
1 - Introduction
The interaction of a gamma ray with the Earth
atmosphere induces a particle shower, which
produces a flash of Cherenkov light. The
Cherenkov Telescope Array (CTA) will be able to
capture the Cherenkov emission at ground level,
which provides information about the energy of
the initial gamma ray. Pattern spectra [1] are
commonly used tools for image classification,
which provide the distributions of the shapes
and sizes of various objects comprising an image
(Fig. 1). Requiring significantly less
computational power compared to other
algorithms, they can be used for signal-
background separation and to reconstruct the
energy of the initial gamma ray [2].
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ABSTRACT
The Cherenkov Telescope Array (CTA) is the future observatory for ground-based imaging atmospheric Cherenkov telescopes. Each telescope will provide a snapshot of gamma-ray induced particle showers by capturing the induced
Cherenkov emission at ground level. The simulation of such events provides camera images that can be used as training data for convolutional neural networks (CNNs) to differentiate signals from background events and to
determine the energy of the initial gamma-ray events. Pattern spectra are commonly used tools for image classification and provide the distributions of the sizes and shapes of features comprising an image. The application of
pattern spectra on a CNN allows the selection of relevant combinations of features within an image.
In this work, we generate pattern spectra from simulated gamma-ray images to train a CNN for signal-background separation and energy reconstruction for CTA. We compare our results to a CNN trained with CTA images and find
that the pattern spectra-based analysis is computationally less expensive but not competitive with the purely CTA images-based analysis. Thus, we conclude that the CNN must rely on additional features in the CTA images not
captured by the pattern spectra.

Tab. 1: Computational performance of the CNNs based on 
(a) CTA images and (b) pattern spectra during training for 

energy reconstruction

3 - Results
The CTA images-based analysis outperforms the pattern spectra-
based analysis in both the signal-background separation (Fig. 3)
and the energy reconstruction (Fig. 4).

2 - Analysis
The pattern spectra are generated from the CTA images by
calculating the size (area A ) and shape (I/A2 with the moment of
inertia I ) of each feature (Fig. 2). Separately, the CTA images or the
pattern spectra are used as an input for a convolutional neural
network (CNN), which is trained and tested for signal-background
separation and energy reconstruction. The CNN is trained ten times
for energy reconstruction to obtain a mean energy resolution and
its uncertainty.
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CTA 
images

Pattern 
spectra ratio

Max. RAM ~100 GB ~32 GB 3.1

Time ~29 ks ~11 ks 2.6

Fig. 4: Reconstructed energy 𝑬𝒓𝒆𝒄 as a function of true energy 𝑬𝒕𝒓𝒖𝒆 obtained with CTA images (left) and pattern spectra (middle). Energy 
resolution comparison (right). The data points represent the mean value and the shadowed regions one standard deviation.
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4 – Discussion
The pattern spectra-based analysis is computationally less expensive but not competitive with the CTA images-based analysis. Thus, we
conclude that the CNN must rely on additional features in the CTA images not captured by the pattern spectra.

Fig 2.: Top: CTA image with detected features (in red/orange).
Bottom: pattern spectrum with the pixel (in red) corresponding to the detected features.

Fig 1:  Visual representation of the pattern spectra algorithm 
(adapted from [1, 3] ).
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During training, the CNN based on pattern spectra needs a factor 3.1 less random access memory (RAM) and is a factor 2.6 faster
compered to the CNN based on the CTA images (Tab. 1).
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Fig. 3:  Gammaness distribution of the events obtained with the CTA images (left) and pattern spectra (middle). Receiver operating 
characteristic (ROC) curve and area under curve (AUC) comparison (right).
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