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Investigating colliding-wind binaries

Shock physics
(cooling processes, hydrodynamics...)
Particle acceleration

(acceleration efficiency, non-thermal particle content, contribution of CWBs to the

observed cosmic-ray spectrum...)

High-energy emission

(potentially detectable at high energies, association with unidentified Fermi sources...)
Magnetic fields

(stellar surface magnetic field, magnetic field amplification mechanisms...)




Colliding-wind binaries
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Non-thermal emission

Different processes are involved.
Their importance depends on the
properties of the system. This can
lead to orbital variability.
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A very special CWB

The exceptional system ;-Carinae drives the strongest colliding wind shock. Non-thermal hard X-rays detected
near periastron (Hamaguchi+2018). The first CWB to be detected in y-rays: HE emission modulated with the

orbital period (Marti-Devesa+2021), VHE emission also detected (H.E.S.S. Coll. 2020).
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Physical processes

In order to derive physical constraints from the observed non-thermal
emission we must take into account:

¢ How relativistic particles are accelerated and transported

¢  How these particles emit radiation

O How this emission is affected by absorption processes
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Theoretical models
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Extended emitter model

. Wind-collision region = axisymmetric surface. del Palacio+2016
. Adiabatic shock + laminar flow (x2).
Semi-analytical prescriptions of the shocked fluid.
. Relativistic particles accelerated at the shocks as
Q(E) < E'P , with p given by radio observations.

. Compute the non-thermal emission (sync., IC, p-p)
and absorption processes (FFA, R-T, y-y).

. Free parameters: magnetic field intensity (B) and

fraction of energy injected in relativistic particles
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The system HD Q3I120A

HD 93129A is one of the most extreme and Maiz-Apellaniz+ 201?
massive CWBs in our Galaxy. |

Long period orbit: P ~ 100 yr, a,” 10 AU.
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The system HD Q3I120A

Model degeneracy: high B and low f, ., or viceversa? Radio data is not enough

Goal: Break the degeneracy by studying the high-energy IC component
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The system HD Q3I120A

Observational campaign during 2018 : 3 NuSTAR

resolution

periastron passage.

The source is in a crowded field; angular
resolution Is an issue.
Quasi-simultaneous observations with
Chandra and NuSTAR.

Non-detection of y-rays with AGILE.

Chandra image
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The system HD Q3I120A
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The 2018 X-ray observations allowed us to constrain B and f, . — we estimated f, . ~0.6% and B~ 0.5 G




The system HD Q3I120A

NuSTAR

Follow-up campaign during 2022 to | s
monitor the post-periastron T
evolution (in progress).
Quasi-simultaneous observations

with Chandra and NuSTAR.
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Hint of a small decrease in the hard
X-ray luminosity in 2022 (orbital

variability?).
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The system Apep

del Palacio+2022 Using our non-thermal emission model we could:

np = 0.1
ng = 0. mTBWCR X 773 - e Estimate the projection angle on the sky (y = 85°).
np = 0.01 % B i .

7}§ =0.003 VA el e Better constrain the wind mass-loss rates.

' e Constrain the magnetic field intensity and the

fraction of power converted to non-thermal particles
Bwcr ~0.08—-04G
N

10? IOl e Estimate the high- gy emission from the source
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— possibili detectionat hard X-rays

The electrons that produce
the synchrotron emission [ 2 Higher B = less emission at high energies
also produce IC emission
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The system Apep

NuSTAR observations to try to detect the IC emission in hard X-rays (soon, in 2022)
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The non-thermal component can overcome the thermal component at € > 13-20 keV




Conclusions

Radio observations are insufficient to characterise the non-thermal emission
from CWBs. Great synergy with observations at high-energies (X-rays and y-rays).
Multi-wavelength observations combined with detailed theoretical modelling can
shed light on the properties of CWBs (magnetic fields, particle-acceleration
efficiency...).

CWBs are faint high-energy sources, with very few detections. We need
observational campaigns focused on promising sources during carefully selected

epochs.

Thank you
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Transport equation

Stationary and inhomogeneous structure made up of multiple 1-D emitters

For a given 1-D linear emitter we obtain N(E) at each
| position:
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Using our non-thermal emission model we could:

e Estimate the projection angle on the sky (y = 85°).
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The system Apep

del Palacio+2022
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Using our non-thermal emission model we could:

e Estimate the projection angle on the sky (y = 85°).

e Better constrain the wind mass-loss rates.




