

The Intergalactic magnetic field

IllustrisTNG simulation — Marinacci et al. (2018)

The Intergalactic magnetic field

- B-fields in galaxies and galaxy clusters originate from amplified seed field
- Origin, strength, orientation of seed fields unknown
- Extremely difficult to measure directly

IllustrisTNG simulation — Marinacci et al. (2018)

Indirect detection of the IGMF Using gamma-ray observations of blazars

- Excess x rays at lower energies [e.g. Neronov & Semikoz 2008]
- Extended x-ray halos [Aharonian et al. 1994]
- Time delayed x-ray emission

[Plaga 1995]

• Biggest uncertainty: blazar duty cycle [Dermer et al. 2011]

Goal: new constraints on the IGMF Using a combined maximum likelihood approach of H.E.S.S. and LAT data

 $\gamma_{\rm EB}$

/CMB

- Search for spatial and spectral halo signature
- Realistic predictions for halo from Monte Carlo Simulations
- Combining H.E.S.S. and Fermi-LAT data on the likelihood level

Source Selection

• Demands:

- Emission at energies corresponding to high opt
- Stable gamma-ray emission in time as seen with
- \Rightarrow extreme HBL sources
- Source selection from 4LAC-DR2 catalog:
 - Spectral type: power law & $\Gamma+\sigma_{\!\Gamma}<2$
 - Redshift known
 - BL Lac source type with synchrotron peak $u_{
 m Sync}$
 - Chance probability < 99% that source is variable
 - Sources with TeV counterpart observed with H.

Resulting sources:

ical depth	Source Name	Redshift	
n the LAI	1ES 0229+200	0,139	
	1ES 0347-121	0,188	
	PKS 0548-322	0,069	
$> 10^{17} \text{Hz}$	1ES 1101-232	0,186	
E.S.S.	H 2356-309	0,165	

Modeling the halo with CRPropa3

- •<u>CRPropa 3</u> Monte Carlo Code used to generate 4D (spatial + energy + delay time) halo templates
- •All relevant particle interactions included
- •Halo templates generated for all sources for $B = 10^{-16}$ G, ..., 10^{-13} G for $\lambda_B = 1$ Mpc and EBL model of Dominguez et al. (2011)
- Developed <u>python wrapper</u> in order to:
 - •Reweight simulations for different input spectra [Ackermann et al. 2018]
 - •Smooth sky maps adaptively [Ebeling et al. 2006]
 - •Change orientation between source and observer in post processing [Alves Batista et al. 2016]
 - •Change blazar activity time

7

Fermi-LAT data selection

Parameter	
Time range	
Energy Range	
ROI size	
Max. Zenith angle	
Filter	
Spatial binning	
Energy binning	
Event Class / IRFs	
Event types	

Selection		
	11.5 years	
	>1GeV	
	6° x 6°	
	100°	
	DATA_QUAL>0 && LAT_CONFIG==1	
	0.025° / pixel	
	8 bins per decade	
	P8R3_S0URCE_V3, inflight PSF	
	PSFO-2, PSF3	

Extracting LAT likelihoods in the presence of a halo

- First step: standard LAT point source analysis
- Source spectrum: $\phi_{obs} = N(E/E_0)^{-\Gamma} exp(-\tau)$
- Sources appear well described by point sources
- For each simulated IGMF strength:
 - Change point source model to $\phi_{\text{obs}} = N(E/E_0)^{-\Gamma} \exp(-E/E_{\text{cut}}) \exp(-\tau)$
 - Loop over spectral parameters, add corresponding halo template, extract likelihood of fit, $\ln \mathscr{L}_{LAT}$

H.E.S.S. Data sets

- Data taken with small telescopes up to 2018 considered here
- Analysis performed using gammapy [Deil et al. 2017]
- Source spectra $\phi_{
 m obs}$ well described by power law including EBL absorption,

$\phi_{\rm obs}$:	= N(E)	$(E_0)^{-1}$	Fexp(-	- au)

Source	Life time (hours)	Detection significance	Power law index Γ
1ES 0229+200	144,1	16.5 σ	1.76 ± 0.12
1ES 0347-121	59,2	16.1 o	2.12 ± 0.15
PKS 0548-322	53,9	10.2σ	1.92 ± 0.12
1ES 1101-232	71,9	18.7 σ	1.66 ± 0.09
 H 2356-309	150,5	23.4 o	2.10 ± 0.09

Combined H.E.S.S. and LAT analysis

• Intrinsic blazar model:

$$\phi(E) = N\left(\frac{E}{E_0}\right)^{-\Gamma} \exp\left(-\frac{E}{E_{\text{cut}}}\right)$$

- Total source model: $\phi_{\rm tot}(E,B) = \phi(E) {\rm exp}(-\tau) + \phi_{\rm halo}(E,B)$
- Halo flux taken from CRPropa3 simulation; depends on spectral parameters, blazar activity time...
- Spectral parameters optimized using combined H.E.S.S. and LAT likelihoods: $\ln \mathscr{L} = \ln \mathscr{L}_{LAT} + \ln \mathscr{L}_{H.E.S.S.}$

11

Combined H.E.S.S. and LAT analysis

• Intrinsic blazar model:

$$\phi(E) = N\left(\frac{E}{E_0}\right)^{-\Gamma} \exp\left(-\frac{E}{E_{\text{cut}}}\right)$$

- Total source model: $\phi_{\text{tot}}(E,B) = \phi(E)\exp(-\tau) + \phi_{\text{halo}}(E,B)$
- Halo flux taken from CRPropa3 simulation; depends on spectral parameters, blazar activity time...
- Spectral parameters optimized using combined H.E.S.S. and LAT likelihoods: $\ln \mathscr{L} = \ln \mathscr{L}_{LAT} + \ln \mathscr{L}_{H.E.S.S.}$

Combined H.E.S.S. and LAT analysis

• Intrinsic blazar model:

$$\phi(E) = N\left(\frac{E}{E_0}\right)^{-\Gamma} \exp\left(-\frac{E}{E_{\text{cut}}}\right)$$

- Total source model: $\phi_{\text{tot}}(E,B) = \phi(E)\exp(-\tau) + \phi_{\text{halo}}(E,B)$
- Halo flux taken from CRPropa3 simulation; depends on spectral parameters, blazar activity time...
- Spectral parameters optimized using combined H.E.S.S. and LAT likelihoods: $\ln \mathscr{L} = \ln \mathscr{L}_{\text{LAT}} + \ln \mathscr{L}_{\text{H.E.S.S.}}$

Results: lower limits on IGMF Data does not prefer presence of halo

Results: lower limits on IGMF Data does not prefer presence of halo

Results: lower limits on IGMF Data does not prefer presence of halo

- CRPropa3 simulations used to generate realistic cascade templates
- Combination LAT and H.E.S.S. data rules out B fields weaker than $B \lesssim 7 \times 10^{-16}$ G for $t_{\rm max} = 10$ yr
- Previous constraints improved by factor of 2

- CRPropa3 simulations used to generate realistic cascade templates
- Combination LAT and H.E.S.S. data rules out B fields weaker than $B \lesssim 7 \times 10^{-16}$ G for $t_{\rm max} = 10$ yr
- Previous constraints improved by factor of 2

- CRPropa3 simulations used to generate realistic cascade templates
- Combination LAT and H.E.S.S. data rules out B fields weaker than $B \lesssim 7 \times 10^{-16}$ G for $t_{\rm max} = 10$ yr
- Previous constraints improved by factor of 2

- CRPropa3 simulations used to generate realistic cascade templates
- Combination LAT and H.E.S.S. data rules out B fields weaker than $B \lesssim 7 \times 10^{-16}$ G for $t_{\rm max} = 10$ yr
- Previous constraints improved by factor of 2

Fermi-LAT analysis with halo component

Start from optimized ROI without halo

Change spectrum of central source to power law with exponential cut-off and EBL absorption

Re-optimize ROI with new model, leaving normalizations of other sources and background templates free

Generate fits template for MapCubeFunction of cascade for chosen $\Gamma, E_{\rm cut}$

Add cascade template to ROI

Profile the likelihood over normalization N of central source and halo template normalization s_{halo} (with $0 \le s_{halo} \le 1$). Normalizations of other point sources and background templates re-optimized

Building cascade templates

• From the simulated events we build the intensity as function of injected gamma-ray energy ϵ , observed energy E, solid Ω , and delay time τ :

 $d\mathcal{N}$ $d\epsilon dE d\tau d\Omega = \frac{1}{N_{\rm inj}}(\Delta \epsilon) \Delta E \Delta \epsilon \Delta \tau \Delta \Omega$

- Simulation done for discrete injection energies ϵ_i
- injected energy:

$$w_i = \int_{\Delta \epsilon_i} \frac{dN}{d\epsilon} d\epsilon$$

$$\frac{d\mathcal{N}}{dEd\Omega} = \int_{0}^{\infty} d\epsilon \frac{dN}{d\epsilon} \int_{0}^{\tau_{\max}} d\tau \frac{d\mathcal{N}}{d\epsilon dEd\tau d\Omega} \approx \sum_{i} \sum_{j} \Delta \epsilon_{i} \Delta \tau_{j} w_{i} \left(\frac{d\mathcal{N}}{d\epsilon dEd\tau d\Omega}\right)$$

 $\theta_{\rm jet}, \theta_{\rm obs}$ and source redshift z

• From this, we can re-weight the cascade histogram for an arbitrary source spectra $dN/d\epsilon$ (e.g., a power law), by computing weights for bins of

• With the spectral weights, we obtain the expected cascade flux that arrives within some maximum time delay (assuming constant emission with time)

• Cascade flux will depend on IGMF strength B and coherence length λ , injection spectrum, maximum activity time of the source t_{max} , as well as

Cascade templates as function of IGMF strength: sky maps

Smoothed with ASMOOTH

Convolved with Fermi PSF3

$B = 3.16 \times 10^{-14} \,\mathrm{G}$

$B = 10^{-13} \,\mathrm{G}$

(×10⁻

0.0

ntensity $(\times 10^{-15} \text{ eV}^{-1} \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1})$

0.0

Cascade templates as function of IGMF strength: lon/lat profiles $B = 3.16 \times 10^{-16}$ G, sky map summed over lon/lat and energy

$B = 3.16 \times 10^{-15}$ G, sky map summed over lon/lat and energy

Cascade templates as function of IGMF strength: lon/lat profiles $B = 10^{-13}$ G, sky map summed over lon/lat and energy

Fermi-LAT Analysis with halo component — Examples of likelihood profile with Ecut

Fermi-LAT Analysis with halo component — Examples of likelihood profile with Γ

1ES0229+200, $t_{\text{max}} = 1.0e+07$, $\theta_{\text{obs}} = 0.0^{\circ}$, $\phi = 0.0^{\circ}$

