
Detection of Supernova Remnants in the Large Magellanic Cloud At Energies Higher Than 6 GeV by Means of Cluster Analysis

Riccardo Campana¹, Enrico Massaro², Fabrizio Bocchino³, Marco Miceli³, Salvatore Orlando³, Andrea Tramacere^{4*} ¹ INAF/OAS, Bologna, Italy — ² INAF/IAPS, Rome, Italy — ³ INAF/IASF-Palermo, Italy — ⁴ UniGE, Geneva, Switzerland *Presenter

We applied a blind search for spatial photon clusters at energies higher than 6 and 10 GeV to sky maps in the Large Magellanic Cloud (LMC) region of Fermi-LAT sky, using events collected in the first 12 years of operation. We used the Minimum Spanning Tree (Campana et al. 2008, 2013) and DBSCAN (Tramacere & Vecchio 2013) source-detection algorithms, which provided fully consistent results, detecting 13 clusters above 10 GeV. Six clusters have coordinates corresponding to known SNRs within a few arcminutes, in a very good agreement with the instrumental positional accuracy. We confirmed the detection of the known remnants N157B, N63A, N49B and report three new detections, of N49, N186D, B040-693, and of the complex N44 at energies higher than 6 GeV. An analysis on the LMC SNR population shows that these remnants are the most luminous in the X-ray band and correspond to core-collapse supernovae with shock expanding in dense HII regions. This result suggests that the hadronic emission is the most relevant process for high energy gamma-ray loud SNRs.

B0509-67.5

B0450-709

DEM L316B

DEM L316A

DEM L328

J0509-6731 0.53

J0450-7050 5.67

J0547–6942 3.17

J0547–6941 3.17

J0550-6823 5.20

Above: Photon map in Galactic coordinates of the sky region at energies higher than 10 GeV. Red and magenta crosses mark the positions of 4FGL-DR2 sources (point-like and extended), magenta circles are the sizes of the extended ones; blue squares are the SNRs in the Maggi et al. (2016) catalogue and filled squares are those with an X-ray luminosity higher than 10³⁶ erg/s; green diamonds are MST candidate sources found in the analysis.

Galactic Longitude [deg]

278

276

280

274

-38

284

282

(*) Photon flux evaluated in the 3–300 GeV energy band. – ([†]) Values possibly affected by the nearby SNR. – CC = Core collapse; CCP = Core collapse Plerion

16.51

0.59

1.47

1.26

1.22

0.10

0.69

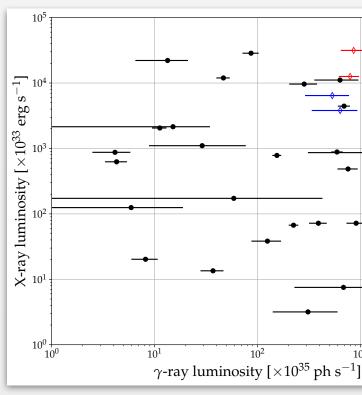
0.73

0.52

0.65

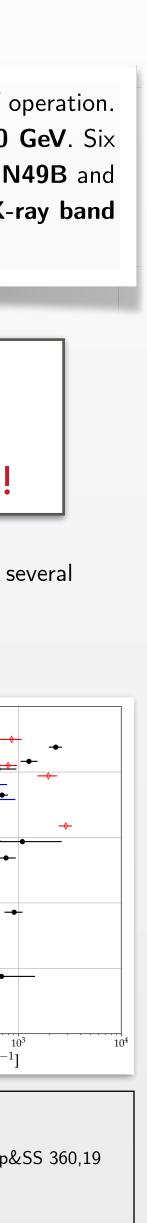
N157B V Confirmed N63A V Confirmed N49B V Confirmed

We **confirm** the detection of these SNRs. already reported by us (Campana et al, 2018) and by the Fermi/LAT collaboration (Ackermann et al., 2016)


N49 ! NEW! N186D <u>NEW!</u> B040-693 <u>INEW!</u>

...but we report also the discovery of several **new SNRs** in γ -rays.

Туре	Age	MST/DBSCAN	γ -ray flux*	Interaction w/
	kyr	detection	10^{-11} ph cm ⁻² s ⁻¹	dense CSM
CC	2.4	yes	9.2 ± 2.3	yes
CC	3.5	yes	8.5 ± 1.9	possible
CCP	1.14	yes	20.9 ± 4.5	no
CC	4.8	yes	$5.7\pm2.6^{\dagger}$	yes
CC	~ 10	yes	$6.8 \pm 3.2^{\dagger}$	possible
CCP	~ 5	yes	30.9 ± 4.5	yes
CC	0.03	confused		yes
CC	12.0	no		no
CC(?)	4.6	no		no
Ia	0.86	no		no
Ia	4.4	no		no
Ia	0.6	no		no
Ia	0.4	no		no
CC(?)	~ 70	no		no
CC(?)	40.5	no		yes
CC(?)	33.0	no		yes
CC(?)		no		possible


Left: SNRs in the LMC region with a X-ray luminosity in the band 0.3-8 keV higher than 10^{36} erg/s from the Maggi et al. (2016) list. Radio flux densities at 1 GHz are from Bozzetto et al. (2017).

Right: Unabsorbed X-ray luminosity of SNRs (0.3–10 keV band) versus the corresponding γ -ray luminosity, as measured by Fermi-LAT in the 1-100 GeV band. Luminosities for N 132D, N 63A, B0540-693, N 157B (red diamonds), and for N 49 and N 49B (blue diamonds) were derived from the values reported in the table on the left, assuming a photon index $\Gamma = 2$ and a distance of 51 kpc.

References

This work has been submitted to MNRAS (Campana et al., 2022) For **MST**: Campana et al. (2008), MNRAS 383, 1166; Campana et al. (2013), Ap&SS 360,19 For DBSCAN: Tramacere & Vecchio (2013) A&A 549, A138 Previous work on LMC γ -ray data: Campana et al. (2018), Ap&SS 363, 144

