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Introduction
■ The Virgo Cluster is a cool core 

cluster;


■ Formation of cool core (CC) cluster 
first thought to be due to cooling 
flow;


■ Low star formation rate in CC 
clusters challenges this 
interpretation;


■ A heating mechanism must exist to 
halt the cooling flow and the collapse 
of the gas;


■ The AGN feedback is a strong 
candidate to be this heating 
mechanism;


■ In a dense environment such as a 
cluster core:
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π0 → γγpp → ppπ0 (Extended and non-variable)
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M87 morphology in VHE gamma-rays with H.E.S.S.

■ Data from 2004 to 2021;


■ Largest data-set ever analysed in VHE gamma rays for this source;


■ Best-quality events selected;


■ Improved angular resolution (￼ );


■ Template analysis.

∼ 0.05∘
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livetime: 194 hours
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■ The monthly-binned Light-curve;

PRELIMINARY
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■ The monthly-binned Light-curve;


■ Bayesian blocks;

PRELIMINARY
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■ The monthly-binned Light-curve;


■ Bayesian blocks;


■ Source states: low (below the average), intermediate (<30% above the 
average), high state (>30% above the average).
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PRELIMINARY



V. Barbosa Martins et al. The gamma-ray morphology of M87 with H.E.S.S. Gamma2022, Barcelona, Spain 

■ Source states
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Low Intermediate High

Flux 
 (> 0.3 TeV) 1.48 ± 0.14 × 10−12 cm−2 s−1 1.58 ± 0.22 × 10−12 cm−2 s−1 3.75 ± 0.43 × 10−12 cm−2 s−1

Livetime

Significance

120 h 28 h 29 h

15.6σ 10.5σ 19.4σ

Spectral 
 index ￼ *α 2.63 ± 0.09 2.40 ± 0.10 2.25 ± 0.05

*￼Φ = Φ0(E /E0)−α

PRELIMINARY PRELIMINARY PRELIMINARY
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Point-like 
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2D 
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■ Morphology fit

X
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Low

ΔTS ≈ 0
0σ

Point-like 
model

2D 
Symmetrical 

Gaussian

■ Morphology fit

■ Fit statistics

No extension detected!

X
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Low Intermediate High

ΔTS ≈ 0 ΔTS ≈ 2.7 ΔTS ≈ 0.4
0σ 1.6σ 0.6σ

Point-like 
model

2D 
Symmetrical 

Gaussian

■ Morphology fit

■ Fit statistics

No extension detected!

Sanity check:

X
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■ Gamma-ray localisation

99.7% c.l. ￼  Gaussian 
extension UL

σ

Low

Intermediate

High

16.2 mdeg
4.6 kpc*

36.0 mdeg
10.3 kpc

22.3 mdeg
6.4 kpc

* distance to M 87 = 16.5 Mpc
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■ Gamma-ray localisation

99.7% c.l. ￼  Gaussian 
extension UL

σ

Low

Intermediate

High

16.2 mdeg
4.6 kpc*

36.0 mdeg
10.3 kpc

22.3 mdeg
6.4 kpc

VLA 90 cm (Radio lobe)

E
xc

es
s 

(c
ou

nt
s)

* distance to M 87 = 16.5 Mpc

M87 low state morphology fit

PRELIMINARY
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Radio VLA 21 cm (white)


Optical SDSSg (color-scale)

M87 low state extension UL

PRELIMINARY
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Radio VLA 21 cm (white)


Optical SDSSg (color-scale)

M87 low state extension UL

■ The extension UL:

▪ does not constrain the inner 

radio cocoon;


▪ Does not constrain the 
emission from the large-scale 
jet;


▪ Lies already inside M87’s 
optical galaxyPRELIMINARY
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M87 source states with the ￼  
statistical uncertainties in the position

3σ

PRELIMINARY
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M87 source states with the ￼  
statistical uncertainties in the position

3σ

■ Best fit position of the 
source states consistent 
with each other;


■ All states consistent within 
￼  with the SMBH position;


■ Systematic checks assures 
the stability of the results.

3σ

PRELIMINARY
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The cosmic-ray pressure in the inner Virgo Cluster

■ We used the limits on the extension of M87’s VHE low state emission to 
derive an estimate of the cosmic-ray pressure from the AGN in the inner 
(￼  kpc) Virgo Cluster;


■ We adopted two approaches:

≲ 20

￼23

Steady state model 
(AGN feedback) 
Jacob & Pfrommer 2016

AGN feedback:


■Steady state model: 
heating by the AGN and 
thermal radiation 
counterbalances the 
cooling of the ICM
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Steady state model 
(AGN feedback) 
Jacob & Pfrommer 2016

LOFAR-based emission

AGN feedback:


■Steady state model: 
heating by the AGN and 
thermal radiation 
counterbalances the 
cooling of the ICM

LOFAR-based:


■The extension of a gamma-
ray signal from a hadronic 
scenario is assumed to have 
the same shape as the 
LOFAR emission

*

*image provided by de Gasperin
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The cosmic-ray pressure in the inner Virgo Cluster

■ We used the limits on the extension of M87’s VHE low state emission to 
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Steady state model 
(AGN feedback) 
Jacob & Pfrommer 2016

LOFAR-based emission*

*HR image provided by de Gasperin
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■ Morphology fit of a hybrid model composed of a diffuse template and a 
point-like component (jet emission) yield a 99.7% c.l. UL on the diffuse 
component:
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Steady state model 
(AGN feedback) 
Jacob & Pfrommer 2016

LOFAR-based emission

￼ % of M87’s low 
state VHE flux

≈ 45￼ % of M87’s low 
state VHE flux

≈ 55
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Steady state model 
(AGN feedback) 
Jacob & Pfrommer 2016

LOFAR-based emission

￼ % of M87’s low 
state VHE flux

≈ 45￼ % of M87’s low 
state VHE flux

≈ 55

< XCR > = < PCR > / < Pth > for ￼  kpc.r < 20

■ Cosmic-ray pressure ratio:
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■ Morphology fit of a hybrid model composed of a diffuse template and a 
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component:
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Steady state model 
(AGN feedback) 
Jacob & Pfrommer 2016

LOFAR-based emission

￼ % of M87’s low 
state VHE flux

≈ 45￼ % of M87’s low 
state VHE flux

≈ 55

PRELIMINARY PRELIMINARY

αp
αp

N = N0(p/p0)−αp*cosmic-ray proton distr.:*
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Summary and prospects
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■ We exclude the radio lobes (￼  kpc) as the main contributor to the VHE 
low state emission of M87;


■ We constrain the size of the emission to a region inside the optical galaxy;


■ We do not rule out the inner radio cocoon as a main contributor;


■ We do not rule out the outer jet (￼  kpc) and the X-ray knots as main 
contributors to the VHE low state emission of M87.

∼ 40

∼ 2
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■ We constrained the cosmic-ray pressure ratio to ￼  to in the 
inner 20 kpc for a hard proton distribution (￼ ) considering two 
different approaches;


■ The limit lies above the expected pressure from a steady state model, hence, 
the model is not probed by our morphology fit;


■ Our results do not collide with the Fermi-LAT limit, which constrains the 
cosmic-ray pressure up to the cluster viral radius (~1.1 Mpc) to be 
￼ ;


■ An analysis of the Fermi-LAT data in the 50 - 100 GeV band for the low state 
as defined in VHE regime could be promising;


■ The Cherenkov Telescope Array (CTA) with a better angular resolution and 
sensitivity will potentially be able to unravel an extended VHE gamma-ray 
emission from M87.

< XCR > ≤ 20 %
αp = 2.1

< XCR > ≤ 6 %

Thank you!


