Revealing time-resolved particle acceleration in the recurrent Nova RS Ophiuchi

7th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy

Simon Steinmaßl¹, J.-P. Ernenwein, D. Khangulyan, R. Konno, J. Mackey, A. Mitchell, S. Ohm, E. de Oña Wilhelmi, B. Reville, T. Unbehaun for the H.E.S.S. Collaboration 6th July, 2022

¹simon.steinmassl@mpi-hd.mpg.de

RS Ophiuchi - First nova detected in very high energies (VHE)

RS Ophiuchi - A white dwarf - red giant accreting binary system

Simon Steinmaßl. RS Oph with H.E.S.S. γ -2022. 6th July, 2022

RS Ophiuchi - The 2021 outburst

https://skyandtelescope.org/astronomy-news/recurrent-nova-rs-ophiuchi-just-blew-its-top/

- \sim 1.4 kpc from Earth (Barry et al., 2008)
- Reports of a new outburst on 8th Aug 2021, 22:20 UTC (AAVSO)

H.E.S.S. Nova ToO	Criterion	RS Oph
Ejecta velocity	≥ 1500 km/s	\geq 2600 km/s (Atel $\#14838)$ 🖌
Visual magn.	$m_v \leq 9$	$m_v = 4.5 \; ({\sf AAVSO})$ 🖌
Fermi LAT det.	Yes	6σ (ATel #14834) 🖌

Trigger H.E.S.S. observations starting on 9th Aug, 18:17 UTC

Night	$T_{\rm obs}$ (UTC)	Livetime (hours)	Significance (σ)
09 Aug. 2021	18:17:40	3.2	5.8 (6.4)
10 Aug. 2021	17:53:46	3.7 (2.8)	9.0 (7.1)
11 Aug. 2021	17:44:08	3.7	9.8 (9.6)
12 Aug. 2021	18:17:12	2.3	13.6
13 Aug. 2021	17:44:43	2.8	10.5 (9.4)
25 Aug 07 Sep. 2021	17:48:03; 19:47:31	14.6 (13.4)	3.3 (2.3)

H.E.S.S. Collaboration, 2022
(https://doi.org/10.1126/science.abn0567)

- Independent analysis in
 - Stereo with the four 12m telescopes
 - Mono with the 28m telescope (upgraded in 2019)
- Detection in real time analysis triggered observations in the following nights (Atel #14844)
- Detected by H.E.S.S. in each of the first 5 nights individually followed by observation break due to moon
- Observations again from 25th Aug to 7th Sep
- 3 sigma signal in cumulated nights after the moon break

Simon Steinmaßl. RS Oph with H.E.S.S. γ -2022. 6th July, 2022

RS Ophiuchi - Light curve results

H.E.S.S. Collaboration, 2022

- H.E.S.S. flux between 250 GeV and 2.5 TeV
- Fermi flux between 60 MeV and 500 GeV
- Peak H.E.S.S. flux:
 - 3 days after optical peak
 (T₀)
 - 2 days after Fermi LAT maximum
- Comparable decay slope
- γ -ray emission still visible after \sim 20 days

RS Ophiuchi - Spectral results

- Combined spectral fits to Fermi and H.E.S.S. data on nights 1-5 individually (with log-parabola)
- Smooth spectral behaviour over whole energy range
- General trend: (Fermi) flux level decreases, parabola widens
- Light curve and spectrum suggest single component for gamma rays for the whole time span

H.E.S.S. Collaboration, 2022

RS Ophiuchi - Interpretation

RS Ophiuchi - Interpretation

- Shock velocity: 4000 5000 km/s for first week from spectroscopy (ATel #14852)
- Consistent with observations from 2006 outburst (for several months)
- Quasi-spherical shock
 - Expanding into the open wind of the red giant
 - Pinched at binary orbital plane (Booth et al., 2016)
- \rightarrow Particles undergo diffusive shock acceleration

Image Credit: DESY/H.E.S.S., Science Communication Lab

RS Ophiuchi - 1D hydrodynamical model

- Describes motion of ejecta and dynamics of forward shock (radius & speed)
- Changing enviroment (e.g. decreasing upstream density)
- Hadronic & leptonic scenario tested with single-zone model

Simon Steinmaßl. RS Oph with H.E.S.S. γ -2022. 6th July, 2022

Confinement limit (Bell et al. 2013)

$$E_{\rm max} = 1.5 |Z| \left(\frac{\xi_{\rm esc}}{0.01}\right) \left(\frac{\dot{M}/v_{\rm wind}}{10^{11} \rm \ kg \ m^{-1}}\right)^{1/2} \left(\frac{u_{\rm sh}}{5000 \rm \ km \ s^{-1}}\right)^2 \rm \ TeV$$

- Efficiency parameter ξ_{esc} : fraction of energy density flux processed by the shock & lost to the upstream escaping energetic particles typically $\sim 1\%$
- \dot{M} mass-loss rate, $v_{\rm wind}$ wind velocity of red giant, $u_{\rm sh}$ shock velocity
- For RS Oph: $\dot{M}/v_{\rm wind} = 6 \times 10^{11} \, {\rm kg \, m^{-1}}$, $u_{\rm sh} = 4000 5000 \, {\rm km \, s^{-1}}$

 $\Rightarrow E_{max} pprox 1 - 10 \,\, {
m TeV}$

RS Ophiuchi - Hadronic scenario

H.E.S.S. Collaboration, 2022

- Confinement limit is the dominant constraint for protons
- Measured fluxes imply > 10% of internal energy to accelerate protons
- Delay in Fermi vs. H.E.S.S. peak = finite acceleration time
- Hadronic model consistent with spectral evolution observed

RS Ophiuchi - Leptonic scenario

- Electron acceleration must overcome strong radiative (IC) losses
- Difference in Fermi vs. H.E.S.S. spectral slopes due to energy dependent cooling rates
- BUT: Requires efficiency > 1% significantly higher than theories of injection at high-Mach number shocks predict (e.g. Malkov & Drury, 2001)

Conclusion

Hadronic scenario preferred

- Acceleration to TeV energies possible in novae! (1st time observed)
- Total energy release: $\sim 10^{43}$ erg with large fraction converted to relativistic protons & heavier nuclei
- In case of RS Oph: recurrent injection of cosmic rays could lead to local CR enhancement
- But contribution of novae sub-dominant to average Galactic cosmic ray population
- Theoretical limit for maximum energy via diffuse shock acceleration reached
- Extremely efficient accelerator \rightarrow if extrapolated could explain PeV cosmic rays from supernovae

RS Ophiuchi - Conclusions & outlook

- First nova seen in the VHE regime hopefully more to come!
- Strong signal allows time resolved analysis
- Combined Fermi & H.E.S.S. analysis suggests single component for gamma rays
- Gamma ray emission with
 - Most likely hadronic origin
 - Extremely efficient acceleration to $E_{max} pprox 1-10$ TeV

Simon Steinmaßl. RS Oph with H.E.S.S. γ -2022. 6th July, 2022

Thanks for listening! Any Questions?

Backup

Backup slides - Novae

Credit: NASA/CXC/M.Weiss

- Prerequisites:
 - Binary system of white dwarf and stellar companion (cataclysmic variables or symbiotic binaries)
 - Accretion flow from companion to WD
 - Accumulation of accreted layer on surface of WD
- Eruption due to (runanway) thermonuclear fusion of accreted material
- Eventual ejection of accreted layer
- Can be recurrent process

Backup slides - Nova schematic timeline

R Annu. Rev. Astron. Astrophys. 59:391–444

Backup slides - Recurrence

Chomiuk L, et al. 2021 Annu. Rev. Astron. Astrophys. 59:391–444

Backup slides - Fermi-LAT detections of novae

- Standard picture: thermal emission as driving force
- First detection of nova by Fermi LAT in 2010 big surprise
- Fermi LAT has detected 17 novae so far \rightarrow there must be non thermal processes / shocks involved
- Typical cut-off at 1-10 GeV & lasting up to a few weeks

Backup Slides - Analysis challenges

H.E.S.S. Collaboration, 2022

- Challenging analysis due to
 - non optimal & varying atmospheric conditions
 - varying night sky background
- Correction scheme using the atmospheric transparency coefficient
- Checks on Crab run lists categorized by atmospheric transparencies
 - \rightarrow correction validated

Backup slides - LC with optical

Backup slides - Spectral Evolution

Fermi + H.E.S.S.

H.E.S.S.

only

Backup slides - Model schematic

Image Credit: H.E.S.S.,2022 & DESY/H.E.S.S., Science Communication Lab

Backup slides - Cooling times

H.E.S.S. Collaboration, 2022

Backup slides - Magnetic field and photon field evolution

H.E.S.S. Collaboration, 2022

Backup slides - Particle energy and luminosity evolution

H.E.S.S. Collaboration, 2022

Backup slides - Particle spectra evolution

Electrons

Protons

H.E.S.S. Collaboration, 2022

Backup slides - Attenuation

H.E.S.S. Collaboration, 2022

Backup slides - Model parameters

Parameter	Symbol, unit	p-p model	IC model
Acceleration slope electrons	α_e	-	2.2
Acceleration slope protons	α_p	2.2	_
Cutoff exponent electrons	β_e	-	0.5
Cutoff exponent protons	eta_{p}	0.5	_
Fraction of energy in electrons	κ_e	0	3%
Fraction of energy in protons	κ_p	50%	0
Acceleration efficiency of electrons	η_e	_	10π
Acceleration efficiency of protons	η_P	30π	_
Escape efficiency	$\xi_{ m esc}$	10^{-2}	_
Electron low energy cutoff	E_{\min}	_	$10^2 m_e c^2$
Proton low energy cutoff	E_{\min}	$2.m_pc^2$	_
RG surface magnetic field	B_*, G	1.	
RG radius, au	R_*, au	0.35	
RG mass-loss rate	$\dot{M}/v_{\rm w}, {\rm g} {\rm cm}^{-1}$	6.3×10^{11}	
WD orbit radius	$r_{\rm orb}$, au	1.48	
Distance from Earth	$_{\rm kpc}$	1.4	
Ejecta initial speed	$v_{\rm ei,0}, {\rm km s^{-1}}$	3000	
Ejecta mass	$m_{ m ej}$	$10^{-7} M_{\odot}$	