collaboration et al. (2021) is highly compatible with
our scenario, as we can set texp = 0 without any loss of general-
ity, and proves that, for Mrk 421, both the radio delay and the CD
e↵ect are confirmed by the data. Also, comparisons with the data
shown in Section 6 indicate that our model can accurately repro-
duce the radio light curve as a response to the �-ray light curve
over a time-span of years, and the relevant timescales derived
from the response function are in agreement with those derived
from the self-consistent modelling. In particular, for Mrk 421,
the analysis in Section 6.2 returns a best-fit value of �t ⇡ 37
days with a decay time of ⇡ 126 days, which corresponds to
�exp . 0.01 (see Sect. 5.2). The value of the decay time, which
according to our model is a proxy for the adiabatic cooling time,
is also in nice agreement with the decay time of the order of
weeks to months reported in MAGIC Collaboration et al. (2021).

To get a deeper understanding of the physics embedded in
the convolution analysis, we used a MCMC approach using the
emcee4 package (Foreman-Mackey et al. 2013). We define a
composite log-likelihoodL = Lrise+Ldecay+Ldelay, whereLrise,
Ldecay, and Ldelay represent the log-likelihood functions corre-
sponding to rise, decay, and delay time in Equation 25. Each
likelihood is evaluated assuming that the parameters returned by
the convolution analysis are distributed according to a Gaussian

4 https://emcee.readthedocs.io/en/stable/
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where µi and �i represent best-fit parameter values and the 1-�
errors, respectively, for �t, t

obs
rise, and t

obs
decay obtained in the con-

volution analysis, and xi represents the corresponding parameter
evaluated from Equation 25. In order to sample the parameter
space, we ran a chain with 104 steps, and a burn-in length of
1000 steps, checking that the chain was always converging. We
use uninformative flat priors, with mB 2 [1, 2], � 2 [1/3, 1],
⌫0,obs

SSA 2 [10, 104] GHz, �exp 2 [10�4, 1]. To determine the range
on R

obs
0 , we started from setting a flat range for the observed

�-ray variability timescale t
var
� 2 [0.25, 14] days, and we set

R
obs
0 = t

var
� c, leading to R

obs
0 2 [6.5 ⇥ 1013, 3.6 ⇥ 1017] cm. As

the phenomenological relations have a bias with respect to the
case where radiative cooling is taken into account (see Section 5,
Figure 7) we add 5% systematic error to the convolution analy-
sis results. In Appendix C we provide a validation of the method
against the simulation for �exp = 0.1. In Figures 16, 17, and
18, we plot the posterior contour maps (where the solid black
line identifies the 1-� containment for a bivariate Gaussian dis-
tribution). On the diagonal, we plot the marginalised posterior
distributions. The blue vertical line in the log(⌫0,obs

SSA ) histogram
identifies the 15 GHz observed OVRO frequency. In figure 19,
we plot the histogram of the values of the electron distribution in-
dex p obtained from the posterior values of mB and �, and using
the second equation of Equation 8. We notice that the MCMC is
able to provide informative confidence regions for the parame-
ters of interest, except for log(R0) estimated for Mrk 421, where
we notice a flat posterior for log(Robs

0 ) = 15.67+0.59
�0.59. In all the

other cases, we get informative posteriors. The magnetic index,
for Mrk 421, mB = 1.39+0.38

�0.29 has the peak of the PDF at mB = 1.
For the same source, we notice the low value of log(⌫0,obs

SSA ) =
10.34+0.09

�0.06, corresponding to ⌫0,obs
SSA ⇡ 22 GHz, driven by the short

t
obs
rise

returned by the convolution analysis, and very close the ob-
served OVRO frequency of 15 GHz. For the case of Mrk 501,
we obtain log(Robs

0 ) = 15.60+0.60
�0.54, mB = 1.31+0.36

0.22 . In this case,
the PDF is also peaking at mB ⇡ 1.0. The initial SSA frequency
log(⌫0,obs

SSA ) = 11.26+0.84
�0.49, which is larger than in the case of Mrk5

421, is compatible with the longer rise time. Regarding 3C 273,
we obtain log(Robs

0 ) = 15.53+0.61
�0.50, mB = 1.48+0.28

�0.18, but in this case
the PDF is not peaking at mB = 1. In this case, as in the case of
Mrk 501, we also obtain a larger value of log(⌫0,obs

SSA ) = 11.69+0.76
�0.61

compared to the case of Mrk 421. Regarding the index �, we
find it interesting to discuss the estimate on the electron index
p. Indeed, as � plays the same role as  , we can use the second
equation of Equation 8 to estimate the posterior distribution of
p from the posterior values of mB and �. The result is shown in
Figure 19. For the case of Mrk 421, we find a confidence level
of p = 1.97+1.26

�0.72, for Mrk 501 p = 2.00+1.14
�0.73, and for 3C 273

p = 2.27+1.18
�0.84. The value of 3C 273 is compatible with a stronger

cooling regime, and is therefore in agreement with the presence
of an EC radiative component. For all the objects, the values of p

are compatible with the predictions from Fermi first-order accel-
eration plus a stochastic component, which is in agreement with
previous theoretical and observational analyses (Tramacere et al.
2009; Tramacere et al. 2011).

Nevertheless, the convolution analysis performed with the
observed data can be a↵ected by numerous sources of bias; in
particular, our use of a single response for the full time-span, en-
compassing several flaring episodes, with the possibility that the
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the analyses were performed with di↵erent methods and numer-
ical codes (Potter 2018; Boula et al. 2018)—, the comparison
provides orthogonal checks, the results of which appear to sup-
port the hypothesis of an expanding blob related to the radio-�
connection in blazars.

One of the main novelties of our analysis, and one that is
missing in previous studies, is the determination of the single
flare response, and its verification via a self-consistent numerical
model, taking into account both acceleration and radiation pro-
cess, and the determination of the phenomenological relations
that link not only the delay but also the rise and decay time to
the expansion velocity, magnetic field index, and initial SSA fre-
quency. The proposed single-flare response is able to reproduce
the radio light curve as a convolution of the ��ray light curve,
and we verified that the timescales of the response follow the
phenomenological trends. This allowed us to establish a link be-
tween some physical parameters, such as the emitting region ini-
tial size, R0, the jet magnetic field index mB, and the observed
response. In particular, the derivation of the initial source size
can provide an orthogonal method compared to the determina-
tion based on MW SED fitting or variability timescales.

We also investigated other e↵ects of the adiabatic expansion.
In particular, we analysed the impact on the CD, verifying that
as the source size increases, the consequent decrease in photon
and electron density leads to a drop in the CD. This e↵ect, if
present at the time of the flare (texp = 0), can provide a hint
for the blob expansion before the observation of the radio de-
lay. It is extremely interesting that, very recently, MAGIC Col-
laboration et al. (2021) presented an analysis of the correlation
patterns of Mrk 421 in 2017, finding that adiabatic expansion
without significant particle losses can be invoked to explain the
pattern of the CD evolution. The authors also verified that the
adiabatic cooling timescales should be longer than those neces-
sary to explain a cooling break compatible with their MW data,
requiring adiabatic timescales of the order of weeks to months
in the observer frame that are in good agreement with our pro-
posed scenario. Moreover, the authors also state that the expand-
ing blob can explain �-ray orphan flares. The scenario proposed
in MAGIC Collaboration et al. (2021) is highly compatible with
our scenario, as we can set texp = 0 without any loss of general-
ity, and proves that, for Mrk 421, both the radio delay and the CD
e↵ect are confirmed by the data. Also, comparisons with the data
shown in Section 6 indicate that our model can accurately repro-
duce the radio light curve as a response to the �-ray light curve
over a time-span of years, and the relevant timescales derived
from the response function are in agreement with those derived
from the self-consistent modelling. In particular, for Mrk 421,
the analysis in Section 6.2 returns a best-fit value of �t ⇡ 37
days with a decay time of ⇡ 126 days, which corresponds to
�exp . 0.01 (see Sect. 5.2). The value of the decay time, which
according to our model is a proxy for the adiabatic cooling time,
is also in nice agreement with the decay time of the order of
weeks to months reported in MAGIC Collaboration et al. (2021).

To get a deeper understanding of the physics embedded in
the convolution analysis, we used a MCMC approach using the
emcee4 package (Foreman-Mackey et al. 2013). We define a
composite log-likelihoodL = Lrise+Ldecay+Ldelay, whereLrise,
Ldecay, and Ldelay represent the log-likelihood functions corre-
sponding to rise, decay, and delay time in Equation 25. Each
likelihood is evaluated assuming that the parameters returned by
the convolution analysis are distributed according to a Gaussian
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where µi and �i represent best-fit parameter values and the 1-�
errors, respectively, for �t, t

obs
rise, and t

obs
decay obtained in the con-

volution analysis, and xi represents the corresponding parameter
evaluated from Equation 25. In order to sample the parameter
space, we ran a chain with 104 steps, and a burn-in length of
1000 steps, checking that the chain was always converging. We
use uninformative flat priors, with mB 2 [1, 2], � 2 [1/3, 1],
⌫0,obs

SSA 2 [10, 104] GHz, �exp 2 [10�4, 1]. To determine the range
on R

obs
0 , we started from setting a flat range for the observed

�-ray variability timescale t
var
� 2 [0.25, 14] days, and we set

R
obs
0 = t

var
� c, leading to R

obs
0 2 [6.5 ⇥ 1013, 3.6 ⇥ 1017] cm. As

the phenomenological relations have a bias with respect to the
case where radiative cooling is taken into account (see Section 5,
Figure 7) we add 5% systematic error to the convolution analy-
sis results. In Appendix C we provide a validation of the method
against the simulation for �exp = 0.1. In Figures 16, 17, and
18, we plot the posterior contour maps (where the solid black
line identifies the 1-� containment for a bivariate Gaussian dis-
tribution). On the diagonal, we plot the marginalised posterior
distributions. The blue vertical line in the log(⌫0,obs

SSA ) histogram
identifies the 15 GHz observed OVRO frequency. In figure 19,
we plot the histogram of the values of the electron distribution in-
dex p obtained from the posterior values of mB and �, and using
the second equation of Equation 8. We notice that the MCMC is
able to provide informative confidence regions for the parame-
ters of interest, except for log(R0) estimated for Mrk 421, where
we notice a flat posterior for log(Robs

0 ) = 15.67+0.59
�0.59. In all the

other cases, we get informative posteriors. The magnetic index,
for Mrk 421, mB = 1.39+0.38

�0.29 has the peak of the PDF at mB = 1.
For the same source, we notice the low value of log(⌫0,obs

SSA ) =
10.34+0.09

�0.06, corresponding to ⌫0,obs
SSA ⇡ 22 GHz, driven by the short

t
obs
rise

returned by the convolution analysis, and very close the ob-
served OVRO frequency of 15 GHz. For the case of Mrk 501,
we obtain log(Robs

0 ) = 15.60+0.60
�0.54, mB = 1.31+0.36

0.22 . In this case,
the PDF is also peaking at mB ⇡ 1.0. The initial SSA frequency
log(⌫0,obs

SSA ) = 11.26+0.84
�0.49, which is larger than in the case of Mrk5

421, is compatible with the longer rise time. Regarding 3C 273,
we obtain log(Robs

0 ) = 15.53+0.61
�0.50, mB = 1.48+0.28

�0.18, but in this case
the PDF is not peaking at mB = 1. In this case, as in the case of
Mrk 501, we also obtain a larger value of log(⌫0,obs

SSA ) = 11.69+0.76
�0.61

compared to the case of Mrk 421. Regarding the index �, we
find it interesting to discuss the estimate on the electron index
p. Indeed, as � plays the same role as  , we can use the second
equation of Equation 8 to estimate the posterior distribution of
p from the posterior values of mB and �. The result is shown in
Figure 19. For the case of Mrk 421, we find a confidence level
of p = 1.97+1.26

�0.72, for Mrk 501 p = 2.00+1.14
�0.73, and for 3C 273

p = 2.27+1.18
�0.84. The value of 3C 273 is compatible with a stronger

cooling regime, and is therefore in agreement with the presence
of an EC radiative component. For all the objects, the values of p

are compatible with the predictions from Fermi first-order accel-
eration plus a stochastic component, which is in agreement with
previous theoretical and observational analyses (Tramacere et al.
2009; Tramacere et al. 2011).

Nevertheless, the convolution analysis performed with the
observed data can be a↵ected by numerous sources of bias; in
particular, our use of a single response for the full time-span, en-
compassing several flaring episodes, with the possibility that the
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the analyses were performed with di↵erent methods and numer-
ical codes (Potter 2018; Boula et al. 2018)—, the comparison
provides orthogonal checks, the results of which appear to sup-
port the hypothesis of an expanding blob related to the radio-�
connection in blazars.

One of the main novelties of our analysis, and one that is
missing in previous studies, is the determination of the single
flare response, and its verification via a self-consistent numerical
model, taking into account both acceleration and radiation pro-
cess, and the determination of the phenomenological relations
that link not only the delay but also the rise and decay time to
the expansion velocity, magnetic field index, and initial SSA fre-
quency. The proposed single-flare response is able to reproduce
the radio light curve as a convolution of the ��ray light curve,
and we verified that the timescales of the response follow the
phenomenological trends. This allowed us to establish a link be-
tween some physical parameters, such as the emitting region ini-
tial size, R0, the jet magnetic field index mB, and the observed
response. In particular, the derivation of the initial source size
can provide an orthogonal method compared to the determina-
tion based on MW SED fitting or variability timescales.

We also investigated other e↵ects of the adiabatic expansion.
In particular, we analysed the impact on the CD, verifying that
as the source size increases, the consequent decrease in photon
and electron density leads to a drop in the CD. This e↵ect, if
present at the time of the flare (texp = 0), can provide a hint
for the blob expansion before the observation of the radio de-
lay. It is extremely interesting that, very recently, MAGIC Col-
laboration et al. (2021) presented an analysis of the correlation
patterns of Mrk 421 in 2017, finding that adiabatic expansion
without significant particle losses can be invoked to explain the
pattern of the CD evolution. The authors also verified that the
adiabatic cooling timescales should be longer than those neces-
sary to explain a cooling break compatible with their MW data,
requiring adiabatic timescales of the order of weeks to months
in the observer frame that are in good agreement with our pro-
posed scenario. Moreover, the authors also state that the expand-
ing blob can explain �-ray orphan flares. The scenario proposed
in MAGIC Collaboration et al. (2021) is highly compatible with
our scenario, as we can set texp = 0 without any loss of general-
ity, and proves that, for Mrk 421, both the radio delay and the CD
e↵ect are confirmed by the data. Also, comparisons with the data
shown in Section 6 indicate that our model can accurately repro-
duce the radio light curve as a response to the �-ray light curve
over a time-span of years, and the relevant timescales derived
from the response function are in agreement with those derived
from the self-consistent modelling. In particular, for Mrk 421,
the analysis in Section 6.2 returns a best-fit value of �t ⇡ 37
days with a decay time of ⇡ 126 days, which corresponds to
�exp . 0.01 (see Sect. 5.2). The value of the decay time, which
according to our model is a proxy for the adiabatic cooling time,
is also in nice agreement with the decay time of the order of
weeks to months reported in MAGIC Collaboration et al. (2021).

To get a deeper understanding of the physics embedded in
the convolution analysis, we used a MCMC approach using the
emcee4 package (Foreman-Mackey et al. 2013). We define a
composite log-likelihoodL = Lrise+Ldecay+Ldelay, whereLrise,
Ldecay, and Ldelay represent the log-likelihood functions corre-
sponding to rise, decay, and delay time in Equation 25. Each
likelihood is evaluated assuming that the parameters returned by
the convolution analysis are distributed according to a Gaussian
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where µi and �i represent best-fit parameter values and the 1-�
errors, respectively, for �t, t

obs
rise, and t

obs
decay obtained in the con-

volution analysis, and xi represents the corresponding parameter
evaluated from Equation 25. In order to sample the parameter
space, we ran a chain with 104 steps, and a burn-in length of
1000 steps, checking that the chain was always converging. We
use uninformative flat priors, with mB 2 [1, 2], � 2 [1/3, 1],
⌫0,obs

SSA 2 [10, 104] GHz, �exp 2 [10�4, 1]. To determine the range
on R

obs
0 , we started from setting a flat range for the observed

�-ray variability timescale t
var
� 2 [0.25, 14] days, and we set

R
obs
0 = t

var
� c, leading to R

obs
0 2 [6.5 ⇥ 1013, 3.6 ⇥ 1017] cm. As

the phenomenological relations have a bias with respect to the
case where radiative cooling is taken into account (see Section 5,
Figure 7) we add 5% systematic error to the convolution analy-
sis results. In Appendix C we provide a validation of the method
against the simulation for �exp = 0.1. In Figures 16, 17, and
18, we plot the posterior contour maps (where the solid black
line identifies the 1-� containment for a bivariate Gaussian dis-
tribution). On the diagonal, we plot the marginalised posterior
distributions. The blue vertical line in the log(⌫0,obs

SSA ) histogram
identifies the 15 GHz observed OVRO frequency. In figure 19,
we plot the histogram of the values of the electron distribution in-
dex p obtained from the posterior values of mB and �, and using
the second equation of Equation 8. We notice that the MCMC is
able to provide informative confidence regions for the parame-
ters of interest, except for log(R0) estimated for Mrk 421, where
we notice a flat posterior for log(Robs

0 ) = 15.67+0.59
�0.59. In all the

other cases, we get informative posteriors. The magnetic index,
for Mrk 421, mB = 1.39+0.38

�0.29 has the peak of the PDF at mB = 1.
For the same source, we notice the low value of log(⌫0,obs

SSA ) =
10.34+0.09

�0.06, corresponding to ⌫0,obs
SSA ⇡ 22 GHz, driven by the short

t
obs
rise

returned by the convolution analysis, and very close the ob-
served OVRO frequency of 15 GHz. For the case of Mrk 501,
we obtain log(Robs

0 ) = 15.60+0.60
�0.54, mB = 1.31+0.36

0.22 . In this case,
the PDF is also peaking at mB ⇡ 1.0. The initial SSA frequency
log(⌫0,obs

SSA ) = 11.26+0.84
�0.49, which is larger than in the case of Mrk5

421, is compatible with the longer rise time. Regarding 3C 273,
we obtain log(Robs

0 ) = 15.53+0.61
�0.50, mB = 1.48+0.28

�0.18, but in this case
the PDF is not peaking at mB = 1. In this case, as in the case of
Mrk 501, we also obtain a larger value of log(⌫0,obs

SSA ) = 11.69+0.76
�0.61

compared to the case of Mrk 421. Regarding the index �, we
find it interesting to discuss the estimate on the electron index
p. Indeed, as � plays the same role as  , we can use the second
equation of Equation 8 to estimate the posterior distribution of
p from the posterior values of mB and �. The result is shown in
Figure 19. For the case of Mrk 421, we find a confidence level
of p = 1.97+1.26

�0.72, for Mrk 501 p = 2.00+1.14
�0.73, and for 3C 273

p = 2.27+1.18
�0.84. The value of 3C 273 is compatible with a stronger

cooling regime, and is therefore in agreement with the presence
of an EC radiative component. For all the objects, the values of p

are compatible with the predictions from Fermi first-order accel-
eration plus a stochastic component, which is in agreement with
previous theoretical and observational analyses (Tramacere et al.
2009; Tramacere et al. 2011).

Nevertheless, the convolution analysis performed with the
observed data can be a↵ected by numerous sources of bias; in
particular, our use of a single response for the full time-span, en-
compassing several flaring episodes, with the possibility that the
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the analyses were performed with di↵erent methods and numer-
ical codes (Potter 2018; Boula et al. 2018)—, the comparison
provides orthogonal checks, the results of which appear to sup-
port the hypothesis of an expanding blob related to the radio-�
connection in blazars.

One of the main novelties of our analysis, and one that is
missing in previous studies, is the determination of the single
flare response, and its verification via a self-consistent numerical
model, taking into account both acceleration and radiation pro-
cess, and the determination of the phenomenological relations
that link not only the delay but also the rise and decay time to
the expansion velocity, magnetic field index, and initial SSA fre-
quency. The proposed single-flare response is able to reproduce
the radio light curve as a convolution of the ��ray light curve,
and we verified that the timescales of the response follow the
phenomenological trends. This allowed us to establish a link be-
tween some physical parameters, such as the emitting region ini-
tial size, R0, the jet magnetic field index mB, and the observed
response. In particular, the derivation of the initial source size
can provide an orthogonal method compared to the determina-
tion based on MW SED fitting or variability timescales.

We also investigated other e↵ects of the adiabatic expansion.
In particular, we analysed the impact on the CD, verifying that
as the source size increases, the consequent decrease in photon
and electron density leads to a drop in the CD. This e↵ect, if
present at the time of the flare (texp = 0), can provide a hint
for the blob expansion before the observation of the radio de-
lay. It is extremely interesting that, very recently, MAGIC Col-
laboration et al. (2021) presented an analysis of the correlation
patterns of Mrk 421 in 2017, finding that adiabatic expansion
without significant particle losses can be invoked to explain the
pattern of the CD evolution. The authors also verified that the
adiabatic cooling timescales should be longer than those neces-
sary to explain a cooling break compatible with their MW data,
requiring adiabatic timescales of the order of weeks to months
in the observer frame that are in good agreement with our pro-
posed scenario. Moreover, the authors also state that the expand-
ing blob can explain �-ray orphan flares. The scenario proposed
in MAGIC Collaboration et al. (2021) is highly compatible with
our scenario, as we can set texp = 0 without any loss of general-
ity, and proves that, for Mrk 421, both the radio delay and the CD
e↵ect are confirmed by the data. Also, comparisons with the data
shown in Section 6 indicate that our model can accurately repro-
duce the radio light curve as a response to the �-ray light curve
over a time-span of years, and the relevant timescales derived
from the response function are in agreement with those derived
from the self-consistent modelling. In particular, for Mrk 421,
the analysis in Section 6.2 returns a best-fit value of �t ⇡ 37
days with a decay time of ⇡ 126 days, which corresponds to
�exp . 0.01 (see Sect. 5.2). The value of the decay time, which
according to our model is a proxy for the adiabatic cooling time,
is also in nice agreement with the decay time of the order of
weeks to months reported in MAGIC Collaboration et al. (2021).

To get a deeper understanding of the physics embedded in
the convolution analysis, we used a MCMC approach using the
emcee4 package (Foreman-Mackey et al. 2013). We define a
composite log-likelihoodL = Lrise+Ldecay+Ldelay, whereLrise,
Ldecay, and Ldelay represent the log-likelihood functions corre-
sponding to rise, decay, and delay time in Equation 25. Each
likelihood is evaluated assuming that the parameters returned by
the convolution analysis are distributed according to a Gaussian
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where µi and �i represent best-fit parameter values and the 1-�
errors, respectively, for �t, t

obs
rise, and t

obs
decay obtained in the con-

volution analysis, and xi represents the corresponding parameter
evaluated from Equation 25. In order to sample the parameter
space, we ran a chain with 104 steps, and a burn-in length of
1000 steps, checking that the chain was always converging. We
use uninformative flat priors, with mB 2 [1, 2], � 2 [1/3, 1],
⌫0,obs

SSA 2 [10, 104] GHz, �exp 2 [10�4, 1]. To determine the range
on R

obs
0 , we started from setting a flat range for the observed

�-ray variability timescale t
var
� 2 [0.25, 14] days, and we set

R
obs
0 = t

var
� c, leading to R

obs
0 2 [6.5 ⇥ 1013, 3.6 ⇥ 1017] cm. As

the phenomenological relations have a bias with respect to the
case where radiative cooling is taken into account (see Section 5,
Figure 7) we add 5% systematic error to the convolution analy-
sis results. In Appendix C we provide a validation of the method
against the simulation for �exp = 0.1. In Figures 16, 17, and
18, we plot the posterior contour maps (where the solid black
line identifies the 1-� containment for a bivariate Gaussian dis-
tribution). On the diagonal, we plot the marginalised posterior
distributions. The blue vertical line in the log(⌫0,obs

SSA ) histogram
identifies the 15 GHz observed OVRO frequency. In figure 19,
we plot the histogram of the values of the electron distribution in-
dex p obtained from the posterior values of mB and �, and using
the second equation of Equation 8. We notice that the MCMC is
able to provide informative confidence regions for the parame-
ters of interest, except for log(R0) estimated for Mrk 421, where
we notice a flat posterior for log(Robs

0 ) = 15.67+0.59
�0.59. In all the

other cases, we get informative posteriors. The magnetic index,
for Mrk 421, mB = 1.39+0.38

�0.29 has the peak of the PDF at mB = 1.
For the same source, we notice the low value of log(⌫0,obs

SSA ) =
10.34+0.09

�0.06, corresponding to ⌫0,obs
SSA ⇡ 22 GHz, driven by the short

t
obs
rise

returned by the convolution analysis, and very close the ob-
served OVRO frequency of 15 GHz. For the case of Mrk 501,
we obtain log(Robs

0 ) = 15.60+0.60
�0.54, mB = 1.31+0.36

0.22 . In this case,
the PDF is also peaking at mB ⇡ 1.0. The initial SSA frequency
log(⌫0,obs

SSA ) = 11.26+0.84
�0.49, which is larger than in the case of Mrk5

421, is compatible with the longer rise time. Regarding 3C 273,
we obtain log(Robs

0 ) = 15.53+0.61
�0.50, mB = 1.48+0.28

�0.18, but in this case
the PDF is not peaking at mB = 1. In this case, as in the case of
Mrk 501, we also obtain a larger value of log(⌫0,obs

SSA ) = 11.69+0.76
�0.61

compared to the case of Mrk 421. Regarding the index �, we
find it interesting to discuss the estimate on the electron index
p. Indeed, as � plays the same role as  , we can use the second
equation of Equation 8 to estimate the posterior distribution of
p from the posterior values of mB and �. The result is shown in
Figure 19. For the case of Mrk 421, we find a confidence level
of p = 1.97+1.26

�0.72, for Mrk 501 p = 2.00+1.14
�0.73, and for 3C 273

p = 2.27+1.18
�0.84. The value of 3C 273 is compatible with a stronger

cooling regime, and is therefore in agreement with the presence
of an EC radiative component. For all the objects, the values of p

are compatible with the predictions from Fermi first-order accel-
eration plus a stochastic component, which is in agreement with
previous theoretical and observational analyses (Tramacere et al.
2009; Tramacere et al. 2011).

Nevertheless, the convolution analysis performed with the
observed data can be a↵ected by numerous sources of bias; in
particular, our use of a single response for the full time-span, en-
compassing several flaring episodes, with the possibility that the
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the analyses were performed with di↵erent methods and numer-
ical codes (Potter 2018; Boula et al. 2018)—, the comparison
provides orthogonal checks, the results of which appear to sup-
port the hypothesis of an expanding blob related to the radio-�
connection in blazars.

One of the main novelties of our analysis, and one that is
missing in previous studies, is the determination of the single
flare response, and its verification via a self-consistent numerical
model, taking into account both acceleration and radiation pro-
cess, and the determination of the phenomenological relations
that link not only the delay but also the rise and decay time to
the expansion velocity, magnetic field index, and initial SSA fre-
quency. The proposed single-flare response is able to reproduce
the radio light curve as a convolution of the ��ray light curve,
and we verified that the timescales of the response follow the
phenomenological trends. This allowed us to establish a link be-
tween some physical parameters, such as the emitting region ini-
tial size, R0, the jet magnetic field index mB, and the observed
response. In particular, the derivation of the initial source size
can provide an orthogonal method compared to the determina-
tion based on MW SED fitting or variability timescales.

We also investigated other e↵ects of the adiabatic expansion.
In particular, we analysed the impact on the CD, verifying that
as the source size increases, the consequent decrease in photon
and electron density leads to a drop in the CD. This e↵ect, if
present at the time of the flare (texp = 0), can provide a hint
for the blob expansion before the observation of the radio de-
lay. It is extremely interesting that, very recently, MAGIC Col-
laboration et al. (2021) presented an analysis of the correlation
patterns of Mrk 421 in 2017, finding that adiabatic expansion
without significant particle losses can be invoked to explain the
pattern of the CD evolution. The authors also verified that the
adiabatic cooling timescales should be longer than those neces-
sary to explain a cooling break compatible with their MW data,
requiring adiabatic timescales of the order of weeks to months
in the observer frame that are in good agreement with our pro-
posed scenario. Moreover, the authors also state that the expand-
ing blob can explain �-ray orphan flares. The scenario proposed
in MAGIC Collaboration et al. (2021) is highly compatible with
our scenario, as we can set texp = 0 without any loss of general-
ity, and proves that, for Mrk 421, both the radio delay and the CD
e↵ect are confirmed by the data. Also, comparisons with the data
shown in Section 6 indicate that our model can accurately repro-
duce the radio light curve as a response to the �-ray light curve
over a time-span of years, and the relevant timescales derived
from the response function are in agreement with those derived
from the self-consistent modelling. In particular, for Mrk 421,
the analysis in Section 6.2 returns a best-fit value of �t ⇡ 37
days with a decay time of ⇡ 126 days, which corresponds to
�exp . 0.01 (see Sect. 5.2). The value of the decay time, which
according to our model is a proxy for the adiabatic cooling time,
is also in nice agreement with the decay time of the order of
weeks to months reported in MAGIC Collaboration et al. (2021).

To get a deeper understanding of the physics embedded in
the convolution analysis, we used a MCMC approach using the
emcee4 package (Foreman-Mackey et al. 2013). We define a
composite log-likelihoodL = Lrise+Ldecay+Ldelay, whereLrise,
Ldecay, and Ldelay represent the log-likelihood functions corre-
sponding to rise, decay, and delay time in Equation 25. Each
likelihood is evaluated assuming that the parameters returned by
the convolution analysis are distributed according to a Gaussian
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where µi and �i represent best-fit parameter values and the 1-�
errors, respectively, for �t, t

obs
rise, and t

obs
decay obtained in the con-

volution analysis, and xi represents the corresponding parameter
evaluated from Equation 25. In order to sample the parameter
space, we ran a chain with 104 steps, and a burn-in length of
1000 steps, checking that the chain was always converging. We
use uninformative flat priors, with mB 2 [1, 2], � 2 [1/3, 1],
⌫0,obs

SSA 2 [10, 104] GHz, �exp 2 [10�4, 1]. To determine the range
on R

obs
0 , we started from setting a flat range for the observed

�-ray variability timescale t
var
� 2 [0.25, 14] days, and we set

R
obs
0 = t

var
� c, leading to R

obs
0 2 [6.5 ⇥ 1013, 3.6 ⇥ 1017] cm. As

the phenomenological relations have a bias with respect to the
case where radiative cooling is taken into account (see Section 5,
Figure 7) we add 5% systematic error to the convolution analy-
sis results. In Appendix C we provide a validation of the method
against the simulation for �exp = 0.1. In Figures 16, 17, and
18, we plot the posterior contour maps (where the solid black
line identifies the 1-� containment for a bivariate Gaussian dis-
tribution). On the diagonal, we plot the marginalised posterior
distributions. The blue vertical line in the log(⌫0,obs

SSA ) histogram
identifies the 15 GHz observed OVRO frequency. In figure 19,
we plot the histogram of the values of the electron distribution in-
dex p obtained from the posterior values of mB and �, and using
the second equation of Equation 8. We notice that the MCMC is
able to provide informative confidence regions for the parame-
ters of interest, except for log(R0) estimated for Mrk 421, where
we notice a flat posterior for log(Robs

0 ) = 15.67+0.59
�0.59. In all the

other cases, we get informative posteriors. The magnetic index,
for Mrk 421, mB = 1.39+0.38

�0.29 has the peak of the PDF at mB = 1.
For the same source, we notice the low value of log(⌫0,obs

SSA ) =
10.34+0.09

�0.06, corresponding to ⌫0,obs
SSA ⇡ 22 GHz, driven by the short

t
obs
rise

returned by the convolution analysis, and very close the ob-
served OVRO frequency of 15 GHz. For the case of Mrk 501,
we obtain log(Robs

0 ) = 15.60+0.60
�0.54, mB = 1.31+0.36

0.22 . In this case,
the PDF is also peaking at mB ⇡ 1.0. The initial SSA frequency
log(⌫0,obs

SSA ) = 11.26+0.84
�0.49, which is larger than in the case of Mrk5

421, is compatible with the longer rise time. Regarding 3C 273,
we obtain log(Robs

0 ) = 15.53+0.61
�0.50, mB = 1.48+0.28

�0.18, but in this case
the PDF is not peaking at mB = 1. In this case, as in the case of
Mrk 501, we also obtain a larger value of log(⌫0,obs

SSA ) = 11.69+0.76
�0.61

compared to the case of Mrk 421. Regarding the index �, we
find it interesting to discuss the estimate on the electron index
p. Indeed, as � plays the same role as  , we can use the second
equation of Equation 8 to estimate the posterior distribution of
p from the posterior values of mB and �. The result is shown in
Figure 19. For the case of Mrk 421, we find a confidence level
of p = 1.97+1.26

�0.72, for Mrk 501 p = 2.00+1.14
�0.73, and for 3C 273

p = 2.27+1.18
�0.84. The value of 3C 273 is compatible with a stronger

cooling regime, and is therefore in agreement with the presence
of an EC radiative component. For all the objects, the values of p

are compatible with the predictions from Fermi first-order accel-
eration plus a stochastic component, which is in agreement with
previous theoretical and observational analyses (Tramacere et al.
2009; Tramacere et al. 2011).

Nevertheless, the convolution analysis performed with the
observed data can be a↵ected by numerous sources of bias; in
particular, our use of a single response for the full time-span, en-
compassing several flaring episodes, with the possibility that the
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the analyses were performed with di↵erent methods and numer-
ical codes (Potter 2018; Boula et al. 2018)—, the comparison
provides orthogonal checks, the results of which appear to sup-
port the hypothesis of an expanding blob related to the radio-�
connection in blazars.

One of the main novelties of our analysis, and one that is
missing in previous studies, is the determination of the single
flare response, and its verification via a self-consistent numerical
model, taking into account both acceleration and radiation pro-
cess, and the determination of the phenomenological relations
that link not only the delay but also the rise and decay time to
the expansion velocity, magnetic field index, and initial SSA fre-
quency. The proposed single-flare response is able to reproduce
the radio light curve as a convolution of the ��ray light curve,
and we verified that the timescales of the response follow the
phenomenological trends. This allowed us to establish a link be-
tween some physical parameters, such as the emitting region ini-
tial size, R0, the jet magnetic field index mB, and the observed
response. In particular, the derivation of the initial source size
can provide an orthogonal method compared to the determina-
tion based on MW SED fitting or variability timescales.

We also investigated other e↵ects of the adiabatic expansion.
In particular, we analysed the impact on the CD, verifying that
as the source size increases, the consequent decrease in photon
and electron density leads to a drop in the CD. This e↵ect, if
present at the time of the flare (texp = 0), can provide a hint
for the blob expansion before the observation of the radio de-
lay. It is extremely interesting that, very recently, MAGIC Col-
laboration et al. (2021) presented an analysis of the correlation
patterns of Mrk 421 in 2017, finding that adiabatic expansion
without significant particle losses can be invoked to explain the
pattern of the CD evolution. The authors also verified that the
adiabatic cooling timescales should be longer than those neces-
sary to explain a cooling break compatible with their MW data,
requiring adiabatic timescales of the order of weeks to months
in the observer frame that are in good agreement with our pro-
posed scenario. Moreover, the authors also state that the expand-
ing blob can explain �-ray orphan flares. The scenario proposed
in MAGIC Collaboration et al. (2021) is highly compatible with
our scenario, as we can set texp = 0 without any loss of general-
ity, and proves that, for Mrk 421, both the radio delay and the CD
e↵ect are confirmed by the data. Also, comparisons with the data
shown in Section 6 indicate that our model can accurately repro-
duce the radio light curve as a response to the �-ray light curve
over a time-span of years, and the relevant timescales derived
from the response function are in agreement with those derived
from the self-consistent modelling. In particular, for Mrk 421,
the analysis in Section 6.2 returns a best-fit value of �t ⇡ 37
days with a decay time of ⇡ 126 days, which corresponds to
�exp . 0.01 (see Sect. 5.2). The value of the decay time, which
according to our model is a proxy for the adiabatic cooling time,
is also in nice agreement with the decay time of the order of
weeks to months reported in MAGIC Collaboration et al. (2021).

To get a deeper understanding of the physics embedded in
the convolution analysis, we used a MCMC approach using the
emcee4 package (Foreman-Mackey et al. 2013). We define a
composite log-likelihoodL = Lrise+Ldecay+Ldelay, whereLrise,
Ldecay, and Ldelay represent the log-likelihood functions corre-
sponding to rise, decay, and delay time in Equation 25. Each
likelihood is evaluated assuming that the parameters returned by
the convolution analysis are distributed according to a Gaussian
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where µi and �i represent best-fit parameter values and the 1-�
errors, respectively, for �t, t

obs
rise, and t

obs
decay obtained in the con-

volution analysis, and xi represents the corresponding parameter
evaluated from Equation 25. In order to sample the parameter
space, we ran a chain with 104 steps, and a burn-in length of
1000 steps, checking that the chain was always converging. We
use uninformative flat priors, with mB 2 [1, 2], � 2 [1/3, 1],
⌫0,obs

SSA 2 [10, 104] GHz, �exp 2 [10�4, 1]. To determine the range
on R

obs
0 , we started from setting a flat range for the observed

�-ray variability timescale t
var
� 2 [0.25, 14] days, and we set

R
obs
0 = t

var
� c, leading to R

obs
0 2 [6.5 ⇥ 1013, 3.6 ⇥ 1017] cm. As

the phenomenological relations have a bias with respect to the
case where radiative cooling is taken into account (see Section 5,
Figure 7) we add 5% systematic error to the convolution analy-
sis results. In Appendix C we provide a validation of the method
against the simulation for �exp = 0.1. In Figures 16, 17, and
18, we plot the posterior contour maps (where the solid black
line identifies the 1-� containment for a bivariate Gaussian dis-
tribution). On the diagonal, we plot the marginalised posterior
distributions. The blue vertical line in the log(⌫0,obs

SSA ) histogram
identifies the 15 GHz observed OVRO frequency. In figure 19,
we plot the histogram of the values of the electron distribution in-
dex p obtained from the posterior values of mB and �, and using
the second equation of Equation 8. We notice that the MCMC is
able to provide informative confidence regions for the parame-
ters of interest, except for log(R0) estimated for Mrk 421, where
we notice a flat posterior for log(Robs

0 ) = 15.67+0.59
�0.59. In all the

other cases, we get informative posteriors. The magnetic index,
for Mrk 421, mB = 1.39+0.38

�0.29 has the peak of the PDF at mB = 1.
For the same source, we notice the low value of log(⌫0,obs

SSA ) =
10.34+0.09

�0.06, corresponding to ⌫0,obs
SSA ⇡ 22 GHz, driven by the short

t
obs
rise

returned by the convolution analysis, and very close the ob-
served OVRO frequency of 15 GHz. For the case of Mrk 501,
we obtain log(Robs

0 ) = 15.60+0.60
�0.54, mB = 1.31+0.36

0.22 . In this case,
the PDF is also peaking at mB ⇡ 1.0. The initial SSA frequency
log(⌫0,obs

SSA ) = 11.26+0.84
�0.49, which is larger than in the case of Mrk5

421, is compatible with the longer rise time. Regarding 3C 273,
we obtain log(Robs

0 ) = 15.53+0.61
�0.50, mB = 1.48+0.28

�0.18, but in this case
the PDF is not peaking at mB = 1. In this case, as in the case of
Mrk 501, we also obtain a larger value of log(⌫0,obs

SSA ) = 11.69+0.76
�0.61

compared to the case of Mrk 421. Regarding the index �, we
find it interesting to discuss the estimate on the electron index
p. Indeed, as � plays the same role as  , we can use the second
equation of Equation 8 to estimate the posterior distribution of
p from the posterior values of mB and �. The result is shown in
Figure 19. For the case of Mrk 421, we find a confidence level
of p = 1.97+1.26

�0.72, for Mrk 501 p = 2.00+1.14
�0.73, and for 3C 273

p = 2.27+1.18
�0.84. The value of 3C 273 is compatible with a stronger

cooling regime, and is therefore in agreement with the presence
of an EC radiative component. For all the objects, the values of p

are compatible with the predictions from Fermi first-order accel-
eration plus a stochastic component, which is in agreement with
previous theoretical and observational analyses (Tramacere et al.
2009; Tramacere et al. 2011).

Nevertheless, the convolution analysis performed with the
observed data can be a↵ected by numerous sources of bias; in
particular, our use of a single response for the full time-span, en-
compassing several flaring episodes, with the possibility that the
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the analyses were performed with di↵erent methods and numer-
ical codes (Potter 2018; Boula et al. 2018)—, the comparison
provides orthogonal checks, the results of which appear to sup-
port the hypothesis of an expanding blob related to the radio-�
connection in blazars.

One of the main novelties of our analysis, and one that is
missing in previous studies, is the determination of the single
flare response, and its verification via a self-consistent numerical
model, taking into account both acceleration and radiation pro-
cess, and the determination of the phenomenological relations
that link not only the delay but also the rise and decay time to
the expansion velocity, magnetic field index, and initial SSA fre-
quency. The proposed single-flare response is able to reproduce
the radio light curve as a convolution of the ��ray light curve,
and we verified that the timescales of the response follow the
phenomenological trends. This allowed us to establish a link be-
tween some physical parameters, such as the emitting region ini-
tial size, R0, the jet magnetic field index mB, and the observed
response. In particular, the derivation of the initial source size
can provide an orthogonal method compared to the determina-
tion based on MW SED fitting or variability timescales.

We also investigated other e↵ects of the adiabatic expansion.
In particular, we analysed the impact on the CD, verifying that
as the source size increases, the consequent decrease in photon
and electron density leads to a drop in the CD. This e↵ect, if
present at the time of the flare (texp = 0), can provide a hint
for the blob expansion before the observation of the radio de-
lay. It is extremely interesting that, very recently, MAGIC Col-
laboration et al. (2021) presented an analysis of the correlation
patterns of Mrk 421 in 2017, finding that adiabatic expansion
without significant particle losses can be invoked to explain the
pattern of the CD evolution. The authors also verified that the
adiabatic cooling timescales should be longer than those neces-
sary to explain a cooling break compatible with their MW data,
requiring adiabatic timescales of the order of weeks to months
in the observer frame that are in good agreement with our pro-
posed scenario. Moreover, the authors also state that the expand-
ing blob can explain �-ray orphan flares. The scenario proposed
in MAGIC Collaboration et al. (2021) is highly compatible with
our scenario, as we can set texp = 0 without any loss of general-
ity, and proves that, for Mrk 421, both the radio delay and the CD
e↵ect are confirmed by the data. Also, comparisons with the data
shown in Section 6 indicate that our model can accurately repro-
duce the radio light curve as a response to the �-ray light curve
over a time-span of years, and the relevant timescales derived
from the response function are in agreement with those derived
from the self-consistent modelling. In particular, for Mrk 421,
the analysis in Section 6.2 returns a best-fit value of �t ⇡ 37
days with a decay time of ⇡ 126 days, which corresponds to
�exp . 0.01 (see Sect. 5.2). The value of the decay time, which
according to our model is a proxy for the adiabatic cooling time,
is also in nice agreement with the decay time of the order of
weeks to months reported in MAGIC Collaboration et al. (2021).

To get a deeper understanding of the physics embedded in
the convolution analysis, we used a MCMC approach using the
emcee4 package (Foreman-Mackey et al. 2013). We define a
composite log-likelihoodL = Lrise+Ldecay+Ldelay, whereLrise,
Ldecay, and Ldelay represent the log-likelihood functions corre-
sponding to rise, decay, and delay time in Equation 25. Each
likelihood is evaluated assuming that the parameters returned by
the convolution analysis are distributed according to a Gaussian
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where µi and �i represent best-fit parameter values and the 1-�
errors, respectively, for �t, t

obs
rise, and t

obs
decay obtained in the con-

volution analysis, and xi represents the corresponding parameter
evaluated from Equation 25. In order to sample the parameter
space, we ran a chain with 104 steps, and a burn-in length of
1000 steps, checking that the chain was always converging. We
use uninformative flat priors, with mB 2 [1, 2], � 2 [1/3, 1],
⌫0,obs

SSA 2 [10, 104] GHz, �exp 2 [10�4, 1]. To determine the range
on R

obs
0 , we started from setting a flat range for the observed

�-ray variability timescale t
var
� 2 [0.25, 14] days, and we set

R
obs
0 = t

var
� c, leading to R

obs
0 2 [6.5 ⇥ 1013, 3.6 ⇥ 1017] cm. As

the phenomenological relations have a bias with respect to the
case where radiative cooling is taken into account (see Section 5,
Figure 7) we add 5% systematic error to the convolution analy-
sis results. In Appendix C we provide a validation of the method
against the simulation for �exp = 0.1. In Figures 16, 17, and
18, we plot the posterior contour maps (where the solid black
line identifies the 1-� containment for a bivariate Gaussian dis-
tribution). On the diagonal, we plot the marginalised posterior
distributions. The blue vertical line in the log(⌫0,obs

SSA ) histogram
identifies the 15 GHz observed OVRO frequency. In figure 19,
we plot the histogram of the values of the electron distribution in-
dex p obtained from the posterior values of mB and �, and using
the second equation of Equation 8. We notice that the MCMC is
able to provide informative confidence regions for the parame-
ters of interest, except for log(R0) estimated for Mrk 421, where
we notice a flat posterior for log(Robs

0 ) = 15.67+0.59
�0.59. In all the

other cases, we get informative posteriors. The magnetic index,
for Mrk 421, mB = 1.39+0.38

�0.29 has the peak of the PDF at mB = 1.
For the same source, we notice the low value of log(⌫0,obs

SSA ) =
10.34+0.09

�0.06, corresponding to ⌫0,obs
SSA ⇡ 22 GHz, driven by the short

t
obs
rise

returned by the convolution analysis, and very close the ob-
served OVRO frequency of 15 GHz. For the case of Mrk 501,
we obtain log(Robs

0 ) = 15.60+0.60
�0.54, mB = 1.31+0.36

0.22 . In this case,
the PDF is also peaking at mB ⇡ 1.0. The initial SSA frequency
log(⌫0,obs

SSA ) = 11.26+0.84
�0.49, which is larger than in the case of Mrk5

421, is compatible with the longer rise time. Regarding 3C 273,
we obtain log(Robs

0 ) = 15.53+0.61
�0.50, mB = 1.48+0.28

�0.18, but in this case
the PDF is not peaking at mB = 1. In this case, as in the case of
Mrk 501, we also obtain a larger value of log(⌫0,obs

SSA ) = 11.69+0.76
�0.61

compared to the case of Mrk 421. Regarding the index �, we
find it interesting to discuss the estimate on the electron index
p. Indeed, as � plays the same role as  , we can use the second
equation of Equation 8 to estimate the posterior distribution of
p from the posterior values of mB and �. The result is shown in
Figure 19. For the case of Mrk 421, we find a confidence level
of p = 1.97+1.26

�0.72, for Mrk 501 p = 2.00+1.14
�0.73, and for 3C 273

p = 2.27+1.18
�0.84. The value of 3C 273 is compatible with a stronger

cooling regime, and is therefore in agreement with the presence
of an EC radiative component. For all the objects, the values of p

are compatible with the predictions from Fermi first-order accel-
eration plus a stochastic component, which is in agreement with
previous theoretical and observational analyses (Tramacere et al.
2009; Tramacere et al. 2011).

Nevertheless, the convolution analysis performed with the
observed data can be a↵ected by numerous sources of bias; in
particular, our use of a single response for the full time-span, en-
compassing several flaring episodes, with the possibility that the
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the analyses were performed with di↵erent methods and numer-
ical codes (Potter 2018; Boula et al. 2018)—, the comparison
provides orthogonal checks, the results of which appear to sup-
port the hypothesis of an expanding blob related to the radio-�
connection in blazars.

One of the main novelties of our analysis, and one that is
missing in previous studies, is the determination of the single
flare response, and its verification via a self-consistent numerical
model, taking into account both acceleration and radiation pro-
cess, and the determination of the phenomenological relations
that link not only the delay but also the rise and decay time to
the expansion velocity, magnetic field index, and initial SSA fre-
quency. The proposed single-flare response is able to reproduce
the radio light curve as a convolution of the ��ray light curve,
and we verified that the timescales of the response follow the
phenomenological trends. This allowed us to establish a link be-
tween some physical parameters, such as the emitting region ini-
tial size, R0, the jet magnetic field index mB, and the observed
response. In particular, the derivation of the initial source size
can provide an orthogonal method compared to the determina-
tion based on MW SED fitting or variability timescales.

We also investigated other e↵ects of the adiabatic expansion.
In particular, we analysed the impact on the CD, verifying that
as the source size increases, the consequent decrease in photon
and electron density leads to a drop in the CD. This e↵ect, if
present at the time of the flare (texp = 0), can provide a hint
for the blob expansion before the observation of the radio de-
lay. It is extremely interesting that, very recently, MAGIC Col-
laboration et al. (2021) presented an analysis of the correlation
patterns of Mrk 421 in 2017, finding that adiabatic expansion
without significant particle losses can be invoked to explain the
pattern of the CD evolution. The authors also verified that the
adiabatic cooling timescales should be longer than those neces-
sary to explain a cooling break compatible with their MW data,
requiring adiabatic timescales of the order of weeks to months
in the observer frame that are in good agreement with our pro-
posed scenario. Moreover, the authors also state that the expand-
ing blob can explain �-ray orphan flares. The scenario proposed
in MAGIC Collaboration et al. (2021) is highly compatible with
our scenario, as we can set texp = 0 without any loss of general-
ity, and proves that, for Mrk 421, both the radio delay and the CD
e↵ect are confirmed by the data. Also, comparisons with the data
shown in Section 6 indicate that our model can accurately repro-
duce the radio light curve as a response to the �-ray light curve
over a time-span of years, and the relevant timescales derived
from the response function are in agreement with those derived
from the self-consistent modelling. In particular, for Mrk 421,
the analysis in Section 6.2 returns a best-fit value of �t ⇡ 37
days with a decay time of ⇡ 126 days, which corresponds to
�exp . 0.01 (see Sect. 5.2). The value of the decay time, which
according to our model is a proxy for the adiabatic cooling time,
is also in nice agreement with the decay time of the order of
weeks to months reported in MAGIC Collaboration et al. (2021).

To get a deeper understanding of the physics embedded in
the convolution analysis, we used a MCMC approach using the
emcee4 package (Foreman-Mackey et al. 2013). We define a
composite log-likelihoodL = Lrise+Ldecay+Ldelay, whereLrise,
Ldecay, and Ldelay represent the log-likelihood functions corre-
sponding to rise, decay, and delay time in Equation 25. Each
likelihood is evaluated assuming that the parameters returned by
the convolution analysis are distributed according to a Gaussian
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where µi and �i represent best-fit parameter values and the 1-�
errors, respectively, for �t, t

obs
rise, and t

obs
decay obtained in the con-

volution analysis, and xi represents the corresponding parameter
evaluated from Equation 25. In order to sample the parameter
space, we ran a chain with 104 steps, and a burn-in length of
1000 steps, checking that the chain was always converging. We
use uninformative flat priors, with mB 2 [1, 2], � 2 [1/3, 1],
⌫0,obs

SSA 2 [10, 104] GHz, �exp 2 [10�4, 1]. To determine the range
on R

obs
0 , we started from setting a flat range for the observed

�-ray variability timescale t
var
� 2 [0.25, 14] days, and we set

R
obs
0 = t

var
� c, leading to R

obs
0 2 [6.5 ⇥ 1013, 3.6 ⇥ 1017] cm. As

the phenomenological relations have a bias with respect to the
case where radiative cooling is taken into account (see Section 5,
Figure 7) we add 5% systematic error to the convolution analy-
sis results. In Appendix C we provide a validation of the method
against the simulation for �exp = 0.1. In Figures 16, 17, and
18, we plot the posterior contour maps (where the solid black
line identifies the 1-� containment for a bivariate Gaussian dis-
tribution). On the diagonal, we plot the marginalised posterior
distributions. The blue vertical line in the log(⌫0,obs

SSA ) histogram
identifies the 15 GHz observed OVRO frequency. In figure 19,
we plot the histogram of the values of the electron distribution in-
dex p obtained from the posterior values of mB and �, and using
the second equation of Equation 8. We notice that the MCMC is
able to provide informative confidence regions for the parame-
ters of interest, except for log(R0) estimated for Mrk 421, where
we notice a flat posterior for log(Robs

0 ) = 15.67+0.59
�0.59. In all the

other cases, we get informative posteriors. The magnetic index,
for Mrk 421, mB = 1.39+0.38

�0.29 has the peak of the PDF at mB = 1.
For the same source, we notice the low value of log(⌫0,obs

SSA ) =
10.34+0.09

�0.06, corresponding to ⌫0,obs
SSA ⇡ 22 GHz, driven by the short

t
obs
rise

returned by the convolution analysis, and very close the ob-
served OVRO frequency of 15 GHz. For the case of Mrk 501,
we obtain log(Robs

0 ) = 15.60+0.60
�0.54, mB = 1.31+0.36

0.22 . In this case,
the PDF is also peaking at mB ⇡ 1.0. The initial SSA frequency
log(⌫0,obs

SSA ) = 11.26+0.84
�0.49, which is larger than in the case of Mrk5

421, is compatible with the longer rise time. Regarding 3C 273,
we obtain log(Robs

0 ) = 15.53+0.61
�0.50, mB = 1.48+0.28

�0.18, but in this case
the PDF is not peaking at mB = 1. In this case, as in the case of
Mrk 501, we also obtain a larger value of log(⌫0,obs

SSA ) = 11.69+0.76
�0.61

compared to the case of Mrk 421. Regarding the index �, we
find it interesting to discuss the estimate on the electron index
p. Indeed, as � plays the same role as  , we can use the second
equation of Equation 8 to estimate the posterior distribution of
p from the posterior values of mB and �. The result is shown in
Figure 19. For the case of Mrk 421, we find a confidence level
of p = 1.97+1.26

�0.72, for Mrk 501 p = 2.00+1.14
�0.73, and for 3C 273

p = 2.27+1.18
�0.84. The value of 3C 273 is compatible with a stronger

cooling regime, and is therefore in agreement with the presence
of an EC radiative component. For all the objects, the values of p

are compatible with the predictions from Fermi first-order accel-
eration plus a stochastic component, which is in agreement with
previous theoretical and observational analyses (Tramacere et al.
2009; Tramacere et al. 2011).

Nevertheless, the convolution analysis performed with the
observed data can be a↵ected by numerous sources of bias; in
particular, our use of a single response for the full time-span, en-
compassing several flaring episodes, with the possibility that the
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the analyses were performed with di↵erent methods and numer-
ical codes (Potter 2018; Boula et al. 2018)—, the comparison
provides orthogonal checks, the results of which appear to sup-
port the hypothesis of an expanding blob related to the radio-�
connection in blazars.

One of the main novelties of our analysis, and one that is
missing in previous studies, is the determination of the single
flare response, and its verification via a self-consistent numerical
model, taking into account both acceleration and radiation pro-
cess, and the determination of the phenomenological relations
that link not only the delay but also the rise and decay time to
the expansion velocity, magnetic field index, and initial SSA fre-
quency. The proposed single-flare response is able to reproduce
the radio light curve as a convolution of the ��ray light curve,
and we verified that the timescales of the response follow the
phenomenological trends. This allowed us to establish a link be-
tween some physical parameters, such as the emitting region ini-
tial size, R0, the jet magnetic field index mB, and the observed
response. In particular, the derivation of the initial source size
can provide an orthogonal method compared to the determina-
tion based on MW SED fitting or variability timescales.

We also investigated other e↵ects of the adiabatic expansion.
In particular, we analysed the impact on the CD, verifying that
as the source size increases, the consequent decrease in photon
and electron density leads to a drop in the CD. This e↵ect, if
present at the time of the flare (texp = 0), can provide a hint
for the blob expansion before the observation of the radio de-
lay. It is extremely interesting that, very recently, MAGIC Col-
laboration et al. (2021) presented an analysis of the correlation
patterns of Mrk 421 in 2017, finding that adiabatic expansion
without significant particle losses can be invoked to explain the
pattern of the CD evolution. The authors also verified that the
adiabatic cooling timescales should be longer than those neces-
sary to explain a cooling break compatible with their MW data,
requiring adiabatic timescales of the order of weeks to months
in the observer frame that are in good agreement with our pro-
posed scenario. Moreover, the authors also state that the expand-
ing blob can explain �-ray orphan flares. The scenario proposed
in MAGIC Collaboration et al. (2021) is highly compatible with
our scenario, as we can set texp = 0 without any loss of general-
ity, and proves that, for Mrk 421, both the radio delay and the CD
e↵ect are confirmed by the data. Also, comparisons with the data
shown in Section 6 indicate that our model can accurately repro-
duce the radio light curve as a response to the �-ray light curve
over a time-span of years, and the relevant timescales derived
from the response function are in agreement with those derived
from the self-consistent modelling. In particular, for Mrk 421,
the analysis in Section 6.2 returns a best-fit value of �t ⇡ 37
days with a decay time of ⇡ 126 days, which corresponds to
�exp . 0.01 (see Sect. 5.2). The value of the decay time, which
according to our model is a proxy for the adiabatic cooling time,
is also in nice agreement with the decay time of the order of
weeks to months reported in MAGIC Collaboration et al. (2021).

To get a deeper understanding of the physics embedded in
the convolution analysis, we used a MCMC approach using the
emcee4 package (Foreman-Mackey et al. 2013). We define a
composite log-likelihoodL = Lrise+Ldecay+Ldelay, whereLrise,
Ldecay, and Ldelay represent the log-likelihood functions corre-
sponding to rise, decay, and delay time in Equation 25. Each
likelihood is evaluated assuming that the parameters returned by
the convolution analysis are distributed according to a Gaussian
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where µi and �i represent best-fit parameter values and the 1-�
errors, respectively, for �t, t

obs
rise, and t

obs
decay obtained in the con-

volution analysis, and xi represents the corresponding parameter
evaluated from Equation 25. In order to sample the parameter
space, we ran a chain with 104 steps, and a burn-in length of
1000 steps, checking that the chain was always converging. We
use uninformative flat priors, with mB 2 [1, 2], � 2 [1/3, 1],
⌫0,obs

SSA 2 [10, 104] GHz, �exp 2 [10�4, 1]. To determine the range
on R

obs
0 , we started from setting a flat range for the observed

�-ray variability timescale t
var
� 2 [0.25, 14] days, and we set

R
obs
0 = t

var
� c, leading to R

obs
0 2 [6.5 ⇥ 1013, 3.6 ⇥ 1017] cm. As

the phenomenological relations have a bias with respect to the
case where radiative cooling is taken into account (see Section 5,
Figure 7) we add 5% systematic error to the convolution analy-
sis results. In Appendix C we provide a validation of the method
against the simulation for �exp = 0.1. In Figures 16, 17, and
18, we plot the posterior contour maps (where the solid black
line identifies the 1-� containment for a bivariate Gaussian dis-
tribution). On the diagonal, we plot the marginalised posterior
distributions. The blue vertical line in the log(⌫0,obs

SSA ) histogram
identifies the 15 GHz observed OVRO frequency. In figure 19,
we plot the histogram of the values of the electron distribution in-
dex p obtained from the posterior values of mB and �, and using
the second equation of Equation 8. We notice that the MCMC is
able to provide informative confidence regions for the parame-
ters of interest, except for log(R0) estimated for Mrk 421, where
we notice a flat posterior for log(Robs

0 ) = 15.67+0.59
�0.59. In all the

other cases, we get informative posteriors. The magnetic index,
for Mrk 421, mB = 1.39+0.38

�0.29 has the peak of the PDF at mB = 1.
For the same source, we notice the low value of log(⌫0,obs

SSA ) =
10.34+0.09

�0.06, corresponding to ⌫0,obs
SSA ⇡ 22 GHz, driven by the short
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returned by the convolution analysis, and very close the ob-
served OVRO frequency of 15 GHz. For the case of Mrk 501,
we obtain log(Robs

0 ) = 15.60+0.60
�0.54, mB = 1.31+0.36

0.22 . In this case,
the PDF is also peaking at mB ⇡ 1.0. The initial SSA frequency
log(⌫0,obs

SSA ) = 11.26+0.84
�0.49, which is larger than in the case of Mrk5

421, is compatible with the longer rise time. Regarding 3C 273,
we obtain log(Robs

0 ) = 15.53+0.61
�0.50, mB = 1.48+0.28

�0.18, but in this case
the PDF is not peaking at mB = 1. In this case, as in the case of
Mrk 501, we also obtain a larger value of log(⌫0,obs

SSA ) = 11.69+0.76
�0.61

compared to the case of Mrk 421. Regarding the index �, we
find it interesting to discuss the estimate on the electron index
p. Indeed, as � plays the same role as  , we can use the second
equation of Equation 8 to estimate the posterior distribution of
p from the posterior values of mB and �. The result is shown in
Figure 19. For the case of Mrk 421, we find a confidence level
of p = 1.97+1.26

�0.72, for Mrk 501 p = 2.00+1.14
�0.73, and for 3C 273

p = 2.27+1.18
�0.84. The value of 3C 273 is compatible with a stronger

cooling regime, and is therefore in agreement with the presence
of an EC radiative component. For all the objects, the values of p

are compatible with the predictions from Fermi first-order accel-
eration plus a stochastic component, which is in agreement with
previous theoretical and observational analyses (Tramacere et al.
2009; Tramacere et al. 2011).

Nevertheless, the convolution analysis performed with the
observed data can be a↵ected by numerous sources of bias; in
particular, our use of a single response for the full time-span, en-
compassing several flaring episodes, with the possibility that the
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(l�) as a convolution (Türler et al. 1999; Sliusar et al. 2019a,b)
according to

lR(t) = S (t) ⇤ l�(t), (20)

where the S is an empirical function that depends on parameters
that can be related to the observable quantities investigated in
Section 2. We propose the following response function:

S (t) = A

exp �(t��)
tf

1 + exp �(t��)
tf

, (21)

where tf is the decay time, and tf is the rise time.
This is the combination of a logistic function for the rising

part and an exponential decay for the decaying part, with A be-
ing a scaling factor. The scaling factor depends mainly on the
initial value of the Compton dominance, on the observed radio
frequency, and on mB. In the present analysis, we are not investi-
gating its impact. The peak of S (t), corresponding to the radio-�
delay, reads

�t = � � tu ln
⇣ tu

tf � tu

⌘
. (22)

The actual determination of the rise and decay time is analyti-
cally complicated. We estimated trise and tdecay numerically by
imposing the condition S (t) = A

2 for trise and S (t) = A

e
for tdecay,

and verified that within a maximum deviation of 5% for trise, and
of 0.2% for tdecay, these timescales can be evaluated according to

trise = tu

⇣
0.54 + 1.34

⇣ t f

tu

⌘1/4⌘
(23)

tdecay = t f

⇣
1.00 + 1.33

⇣ t f

tu

⌘�1.11⌘
. (24)

For the propagation of the uncertainties we used the
Uncertainties2 Python package.

5.1. Validation of phenomenological relations

Before investigating the phenomenological trends, we validate
the relations in Section 2 using long-term simulations with ten
di↵erent values of �exp evaluated on a logarithmic grid rang-
ing [0.001, 0.3]. We use two scenarios: one where we disable
only the radiative cooling term in the FP equation, and one with
both radiative and adiabatic cooling terms enabled. As the phe-
nomenological relations derived in Section 2 are valid when the
adiabatic cooling is dominant, the deviations in the trends with
the radiative cooling enabled will highlight the e↵ect of the com-
petition between the synchrotron cooling and time the adiabatic
time already discussed in Section 2. In order to estimate the
trends, we minimise the right-hand side of Equation 20 with re-
spect to the left-hand side, where l� and lR are the light curves
produced in the simulations, leaving as free parameters A, �, tu,
and tf . To perform the analysis in the observer frame, we express
Equations 14 in terms of R

0
obs = R0

1+z

� and of the observed radio
frequencies:

2 Uncertainties: a Python package for calculations with uncertainties,
Eric O. LEBIGOT, http://pythonhosted.org/uncertainties/

t
obs
decay =

R
obs
0

mB�expc
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⌘�
(25)

t
obs
rise =

1
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8>>>>><
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0
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⌫⇤,obs
SSA

⌘� � 1
i
.

As we show later, as the value of the electron index p evolves
with time, the use of  as a function of a constant p during the
fit is inappropriate. Hence, we use a generic index � that is not
related directly to p during the fit but still preserves the behaviour
of the trends. In any case, we can still estimate the value of p

from the best-fit parameters using the second Equation 8.
An example of best-fit convolution is reported in Figure 6,

where we show the results of the best fit for the response at 15
GHz for the case with the cooling terms active, for �exp = 0.084
(top panel) and �exp = 0.001 (bottom panel), and texp = 1 ⇥ 107

s; all the other parameters are the same as reported in Table 2.
The light curves are in the observer frame.

The results of the validation of Equations 25 are summarised
in Figure 7, where we show the ratio of the timescales predicted
by Equations 25 to the actual results obtained by the best fit of
the radio-� response applied to the numerical simulations. The
blue lines correspond to the case of only adiabatic cooling, and
the orange lines to the case of only adiabatic plus radiative cool-
ing. The green shaded area corresponds to the ±10% region with
respect to the prediction from Equation 25. For the decay time,
we note that in the case of only adiabatic cooling, the trends
in Equation 25 are valid within a maximum derivation of time
. 1% for the delay time. This is consistent with our expecta-
tions, because Equation 25 takes into account only the contri-
bution from adiabatic cooling and from flux variations related
to the geometrical expansion. When the radiative cooling is also
enabled, the deviations are larger (by up to a factor of 2), with
a trend that decreases for larger values of �exp. This trend in the
deviations is due to the di↵erent interplay between radiative and
adiabatic cooling timescales for di↵erent expansion velocities,
which we investigate in more detail below. For the rise time we
observe a deviation by up to ⇡ 40% for the cases of only adia-
batic cooling and radiative plus adiabatic cooling. For the delay
time, the deviations are ⇡ 20% to ⇡ 30% for the case of only
adiabatic cooling, and ⇡ 20% to ⇡ 160% for the case of radia-
tive plus adiabatic cooling. The variations in the decay are larger
than those observed in the rise time, because the peak of the re-
sponse is a↵ected both by decay and rise times (see Equation
22). The validation shows that the phenomenological trends pre-
dict the timescales of the response when the adiabatic cooling
is dominant with good accuracy, and, as anticipated in Section
5.2, can be biased by the competition between the radiative cool-
ing time and adiabatic cooling time. A di↵erent balance between
adiabatic and radiative cooling will cause not only deviation in
the adiabatic-dominated trends but also significant changes in
the electron energy distribution at the radio peak time for dif-
ferent values of �exp. For the purpose of illustration, we show
in Figure 8 the di↵erent states of the electron distributions at
the time corresponding to the peak of the ⌫obs = 15 GHz light
curves, for the values of �exp ranging [0.001, 0.3] used in our
simulations. We note that, for smaller values of �exp, the expan-
sion process lasts longer, and the slower temporal decrease of
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Fig. C.1: MCMC sampling for the validation of the analysis presented in Section 7. The validation is performed against the simula-
tions for �exp = 0.1. The vertical red dashed lines indicate the input values from the simulation.
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Fig. C.2: Same as in Figure 19, but for the p index regarding the
MCMC validation reproduced in Figure C.2. The vertical red
dashed line indicates the input value of p for the simulation.
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Fig. 3. Left panel: SEDs corresponding to the simulation of the flaring state, for the radiative region. The dashed green line corresponds to the
earliest of the SEDs stored by the code, the blue lines correspond to the period when the injection, acceleration, and radiative process are active,
and the red lines correspond to the period when only the radiative processes are active. The times reported in the label are in the blob frame. Right

panel: same as in left panel, but for the electron energy distribution in the radiative region.

component is mainly a↵ected by a significant drop in the Comp-1

ton dominance (CD). This can be better appreciated in Fig. 5,2

where we plot the CD versus the time of the simulation. The CD3

is evaluated as the ratio of the peak flux of the IC component to4

the peak flux of the S component. The vertical dashed line marks5

the beginning of the expansion (for the expanding case, orange6

line). It is clear that when the adiabatic expansion begins, the7

IC starts to drop rapidly, as a consequence of the larger volume8

and lower seed-photon density. This is a very interesting feature,9

and might already be visible during the flaring stage. The most10

integrating e↵ect, for our analysis, is the evolution of the S com-11

ponent. On top of the flux decay dictated by the adiabatic losses,12

and decreased magnetic field, we notice the shift in the SSA fre-13

quency, which is absent in the non-expanding case. This e↵ect14

can be better appreciated in the second row of panels in Fig. 4,15

where we plot the evolution of the flux density (F⌫). Whilst in the16

non-expanding case the SSA is almost stable at the initial value17

of ⇡1011 Hz, in the expanding case the SSA decreases with time18

as predicted by Eq. (5). The actual trend will be investigated in19

detail in the following two sections. The three bottom panels of20

Fig. 4 show the light curves in the Fermi-LAT band, and at 5 and21

40 GHz. We notice that, in the non-expanding case, the temporal22

behaviour is again in agreement with a purely radiative cooling23

without particle escape. On the contrary, in the expanding case,24

we notice that for the radio light curves an increase in the flux25

level happens after the beginning of the expansion, with the time26

of the maximum happening earlier at larger frequencies. This27

can be quantitatively understood by looking at the flux density28

panel, which shows that the SSA moves from the initial (non-29

expanding case) down to lower frequencies. We quantify these30

delays and the di↵erent rise and decay times in the following31

two sections.32

5. Radio-� response and physical trends in the33

delay34

In this section, we verify that the phenomenological trends35

derived in Sect. 2 are reproduced in our simulations and whether36

or not they can be applied to observed data. The empirical deter-37

mination of delays is usually done by means of a discrete corre-38

lation function (DCF). A further and more interesting step is to39

determine a response function S (t) such that radio light curves 40

(lR) can be reproduced as a ‘response’ of the �-ray light curves 41

(l�) as a convolution (Türler et al. 1999; Sliusar et al. 2019a,b) 42

according to 43

lR(t) = S (t) ⇤ l�(t), (20)

where the S is an empirical function that depends on parameters 44

that can be related to the observable quantities investigated in 45

Sect. 2. We propose the following response function: 46
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, (21)

where t f is the decay time, and t f is the rise time. 47

This is the combination of a logistic function for the rising 48

part and an exponential decay for the decaying part, with A being 49

a scaling factor. The scaling factor depends mainly on the ini- 50

tial value of the Compton dominance, on the observed radio fre- 51

quency, and on mB. In the present analysis, we are not investi- 52

gating its impact. The peak of S (t), corresponding to the radio-� 53

delay, reads 54
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The actual determination of the rise and decay time is analyti- 55

cally complicated. We estimated trise and tdecay numerically by 56

imposing the condition S (t) = A

2 for trise and S (t) = A

e
for tdecay, 57

and verified that within a maximum deviation of 5% for trise, and 58

of 0.2% for tdecay, these timescales can be evaluated according to 59
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For the propagation of the uncertainties we used the 60

Uncertainties2 Python package. 61

2 Uncertainties: a Python package for calculations with uncertainties,
Eric O. LEBIGOT, http://pythonhosted.org/uncertainties/
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Fig. 3. Left panel: SEDs corresponding to the simulation of the flaring state, for the radiative region. The dashed green line corresponds to the
earliest of the SEDs stored by the code, the blue lines correspond to the period when the injection, acceleration, and radiative process are active,
and the red lines correspond to the period when only the radiative processes are active. The times reported in the label are in the blob frame. Right

panel: same as in left panel, but for the electron energy distribution in the radiative region.

component is mainly a↵ected by a significant drop in the Comp-1

ton dominance (CD). This can be better appreciated in Fig. 5,2

where we plot the CD versus the time of the simulation. The CD3

is evaluated as the ratio of the peak flux of the IC component to4

the peak flux of the S component. The vertical dashed line marks5

the beginning of the expansion (for the expanding case, orange6

line). It is clear that when the adiabatic expansion begins, the7

IC starts to drop rapidly, as a consequence of the larger volume8

and lower seed-photon density. This is a very interesting feature,9

and might already be visible during the flaring stage. The most10

integrating e↵ect, for our analysis, is the evolution of the S com-11

ponent. On top of the flux decay dictated by the adiabatic losses,12

and decreased magnetic field, we notice the shift in the SSA fre-13

quency, which is absent in the non-expanding case. This e↵ect14

can be better appreciated in the second row of panels in Fig. 4,15

where we plot the evolution of the flux density (F⌫). Whilst in the16

non-expanding case the SSA is almost stable at the initial value17

of ⇡1011 Hz, in the expanding case the SSA decreases with time18

as predicted by Eq. (5). The actual trend will be investigated in19

detail in the following two sections. The three bottom panels of20

Fig. 4 show the light curves in the Fermi-LAT band, and at 5 and21

40 GHz. We notice that, in the non-expanding case, the temporal22

behaviour is again in agreement with a purely radiative cooling23

without particle escape. On the contrary, in the expanding case,24

we notice that for the radio light curves an increase in the flux25

level happens after the beginning of the expansion, with the time26
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Fig. 3. Left panel: SEDs corresponding to the simulation of the flaring state, for the radiative region. The dashed green line corresponds to the
earliest of the SEDs stored by the code, the blue lines correspond to the period when the injection, acceleration, and radiative process are active,
and the red lines correspond to the period when only the radiative processes are active. The times reported in the label are in the blob frame. Right

panel: same as in left panel, but for the electron energy distribution in the radiative region.

component is mainly a↵ected by a significant drop in the Comp-1

ton dominance (CD). This can be better appreciated in Fig. 5,2

where we plot the CD versus the time of the simulation. The CD3

is evaluated as the ratio of the peak flux of the IC component to4

the peak flux of the S component. The vertical dashed line marks5

the beginning of the expansion (for the expanding case, orange6

line). It is clear that when the adiabatic expansion begins, the7

IC starts to drop rapidly, as a consequence of the larger volume8

and lower seed-photon density. This is a very interesting feature,9

and might already be visible during the flaring stage. The most10

integrating e↵ect, for our analysis, is the evolution of the S com-11

ponent. On top of the flux decay dictated by the adiabatic losses,12

and decreased magnetic field, we notice the shift in the SSA fre-13

quency, which is absent in the non-expanding case. This e↵ect14

can be better appreciated in the second row of panels in Fig. 4,15

where we plot the evolution of the flux density (F⌫). Whilst in the16

non-expanding case the SSA is almost stable at the initial value17

of ⇡1011 Hz, in the expanding case the SSA decreases with time18

as predicted by Eq. (5). The actual trend will be investigated in19

detail in the following two sections. The three bottom panels of20

Fig. 4 show the light curves in the Fermi-LAT band, and at 5 and21

40 GHz. We notice that, in the non-expanding case, the temporal22

behaviour is again in agreement with a purely radiative cooling23

without particle escape. On the contrary, in the expanding case,24

we notice that for the radio light curves an increase in the flux25

level happens after the beginning of the expansion, with the time26

of the maximum happening earlier at larger frequencies. This27

can be quantitatively understood by looking at the flux density28

panel, which shows that the SSA moves from the initial (non-29

expanding case) down to lower frequencies. We quantify these30

delays and the di↵erent rise and decay times in the following31

two sections.32
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Fig. 3. Left panel: SEDs corresponding to the simulation of the flaring state, for the radiative region. The dashed green line corresponds to the
earliest of the SEDs stored by the code, the blue lines correspond to the period when the injection, acceleration, and radiative process are active,
and the red lines correspond to the period when only the radiative processes are active. The times reported in the label are in the blob frame. Right

panel: same as in left panel, but for the electron energy distribution in the radiative region.

component is mainly a↵ected by a significant drop in the Comp-1

ton dominance (CD). This can be better appreciated in Fig. 5,2

where we plot the CD versus the time of the simulation. The CD3

is evaluated as the ratio of the peak flux of the IC component to4

the peak flux of the S component. The vertical dashed line marks5

the beginning of the expansion (for the expanding case, orange6

line). It is clear that when the adiabatic expansion begins, the7

IC starts to drop rapidly, as a consequence of the larger volume8

and lower seed-photon density. This is a very interesting feature,9

and might already be visible during the flaring stage. The most10

integrating e↵ect, for our analysis, is the evolution of the S com-11

ponent. On top of the flux decay dictated by the adiabatic losses,12

and decreased magnetic field, we notice the shift in the SSA fre-13

quency, which is absent in the non-expanding case. This e↵ect14

can be better appreciated in the second row of panels in Fig. 4,15

where we plot the evolution of the flux density (F⌫). Whilst in the16

non-expanding case the SSA is almost stable at the initial value17

of ⇡1011 Hz, in the expanding case the SSA decreases with time18

as predicted by Eq. (5). The actual trend will be investigated in19

detail in the following two sections. The three bottom panels of20

Fig. 4 show the light curves in the Fermi-LAT band, and at 5 and21

40 GHz. We notice that, in the non-expanding case, the temporal22
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without particle escape. On the contrary, in the expanding case,24

we notice that for the radio light curves an increase in the flux25

level happens after the beginning of the expansion, with the time26

of the maximum happening earlier at larger frequencies. This27
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panel, which shows that the SSA moves from the initial (non-29

expanding case) down to lower frequencies. We quantify these30

delays and the di↵erent rise and decay times in the following31
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Fig. 7: Ratio of the timescales predicted by Equation 25 to the
results obtained by the best fit of the radio-� response applied to
the numerical simulations. All the other parameters are the same
as reported in Table 2. The blue lines correspond to the case of
only adiabatic cooling, and the orange lines to the case of ra-
diative plus adiabatic cooling. The green shaded areas represent
the ±10% region with respect to the prediction from Equation
25, and the dashed horizontal lines indicate unity. Top panel:
Radio�� delay. Middle panel: Decay time. Bottom panel: Rise
time.

the magnetic field produces a steeper distribution with a lower
cut-o↵ of the electron distributions. On the contrary, for larger
values of �exp, the shorter duration and the faster decrease in B

results in a higher cut-o↵ of the electron distribution. In Figure
8, the dashed vertical lines represent the values of the electron
Lorentz factor most contributing to the emission at ⌫obs = 15
GHz, �t ' [3⌫SSA/(4⌫L)]1/2 (Ghisellini 2013), for the di↵erent

Fig. 8: State of the electron distributions at the time correspond-
ing to the peak of the ⌫obs = 15 GHz light curves for the expan-
sion simulations with both radiative and adiabatic cooling en-
abled, and �exp ranging [0.001, 0.3]. The vertical dashed lines
correspond to the Lorentz factor of the electrons most contribut-
ing to the observed 15 GHz frequency. All the other parameters
are the same as reported in Table 2

Fig. 9: Ratio of the synchrotron to adiabatic cooling timescales
⇢s/a(t) = tsync(t)/tad(t) for the Lorentz factor of the electrons most
contributing to the observed 15 GHz frequency, evaluated at t =
t
obs
peak and t = t

obs
peak + 1.5t

obs
decay (blue line), and evaluated at t = t

obs
peak

and t = t
obs
peak+2.0t

obs
decay (orange line). The same values of �exp are

used as reported in Figure 8.

values of �exp. Clearly, the corresponding value of p is di↵erent
for di↵erent states of the evolution, meaning that the use of  as
a function of a constant p is inappropriate. For these reasons we
use a generic index � that is not related directly to p, but still
preserves the behaviour of the trends.

A further e↵ect due to the complex interplay between the
cooling timescales is shown in Figure 9, where we plot the ra-
tio of the synchrotron to adiabatic cooling timescales ⇢s/a(t) =
tsync(t)/tad(t), for the Lorentz factor of the electrons most con-
tributing to the observed 15 GHz frequency, evaluated at t = t

obs
peak

and t = t
obs
peak + 1.5t

obs
decay (blue line), and evaluated at t = t

obs
peak and

t = t
obs
peak+2.0t

obs
decay (orange line). This complex interplay between
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Fig. 7: Ratio of the timescales predicted by Equation 25 to the
results obtained by the best fit of the radio-� response applied to
the numerical simulations. All the other parameters are the same
as reported in Table 2. The blue lines correspond to the case of
only adiabatic cooling, and the orange lines to the case of ra-
diative plus adiabatic cooling. The green shaded areas represent
the ±10% region with respect to the prediction from Equation
25, and the dashed horizontal lines indicate unity. Top panel:
Radio�� delay. Middle panel: Decay time. Bottom panel: Rise
time.
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Fig. 7: Ratio of the timescales predicted by Equation 25 to the
results obtained by the best fit of the radio-� response applied to
the numerical simulations. All the other parameters are the same
as reported in Table 2. The blue lines correspond to the case of
only adiabatic cooling, and the orange lines to the case of ra-
diative plus adiabatic cooling. The green shaded areas represent
the ±10% region with respect to the prediction from Equation
25, and the dashed horizontal lines indicate unity. Top panel:
Radio�� delay. Middle panel: Decay time. Bottom panel: Rise
time.
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decay (blue line), and evaluated at t = t

obs
peak

and t = t
obs
peak+2.0t

obs
decay (orange line). The same values of �exp are

used as reported in Figure 8.

values of �exp. Clearly, the corresponding value of p is di↵erent
for di↵erent states of the evolution, meaning that the use of  as
a function of a constant p is inappropriate. For these reasons we
use a generic index � that is not related directly to p, but still
preserves the behaviour of the trends.

A further e↵ect due to the complex interplay between the
cooling timescales is shown in Figure 9, where we plot the ra-
tio of the synchrotron to adiabatic cooling timescales ⇢s/a(t) =
tsync(t)/tad(t), for the Lorentz factor of the electrons most con-
tributing to the observed 15 GHz frequency, evaluated at t = t

obs
peak

and t = t
obs
peak + 1.5t

obs
decay (blue line), and evaluated at t = t

obs
peak and

t = t
obs
peak+2.0t

obs
decay (orange line). This complex interplay between
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Fig. 18: Same as in Figure 16, but for the case of Mrk 3C 273.

also expect a correlation between the RM polarisation and the ra-
dio light curves.

We note that the change in the SSA frequency with time,
and the consequent delay, might also be related to a bending jet.
Indeed, the SSA frequency will change according to the observ-
ing angle for a slab geometry, as discussed by Ghisellini et al.
(1985). In this case, we would expect a change of the beam-
ing factor, and also a shift of the SSA frequency (to higher val-
ues if the bending results in a lower synchrotron optical thick-
ness). Therefore, if the bending orientates the shorter side of the
slab towards the line of sight of the observer, a further delay
is to be expected. On the contrary, if the rotation orientates the
larger side of the slab toward the line of sight of the observer,
no additional delay should be observed. We can provide a rough
estimate of the distance travelled by the emitting region during
the observed delay using Equation 17, which for �� ⇡ 100 and

�� ⇡ 1 would result in �r of the order of 3 ⇥ 1012 �obs

1s cm, that
is of the order of 1018�19 cm for observed delays of the order
of a few weeks to months. During this timescale, the jets should
bend towards the observer in such a way as to move the SSA fre-
quency down to the GHz window. We should also consider that
the total amount of requested rotation will also depend on the
slab aspect ratio, and that, for a square aspect ratio, we would ex-
pect almost no delay. We notice that a rotation towards the line
of sight of the observer would also result in a larger beaming
factor compared to initial one observed during the ��ray flaring
episode, adding an extra achromatic variability pattern induced
by the change in the beaming factor. All these e↵ects make it
di�cult to understand the extent to which bending alone, that
is, without expansion, could explain the observed delays. Never-
theless, it is possible that both processes happen, and therefore
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Fig. 19: Posterior distributions of the electron distribution in-
dex p obtained form the posterior of mB and � returned by the
MCMC sampler. Top panel: Mrk 421, middle panel: Mrk 501,
Bottom panel: 3C273.

it would be interesting to look for unambiguous signatures, such
as an achromatic variability pattern.

We might speculate that, in agreement with the conclusions
presented in Kovalev et al. (2020), the place where the �-ray flare
occurs is upstream of or close to the parabolic-to-conical transi-
tion site, and should provide ideal conditions for shock forma-
tion or for magnetic reconnection, which could lead to first- and
second-order particle acceleration, both included in our model.
A ��ray flaring region at parsec scale is easily compatible with

Fig. 20: Top Panel: Evolution of blob size (R), versus distance
travelled by the blob across the jet (�r). The grey shaded area
represents the evolution of R for a blob expanding with constant
velocity, with a range of �exp = [0.001 � 0.3, for a Bulk Lorentz
factor of 25, an observing angle of 1.5 deg, texp = 0, R0 = 5⇥1015

cm, and RH0 = 1 ⇥ 1017 cm. The green shaded area represents
the corresponding �r interval for a range of observed delay of
�obs

t
= [10, 1000] days. The blue shaded area represents the same

trend for the case of RH0 = 1 ⇥ 1018 cm. RH0 is the site of the �-
ray flare. The blue dashed line represents a conical jet profile for
RH0 = 1⇥1017 cm and the orange dashed line for RH0 = 1⇥1018

cm, both starting from an initial value of R0 = 5 ⇥ 1015 cm.
The yellow, blue, and purple shaded regions represent the �obs

t

for Mrk 421, Mrk 501, and 3C273, respectively. Bottome Panel:
Same as in the left panel, replacing the spatial units with the
Schwarzschild radius for a BH mass of 109

M�.

our analysis. In the top panel of figure 20, we plot (grey shaded
area) the evolution of R, i.e. the blob size, versus �r, the dis-
tance travelled by the blob across the jet, for a constant expan-
sion velocity, with a range of �exp = [0.001 � 0.3], for a Bulk
Lorentz factor of 25, and an observing angle of 1.5 deg. We also
set texp = 0, R0 = 5⇥1015 cm, and RH0 = 1⇥1017 cm. We notice
that for all three sources in our analysis, we find an estimate of
�r above 10 pc. For the case of Mrk 421, �r ⇡ 30 pc, and for
both Mrk 501 and 3C 237, �r is above ⇡ 100 pc. The estimate
�r is particularly relevant for FSRQs. Indeed, Costamante et al.
(2018) found that, due to the lack of broad line region (BLR) ab-
sorption features in the Fermi-LAT spectra of 106 FSRQs, the
site of the �-ray emission has to be placed beyond the BLR. For
the case of Fermi-LAT FSRQs, assuming an average disk lumi-
nosity of Ld ⇡ 1.5 ⇥ 1046 erg s�1, and a radius of the BLR given
by RBLR = 1017

L
1/2
d,45 (Ghisellini et al. 2010), the expected av-
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