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Cosmic ray acceleration in a nutshell

Cosmic rays (energetic and charged particles) are accelerated at collisionless shocks in astrophysical

plasmas. The particles are scattered by plasmawaves on the up- and downstream site of the shock.

Since the plasma waves on the downstream site move with a fraction of the shock’s speed, the

cosmic rays are scattered by moving scattering centres and thus gain energy. The distribution of

cosmic rays is modelled with the Vlasov-Fokker-Planck (VFP) equation.

The Vlasov-Fokker-Planck equation
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𝑓 is called the distribution function. It describes the cosmic ray’s number density in the phase

space, i.e. d𝑁 = 𝑓d𝑥3d𝑝3. The 𝑬- and 𝑩-fields are supported by the thermal plasma, through

which the particles propagate. The distribution function 𝑓 evolves in time because

the particles are moving at velocity 𝒗,
they are accelerated by the Lorentz force

and they are scattered by plasma waves.

The scattering randomises the motion of the particles, i.e. anisotropies in the cosmic ray distribu-

tion will decay. The ‘classical’ transport equation takes advantage of this and, consequently, only

contains the isotropic part of the distribution function. In some astrophysical scenarios the time

scales are such, that it is necessary to consider higher order anisotropies. It is possible to include

them if in momentum space spherical coordinates are used, the distribution function 𝑓 is expanded
in spherical harmonics and the scattering operator is defined to be
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𝜈 is the scattering frequency. This operator implies that the anisotropies decay, but the expansion

can be truncated at an arbitrary order.

The spherical harmonic expansion of the distribution function

The number of variables of the distribution function 𝑓 = 𝑓(𝒙, 𝒑, 𝑡)can be reduced, if we use spher-
ical if we expand 𝑓 in (real) spherical harmonics, namely
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The spherical harmonics 𝑌𝑙𝑚𝑠 contain the information on the cosmic ray’s direction of travel. It is

possible to derive a system of differential equations for the expansion coefficients 𝑓𝑙𝑚𝑠 by

Substituting the expansion of 𝑓 into the VFP equation,

multiplying it with 𝑌𝑙′𝑚′𝑠′ ,

integrating it over the solid angle d𝛺

𝜕𝑡𝒇 + 𝑨∇𝒇 + 𝑩𝜕𝑝𝒇 + 𝑪𝒇 = 0 .

(𝒇)𝑖 = 𝑓𝑙𝑚𝑠 is a vector containing all the expansion coefficients. 𝑨, 𝑩 and 𝑪 are matrices.

Prototype

For testing purposes the system of differential equations determining the expansion coefficients

𝑓𝑙𝑚𝑠 is simplified:

1. It is assumed that there are no relevant 𝑬- and 𝑩-fields.

2. The dimension of the configuration space is set to one.

Thus, the prototype VFP equation is

𝜕𝑡𝒇 + 𝑨𝜕𝑥𝒇 + 𝑪𝒇 = 0 .
This equation describes the evolution of a distribution of cosmic rays, which may initially be aniso-

tropic: The energy of the particles does not change. The distribution will be advected along the

𝑥-direction and the anisotropies (modelled by the expansion coefficients with 𝑙 ≥ 1) decay with

time. This type of equation is called an advection-reaction equation.

The discontinuous Galerkin method

The discontinuous Galerkin (dG) method is a method to solve advection-reaction equations nu-

merically. The dG method is a finite element (FE) method. FE methods

split the domain into cells,

define a set of polynomials on each cell,

and a set of conditions to determine the coefficients of these polynomials.

The discrete approximation of the solution to the differential equation is a linear combination of

these polynomials, namely
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𝑁 is the total number of polynomials, the number of degrees of freedom. In ‘classical’ finite element

methods, it is required that the polynomials are continuous at the cell boundaries. This reduces

the number of degrees of freedom. This is not the case for the discontinuous Galerkin method.

The computation of the discrete approximation 𝒇ℎ requires the determination of the coefficients𝛼𝑗.

It is possible to get a linear system of equations for the 𝛼s by multiplying the differential equation

with one of the finite element’s polynomials and integrating over the domain, i.e.
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The sum over 𝐾 is a sum over all cells.

𝑛 denotes the number of polynomials belonging to one cell.

The integration by parts yields a boundary term, which is ill-defined. The polynomials are not

continuous at the cell boundaries. It is replaced by a numerical flux term.

The equation holds for all indices 𝑖 ∈ {1, … , 𝑁} and, hence, yields a system of ordinary

differential equations for the 𝛼s.
Applying a time discretisation method (e.g. forward Euler) gives a linear system of equations

for the 𝛼s in each time step

Numerical results
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Figure 1. The evolution of a distribution function with a dipole at 𝑡 = 0.

The 𝑓000 term is the isotropic part of the distribution function 𝑓. It is initialised as a Gaussian

distribution.

The expansion coefficients 𝑓100, 𝑓110 and 𝑓111 introduce a dipole in the distribution of the

cosmic rays. All three of them are initialised as a Gaussian distribution as well.

Two components of this dipole, namely 𝑓110 and 𝑓111, do not interact with the isotropic part of

the distribution function.

The third component 𝑓100 is the 𝑥-component of the dipole and changes the isotropic part as

depicted.

Next steps

The next steps in the development of the dG solver of the VFP equation are

The inclusion of 𝑬- and 𝐵-fields.

To work with a two dimensional configuration space.

To use the solution of the VFP solver to compute the feedback of the cosmic rays onto the

plasma.
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