H l'Observatoire | PSL

Laboratoire Univers et THéories

Gamma-ray-emitting narrow-line Seyfert 1 galaxies (NLS1) constitute an intriguing small population of Active Galactic Nuclei (AGN) with unexpected gamma-ray emission and debated fundamental properties, similar to low power flat-spectrum radio quasars (FSRQ). They are jetted, gamma/radio-loud Seyfert galaxies, with relatively low BH masses, accreting at exceptionally high, near-Eddington rates. Two bona-fide NLS1 1H 0323+342 and PMN J0948+0022, and one intermediate object between NLS1 and FSRQ sub-classes B2 0954+25A are considered in this work. We analyzed quasi-simultaneous multiwavelength data for two different gamma-ray activity states and present the results of their broad-band SED modelling, complemented by a maximum number of physical constraints. Two different scenarios are discussed, in the framework of a one-zone leptonic model, where the high energy emission is due to the inverse Compton scattering of BLR (EIC-BLR) or torus (EIC-torus) photons by energetic electrons of the jet.

Variable γ -NLS1 galaxies

Figure 2: Total jet power vs disc luminosity

- Jet powers generally dominate disc luminosities, except for 1H 0323+342, which appears to be a relatively low power γ -NLS1.
- Flaring states require more jet powers than intermediate/low states.
- PMN J0948+0022 has a jet power comparable to the disc luminosity in a low state, whereas its jet power starts to dominate during a flaring state.
- B2 0954+25A exhibits a more blazar-like behavior than the two genuine γ -NLS1s.

VARIABLE γ -RAY EMITTING NLS1 GALAXIES

Anna Luashvili¹, Catherine Boisson¹, and Andreas Zech¹

¹Laboratoire Univers et Théories, Observatoire de Paris, Université PSL, Université Paris Cité, CNRS, F-92190 Meudon, France

Introduction

Torus dominated scenario

PMN J0948+0022 (z=0.5846) is well described by where the blob is located **at the outer radius of the**

Conclusion

- The comparison between BLR and torus-dominate the location of the emitting region.
- The transition between low and high activity s denser and more relativistic blob in the flaring p cent/intermediate state.
- Both scenarios favor the stationary shock scenario, i.e. the presence of recollimation shocks in the jet, at the origin of the observed enhanced high energy emission.
- Multi-epoch modelling of γ -NLS1 galaxies shows a variable jet power.

the torus-dominated scenario, e BLR . Fixed parameters θ 3° $M_{BH}[M_{\odot}]$ 1.5 × 10 ⁸ $L_D[erg s^{-1}]$ 9 × 10 ⁴⁵ l_{Edd} 0.48		
te	Low	High
	10	10
Оı	10	12
n^{-3}	12.80	16.37
[cm]	9.37×10^{16}	9.35×10^{16}
G	0.20	0.12
-)	3.9	3.5
	900	1×10^{3}
ation between low and high explained mainly by: anges in the injected particle etrum and density gnetic field intensity ger Doppler factor during the e		
ed scenarios helps constraining		
states can be explained by a ohase, compared to the quies-		

Disc and BLR dominated scenario

Note: We consider a broken power law particle distribution with n_1 and n_2 being the indices before and after the break energy γ_b , respectively. δ is the Doppler factor of the blob, B is the magnetic field intensity and n_e denotes the particle density.

Cerruti, M., Dermer, C. D., Lott, B., Boisson, C., & Zech, A. (2013). Gamma-Ray Blazars near Equipartition and the Origin of the GeV Spectral Break in 3C 454.3., 771, L4. https://doi.org/ 10.1088/2041-8205/771/1/L4 Dermer, C. D., & Menon, G. (2009). High Energy Radiation from Black Holes: Gamma Rays, Cosmic Rays, and Neutrinos. Katarzyński, K., Sol, H., & Kus, A. (2001). The multifrequency emission of Mrk 501. From radio to TeV gamma-rays., 367, 809–825. https://doi.org/10.1051/0004-6361:20000538

anna.luashvili@obsi

1H 0323+342 (z=0.0625) is well described by the torus-dominated scenario, where

References