Detection of J2019+368:
a case study of very-large-zenith angle observations with H.E.S.S.
D.Kostunin ${ }^{1}$, H. Rueda², F. Brun ${ }^{2}$ I. Lypova ${ }^{3}$, S.Ohm ${ }^{1}$
or the H.E.S.S. Collaboration
DESY, Zeuhnen, 1 ITz38 Geemany

Spectra comparison

Obtained results

The J2019+368 source was firmly detected with high significance (>5 sigma) featuring the extension similar to one obtained by VERITAS.
Significance map shows the morphology reconstructed by VERITAS (solid ellipse), SNR CTB 87 and spectra extraction region (dashed circle).
For the spectra reconstruction we have chosen a safe threshold of 3 TeV since in this study we did not apply additional atmospheric corrections for VLZA.

We have studied different quality cuts and found that the spectra could be extended up to 100 TeV , however, further investigations and observations should be taken

HAWC (Astrophys.J. 911 (2021) 2, 143) papers, when HAWC is normalized by factor 2.71 . We will take the exact region on 0.23° in next publication

VERITAS (Astrophys.J. 861 (2018) 2, 134) and
Significance map (0.14° oversampling)

Analysis configuration
Telescopes: CT1, CT2, CT3, CT4 (CT5 is not included) Main pipeline: Model++
(de Naurois, M., \& Rolland, L. 2009, APh, 32, 231)
Cross-check pipeline: HAP
(Parsons, R. D., \& Hinton, J. A. 2014, APh, 56, 26) Exclusion region: 0.8° around center of source
Background methods: RingBg (for map) and ReflectedBg (for spectrum) (Berge, D., Funk, S., \& Hinton, J. 2007, A\&A, 466, 1219)

Geo.long.: 16:30.0 lat. - $23: 16$.
H.E.S.S. has taken about 50 h of observations with average zenith angle of 61.3° in 2020

