

The gamma-ray morphology of M87 with H.E.S.S.

V. Barbosa Martins, C. Arcaro, N. Zywucka, S. Ohm, M. De Naurois, A. Taylor for the H.E.S.S. Collaboration

 The Virgo Cluster is a cool core cluster;

- The Virgo Cluster is a cool core cluster;
- Formation of cool core (CC) cluster first thought to be due to cooling flow;

- The Virgo Cluster is a cool core cluster;
- Formation of cool core (CC) cluster first thought to be due to cooling flow;
- Low star formation rate in CC clusters challenges this interpretation;

- The Virgo Cluster is a cool core cluster;
- Formation of cool core (CC) cluster first thought to be due to cooling flow;
- Low star formation rate in CC clusters challenges this interpretation;
- A heating mechanism must exist to halt the cooling flow and the collapse of the gas;

- The Virgo Cluster is a cool core cluster;
- Formation of cool core (CC) cluster first thought to be due to cooling flow;
- Low star formation rate in CC clusters challenges this interpretation;
- A heating mechanism must exist to halt the cooling flow and the collapse of the gas;
- The AGN feedback is a strong candidate to be this heating mechanism;

- The Virgo Cluster is a cool core cluster;
- Formation of cool core (CC) cluster first thought to be due to cooling flow;
- Low star formation rate in CC clusters challenges this interpretation;
- A heating mechanism must exist to halt the cooling flow and the collapse of the gas;
- The AGN feedback is a strong candidate to be this heating mechanism;
- In a dense environment such as a cluster core: $pp \rightarrow pp\pi^0$

 $\pi^0 \rightarrow \gamma \gamma$ (Extended and non-variable)

V. Barbosa Martins et al. The gamma-ray morphology of M87 with H.E.S.S. Gamma2022, Barcelona, Spain 7

M87 morphology in VHE gamma-rays with H.E.S.S.

- Data from 2004 to 2021;
- Largest data-set ever analysed in VHE gamma rays for this source;
- Best-quality events selected;
- Improved angular resolution ($\sim 0.05^{\circ}$);
- Template analysis.

The monthly-binned Light-curve;

- The monthly-binned Light-curve;
- Bayesian blocks;

- The monthly-binned Light-curve;
- Bayesian blocks;
- Source states: low (below the average), intermediate (<30% above the average), high state (>30% above the average).

Source states

 $^{*}\Phi = \Phi_0 (E/E_0)^{-\alpha}$

Source states

V. Barbosa Martins et al. The gamma-ray morphology of M87 with H.E.S.S. Gamma2022, Barcelona, Spain 13

Morphology fit

Fit statistics

Low $\Delta TS \approx 0$

 0σ

No extension detected!

Morphology fit

Fit statistics		Sanity check:	
	Low	Intermediate	High
	$\Delta TS \approx 0$ 0σ	$\Delta TS \approx 2.7$ 1.6σ	$\Delta TS \approx 0.4$ 0.6σ

No extension detected!

Gamma-ray localisation

99.7% c.l. σ Gaussian extension UL

Low

16.2 mdeg 4.6 kpc*

Intermediate

36.0 mdeg 10.3 kpc

High

22.3 mdeg 6.4 kpc

V. Barbosa Martins et al. The gamma-ray morphology of M87 with H.E.S.S. Gamma2022, Barcelona, Spain 17

* distance to M 87 = 16.5 Mpc

Gamma-ray localisation

99.7% c.l. σ Gaussian extension UL

Low 16.2 mdeg 4.6 kpc*

Intermediate

36.0 mdeg 10.3 kpc

High 22.3 mdeg 6.4 kpc

M87 low state morphology fit

* distance to M 87 = 16.5 Mpc

M87 low state extension UL

Optical SDSSg (color-scale)

M87 low state extension UL

The extension UL:

- does not constrain the inner radio cocoon;
- Does not constrain the emission from the large-scale jet;
- Lies already inside M87's optical galaxy

Optical SDSSg (color-scale)

M87 source states with the 3σ statistical uncertainties in the position

M87 source states with the 3σ statistical uncertainties in the position

- Best fit position of the source states consistent with each other;
- All states consistent within 3σ with the SMBH position;
- Systematic checks assures the stability of the results.

The cosmic-ray pressure in the inner Virgo Cluster

- We used the limits on the extension of M87's VHE low state emission to derive an estimate of the cosmic-ray pressure from the AGN in the inner ($\lesssim 20$ kpc) Virgo Cluster;
- We adopted two approaches:

Steady state model (AGN feedback) Jacob & Pfrommer 2016

AGN feedback:

Steady state model:

heating by the AGN and thermal radiation counterbalances the cooling of the ICM

The cosmic-ray pressure in the inner Virgo Cluster

- We used the limits on the extension of M87's VHE low state emission to derive an estimate of the cosmic-ray pressure from the AGN in the inner $(\leq 20 \text{ kpc})$ Virgo Cluster;
- We adopted two approaches:

Steady state model (AGN feedback) Jacob & Pfrommer 2016

AGN feedback:

Steady state model: heating by the AGN and thermal radiation counterbalances the

cooling of the ICM

LOFAR^{*}-based emission

LOFAR-based:

The extension of a gammaray signal from a hadronic scenario is assumed to have the same shape as the LOFAR emission

*image provided by de Gasperin

The cosmic-ray pressure in the inner Virgo Cluster

- We used the limits on the extension of M87's VHE low state emission to derive an estimate of the cosmic-ray pressure from the AGN in the inner ($\lesssim 20$ kpc) Virgo Cluster;
- We adopted two approaches:

V. Barbosa Martins et al. The gamma-ray morphology of M87 with H.E.S.S. Gamma2022, Barcelona, Spain 25

*HR image provided by de Gasperin

 Morphology fit of a hybrid model composed of a diffuse template and a point-like component (jet emission) yield a 99.7% c.l. UL on the diffuse component:

> Steady state model (AGN feedback) Jacob & Pfrommer 2016

 $\approx 55\%$ of M87's low state VHE flux

LOFAR-based emission

 $\approx 45\%$ of M87's low state VHE flux

 Morphology fit of a hybrid model composed of a diffuse template and a point-like component (jet emission) yield a 99.7% c.l. UL on the diffuse component:

Steady state model (AGN feedback) Jacob & Pfrommer 2016

 $\approx 55\%$ of M87's low state VHE flux

LOFAR-based emission

 $\approx 45\%$ of M87's low state VHE flux

Cosmic-ray pressure ratio:

$$< X_{CR} > = < P_{CR} > / < P_{th} >$$
 for $r < 20$ kpc.

 Morphology fit of a hybrid model composed of a diffuse template and a point-like component (jet emission) yield a 99.7% c.l. UL on the diffuse component:

Summary and prospects

- We exclude the radio lobes ($\sim 40~{\rm kpc})$ as the main contributor to the VHE low state emission of M87;
- We constrain the size of the emission to a region inside the **optical galaxy**;
- We do not rule out the inner radio cocoon as a main contributor;
- We do not rule out the **outer jet** ($\sim 2~{\rm kpc}$) and the **X-ray knots** as main contributors to the VHE low state emission of M87.

- We constrained the cosmic-ray pressure ratio to $< X_{\rm CR} > \le 20 \%$ to in the inner 20 kpc for a hard proton distribution ($\alpha_p = 2.1$) considering two different approaches;
- The limit lies above the expected pressure from a steady state model, hence, the model is not probed by our morphology fit;
- Our results do not collide with the Fermi-LAT limit, which constrains the cosmic-ray pressure up to the cluster viral radius (~1.1 Mpc) to be $< X_{\rm CR} > \le 6\%$;
- An analysis of the Fermi-LAT data in the 50 100 GeV band for the low state as defined in VHE regime could be promising;
- The Cherenkov Telescope Array (CTA) with a better angular resolution and sensitivity will potentially be able to unravel an extended VHE gamma-ray emission from M87.

Thank you!

