

The ASTRI Mini-Array: in search for hidden Pevatrons

Martina Cardillo – IAPS-INAF for the ASTRI Project

Gamma 2022 – July, 4-8 2022

martina.cardillo@inaf.it

PeVatron context

- In spite of the huge amount of collected data, Cosmic-Ray origin is still an open issue.
- Detection of hadronic PeVatrons (>100 TeV gamma-ray emission from protons with E>1 PeV) is the only direct proof of CR acceleration that we can have
- No Supernova Remnants (the main CR accelerator candidates) have been detected at these energies
- However, recent data show several different kinds of sources emitting at $E \ge 100$ TeV

The Role of the ASTRI Mini-Array

- Despite these new detections at E>=100 TeV, we still have no clear evidence of pure hadronic emission (and consequently CR acceleration proof) at energies above several tens of TeV
- The ASTRI Mini-Array, under construction at the Teide Observatory site (Tenerife, Spain), may shed light on this open issue

The ASTRI Mini-Array

- Wide FoV with almost homogeneous off-axis acceptance ✓ Multi-target fields, surveys, and extended sources Enhanced chance for serendipitous discoveries
- Sensitivity: better than current IACTs (E > a few TeV): Extended spectra and contsraints on cut-offs
- Energy/Angular resolution: $\sim 10\%$ / $\sim 0.05^{\circ}$ (E ~ 10 TeV) Characterize extended sources morphology

Candidates Galactic Pevatrons with the ASTRI Mini-Array

The ASTRI Mini-Array sensitivity will allow us to constrain $\frac{1}{8}_{10^{-12}}$ the hadronic contribution in the Crab Nebula (and simila sources) \rightarrow different fraction and energies of hadrons implies different behavior at the highest energies

Vercellone et al., 2022, JHEAP, 35,1

Mini-Array

Galactic Center (and superbubbles)

• With the same HESS exposure time, ASTRI Mini-Array will establish the likely PeVatron nature of the GC region

• <u>Mapping of the whole GC region with a single observation (dimension $1,5^{\circ}\times0,2^{\circ}$)</u>

<u>Resolving different sources in the region</u>

• A detection with the ASTRI Mini-Array in 200 hr at E~100TeV will constrain the proton maximum energy up to energies \sim 500 TeV

• The ASTRI Mini-Array angular resolution will allow us to disentangle different components of the G106.3+2.7 region at different energies

M.Cardillo, Gamma2022

4

Conclusions

What are the sources of Galactic Cosmic-Rays? **ASTRI** Mini-Array has the needed potential to answer this question

- Improved sensitivity w.r.t. current IACTs at energies above a few TeV \rightarrow detection of sources above 100 TeV and • constraints on physical parameters (e.g. diffusion coefficient)
- Excellent angular resolution at very high-energies \rightarrow morphology characterization and strong constraints to • gamma-ray emission/Molecular Cloud association
- Larger FoV \rightarrow large field (e.g. Galactic Center region) and extended sources (e.g. TeV halo) in-depth analysis

1 telescope operative \rightarrow early 2023 (already on-site!!)

3 telescopes operative \rightarrow by 2023

Complete Array→ by 2024

