Theory of Gamma-ray loud AGN

Frank M. Rieger

7th International Symposium on High-Energy Gamma-Ray Astronomy Barcelona, July 4, 2022

Max Planck Institut für Kernphysik Heidelberg, Germany

Real pleasure to see Gamma2022 taking place in Barcelona....

Real pleasure to see Gamma2022 taking place in Barcelona....

Not going to talk about:

- ▶ AGN multiwavelength radiation & related issues...
 ⇒ Paolo Padovani
- ▶ multi-messenger, neutrino & UHECR connection...
 ⇒ Teresa Montaruli, Elisa Resconi & Angela Olinto
- ▶ fundamental physics, GW & dark matter searches...
 ⇒ Javier Rico, Marica Branchesi...
- reconnection...
 - \Rightarrow Lorenzo Sironi...

What I am going to talk about (Outline)

- Gamma-Ray Loud AGN
 - Extragalactic HE-VHE (Short Status Summary)
- On Challenges & Progress in (jetted) AGN Physics
- Selected Theoretical Advances:
 - Magnetospheric Processes in AGN (conceptual)
 - Modelling Parsec-Scale Jet Emission in Blazars (physics)
 - Understanding large-scale jet emission (conceptual & methodological)

Gamma-Ray Loud AGN

Extragalactic HE-VHE (Short Status Summary)

On aligned @ misaligned (jetted) AGN (=MAGN)

Radio-loud **Active Galaxy** *"jetted* AGN"

reduced beaming / Doppler boosting:

$$D = \frac{1}{\Gamma_b (1 - \beta_b \cos \theta)}$$

Central engine in AGN & unification (Urry & Padovani)

Radio Galaxy **Centaurus A** (Cen A), core region, nearest **Active Galaxy** (d ~ 4 Mpc) X-rays (Chandra/blue), radio (orange) & optical [Credit: NASA]

On aligned @ misaligned (jetted) AGN (=MAGN)

Radio-loud **Active Galaxy** *"jetted* AGN"

- blazars \rightarrow radio galaxies
- reduced beaming / Doppler boosting:

$$D = \frac{1}{\Gamma_b (1 - \beta_b \cos \theta)}$$

Central engine in AGN & unification (Urry & Padovani)

Accretion disc

Event horizon

Singularity

At the very centre of a black hole, matter has collapsed into a region of infinite density called a singularity. All the matter and energy that fall into the black hole ends up here. The prediction of infinite density by general relativity is thought to indicat the breakdown of the theory where quantum effects become important.

Event horizon

This is the radius around a singularity where matter and energy cannot escape the black hole's gravity: the point of no return. This is the "black" part of the black hole.

Photon sphere

Although the black hole itself is dark, photons are emitted from nearby hot plasma in jets or an accretion disc (see below). In the absence of gravity, these photons would travel in straight lines, but just outside the event horizon of a black hole, gravity is strong enough to bend their paths so that we see a bright ring surrounding a roughly circular dark "shadow". The Event Horizon Telescope is hoping to see both the ring and the "shadow".

Relativistic jets

When a black hole feeds on stars, gas or dust, the meal produces jets of particles and radiation blasting out from the black hole's poles at near light speed. They can extend for thousands of light-years into space. The GMVA will study how these jets form.

Innermost stable orbit

The inner edge of an accretion disc is the last place that material can orbit safely without the risk of falling past the point of no return.

Accretion disc

A disc of superheated gas and dust whirls around a black hole at immense speeds, producing electromagnetic radiation (X-rays, optical, infrared and radio) that reveal the black hole's location. Some of this material is doomed to cross the event horizon, while other parts may be forced out to create jets. – Singularity

Photon sphere

Innermost stable orbit

Relativistic Jet

Credit: ESO

Innermost stable orbit

Relativistic jets

When a black hole feeds on stars, gas or dust, the meal produces jets of particles and radiation blasting out from the black hole's poles at near light speed. They can extend for thousands of light-years into <u>space</u>. The GMVA will study how these jets form.

Innermost stable orbit

The inner edge of an accretion disc is the last place that material can orbit safely without the risk of falling past the point of no return.

Accretion disc

A disc of superheated gas and dust whirls around a black hole at immense speeds, producing electromagnetic radiation (X-rays, optical, infrared and radio) that reveal the black hole's location. Some of this material is doomed to cross the event horizon, while other parts may be forced out to create jets.

I. How are jets being formed ?

Accretion disc

Event horizon

Singularity

At the very centre of a black hole, matter has collapsed into a region of infinite density called a singularity. All the matter and energy that fall into the black hole ends up here. The prediction of infinite density by general relativity is thought to indicat the breakdown of the theory where quantum effects become important.

Event horizon

This is the radius around a singularity where matter and energy cannot escape the black hole's gravity: the point of no return. This is the "black" part of the black hole.

Photon sphere

Although the black hole itself is dark, photons are emitted from nearby hot plasma in jets or an accretion disc (see below). In the absence of gravity, these photons would travel in straight lines, but just outside the event horizon of a black hole, gravity is strong enough to bend their paths so that we see a bright ring surrounding a roughly circular dark "shadow". The Event Horizon Telescope is hoping to see both the ring and the "shadow".

Relativistic jets

When a black hole feeds on stars, gas or dust, the meal produces jets of particles and radiation blasting out from the black hole's poles at near light speed. They can extend for thousands of light-years into space. The GMVA will study how these jets form.

Innermost stable orbit

The inner edge of an accretion disc is the last place that material can orbit safely without the risk of falling past the point of no return.

Accretion disc

A disc of superheated gas and dust whirls around a black hole at immense speeds, producing electromagnetic radiation (X-rays, optical, infrared and radio) that reveal the black hole's location. Some of this material is doomed to cross the event horizon, while other parts may be forced out to create jets. II. What makes jets radiate ?

Photon sphere

Singulari

I. How are jets being formed ?

Innermost stable orbit

Relativistic Jet

Event horizon

III. How are small and large connected?

Singularity

At the very centre of a black hole, matter has collapsed into a region of infinite density called a singularity. All the matter and energy that fall into the black hole ends up here. The prediction of infinite density by general relativity is thought to indicat the breakdown of the theory where quantum effects become important.

Event horizon

This is the radius around a singularity where matter and energy cannot escape the black hole's gravity: the point of no return. This is the "black" part of the black hole.

Photon sphere

Although the black hole itself is dark, photons are emitted from nearby hot plasma in jets or an accretion disc (see below). In the absence of gravity, these photons would travel in straight lines, but just outside the event horizon of a black hole, gravity is strong enough to bend their paths so that we see a bright ring surrounding a roughly circular dark "shadow". The Event Horizon Telescope is hoping to see both the ring and the "shadow".

Relativistic jets

When a black hole feeds on stars, gas or dust, the meal produces jets of particles and radiation blasting out from the black hole's poles at near light speed. They can extend for thousands of light-years into space. The GMVA will study how these jets form.

Accretion disc

Innermost stable orbit

The inner edge of an accretion disc is the last place that material can orbit safely without the risk of falling past the point of no return.

Accretion disc

A disc of superheated gas and dust whirls around a black hole at immense speeds, producing electromagnetic radiation (X-rays, optical, infrared and radio) that reveal the black hole's location. Some of this material is doomed to cross the event horizon, while other parts may be forced out to create jets. II. What makes jets radiate ?

Photon sphere

Singulari

I. How are jets being formed ?

Innermost stable orbit

Relativistic Jet

Credit: ESO

The Extragalactic HE Sky (Status)

The Extragalactic HE Sky (Status)

4FGL-DR3 (12 yr of data): 6658 sources out of which

> 3740 'identified' as AGN / blazars, 257 as pulsars, 43 SNR...

The Extragalactic VHE Sky (Status)

The Extragalactic VHE Sky (Status)

Spectral (photon) distribution

smoothness, curvature, breaks, extension, precision....

Timing capabilities (light curves)

Variability, outbursts/active states, regularities....

⇒ timescales, physical triggers, location, geometry...

Non-Blazar Objects / MAGN as seen by Fermi-LAT (Status)

for the physics case, see e.g. FR & Levinson 2019 [review]

name	flux 1 100 gev	detection significance	spectrum type	assoc name	pl index	tevcat assoc	source type
ΨT	T [photon/chi-2/s]						↓ 1
4FGL J1324.0-4330e	3.7002e-09	35.1073	LogParabola	Cen A Lobes	2.5172		RDG
4FGL J1325.5-4300	3.5857e-09	73.5350	PowerLaw	Cen A	2.5911	Centaurus A	RDG
4FGL J0433.0+0522	7.7690e-10	24.5960	LogParabola	3C 120	2.7625		RDG
4FGL J0316.8+4120	2.5167e-10	9.2602	PowerLaw	IC 310	1.8478	IC 310	RDG
4FGL J0322.6-3712e	5.5896e-10	18.4001	PowerLaw	Fornax A	2.0537		RDG
4FGL J0319.8+4130	3.3759e-08	245.4858	LogParabola	NGC 1275	2.1136	NGC 1275	RDG
4FGL J0627.0-3529	1.2646e-09	39.4164	PowerLaw	PKS 0625-35	1.9114	PKS 0625-35	rdg
4FGL J0009.7-3217	2.0176e-10	9.0697	PowerLaw	IC 1531	2.2399		rdg
4FGL J2227.9-3031	1.1062e-10	6.3087	PowerLaw	PKS 2225-308	1.8003		rdg
4FGL J2341.8-2917	1.7410e-10	7.4609	PowerLaw	PKS 2338-295	2.2444		rdg
4FGL J0958.3-2656	1.6787e-10	6.8136	PowerLaw	NGC 3078	2.1579		rdg
4FGL J1306.7-2148	5.2204e-10	14.3777	LogParabola	PKS 1304-215	2.1266		rdg
4FGL J2329.7-2118	4.0031e-10	12.4182	PowerLaw	PKS 2327-215	2.4532		rdg
4FGL J2302.8-1841	2.0032e-10	8.8755	PowerLaw	PKS 2300-18	2.2577		rdg
4FGL J0038.7-0204	1.7722e-10	9.4753	PowerLaw	3C 17	2.8397		rdg
4FGL J2326.9-0201	2.2694e-10	8.4645	PowerLaw	PKS 2324-02	2.5875		rdg
4FGL J1516.5+0015	3.0255e-10	9.9088	PowerLaw	PKS 1514+00	2.5078		rdg
4FGL J0237.7+0206	1.3551e-10	5.8586	PowerLaw	PKS 0235+017	2.1045		rdg
4FGL J0308.4+0407	8.4397e-10	24.7727	PowerLaw	NGC 1218	2.0020		rdg
4FGL J1521.1+0421	1.2635e-10	4.4093	PowerLaw	PKS B1518+045	2.0383		rdg

4FGL (+DR3)

3743 blazars ~70 non-blazar AGN

45 radio galaxies (in DR3) among them 22 FR I I4 FR II

2 SSRQ

8 NLSyl 2 Seyfert 5 CSS 9 others

45 radio galaxies in Fermi-LAT 12-year Point Source Catalog (4FGL-DR3)

Table 1. Model parameters for the SED of Centaurus A.

R	$1.2 \times 10^{16} \mathrm{cm}$	р	3.0
В	0.5 G	$\gamma_{\rm min}$	2×10^{3}
δ	1.2	$\gamma_{\rm max}$	1×10^{4}
Linj	$2.7 \times 10^{42} \mathrm{erg s^{-1}}$	tesc	$10 \times Rc$

 $L_{\rm inj}$ is the injected power (in particles of energy equal to $\gamma m_{\rm e}c^2$).

if non-thermal emission in radio galaxy is SSC-jet type (misaligned BL Lac) then we may expect to see some of them at high energies with FERMI, but not much in TeV

VHE detection of misaligned AGN / RG (Status)

Out of ~45 HE radio galaxies (3743 Fermi-blazar) only 6 are detected at VHE (~13%):

Name	Cross-ID	Туре	Distance	BH mass [10 ⁸ M_{\odot}]	VHE	Variability
Cen A	NGC 5128	FR I	3.7 Мрс	0.5-1	~	None @VHE
M 87	NGC 4486	FR I	I6 Мрс	50	~	day-type VHE
Fornax A		FR I	18 Мрс			
Cen B		FR I	56 Мрс			
NGC 1275	3C84, Perseus A	FR I	75 Мрс	3-4	✓	day-type VHE
IC 310	B03 3+4	FR I / BL Lac?	80 Мрс	3 [0.3?]	~	sub-hour VHE
3C 264	NGC 3862	FR I	95 Мрс	4-5	~	monthly VHE
NGC 6251		FR I	106 Mpc			
3C 78	NGC 1218	FR I	124 Mpc			
3C 120		FR I	142 Mpc			
3C		FR 2	213 Мрс			
PKS 0625-35	OH 342	FR I / BL Lac?	220 Мрс	~10	v	
PKS 0943-76		FR 2	1360 Mpc			

(e.g., FR & Levinson 2019, Rulten 2022)

On the potential theory-relevance of gamma-ray emitting NL Syl

Narrow Line Seyfert I:

cf. D'Ammando 2019 [review]

• high-Eddington sources, small BH masses (~10⁶⁻⁸ M_o), spiral galaxy host ?

HE-emitting (radio-loud) NL Sy I as jetted AGN

- evidence for the presence of one-sided jets, superluminal motion, strong variability
 - "blazar-like" properties

origin & formation of jets ?

BH mass limit, accretion state, spin-merger history

But note:

- BH masses in radio-loud NLSy I on average larger;
- emerging evidence for HE emitting, radio-loud NLSy I hosted by ellipticals?

On the potential theory-relevance of gamma-ray emitting NL Syl

Narrow Line Seyfert I:

cf. D'Ammando 2019 [review]

• high-Eddington sources, small BH masses (~10⁶⁻⁸ M_o), spiral galaxy host ?

HE-emitting (radio-loud) NL Sy I as jetted AGN

- evidence for the presence of one-sided jets, superluminal motion, strong variability
 - "blazar-like" properties

origin & formation of jets ?

BH mass limit, accretion state, spin-merger history

But note:

- BH masses in radio-loud NLSy I on average larger;
- emerging evidence for HE emitting, radio-loud NLSy hosted by ellipticals?

• no VHE emission yet seen from NL Sy I

- double-humped shaped SED (synchrotron-IC)
- HE due to external Compton (BLR, dust torus)
- no VHE due to EBL or BLR absorption?

On Challenges & Progress in (jetted) AGN Physics

On Challenges & Progress in (jetted) AGN Physics - a not (so) unbiased view...

I apologize in case I may miss to mention your work, but I hope that I can set the scene for it....

Gaudi & Parc Güell @ Barcelona

AGN Physics - a Multi-scale Problem

M87

Blandford+2019

Observed scale separation ~ 10^8 - 10^{10} (Cen A)

translates into physics & modelling challenge...

(Credits: Amir Levinson)

and methodological (computational) challenge...

GR/RMHD:

- dependency on numerical floor model (cf. jet formation)...
- no physical understanding of reconnection (in ideal MHD!)
- single fluid description (but collisionless plasma; electron temperature in accretion flow?...)
- radiative processes (e⁻ distribution in non-ideal regions?)

and methodological (computational) challenge...

GR/RMHD:

- dependency on numerical floor model (cf. jet formation)...
- no physical understanding of reconnection (in ideal MHD!)
- single fluid description (but collisionless plasma; electron temperature in accretion flow?...)
- radiative processes (e⁻ distribution in non-ideal regions?)

PIC:

- idealized setups (e.g., monopole m.f., no accretion disk, simplified ambient photon field, radiation reaction...)
- scale separation for AGN (system size/plasma skin depth $\sim r / I_p \sim 10^{6-8}$ (Ji & Daugthon 2011; Levinson 2022 [CDY])

Ensemble of particles Grid values of field No Particle-Particle operations

and methodological (computational) challenge...

GR/RMHD:

- dependency on numerical floor model (cf. jet formation)...
- no physical understanding of reconnection (in ideal MHD!)
- single fluid description (but collisionless plasma; electron temperature in accretion flow?...)
- radiative processes (e⁻ distribution in non-ideal regions?)

PIC:

- idealized setups (e.g., monopole m.f., no accretion disk, simplified ambient photon field radiation reaction
- scale separation for A
 ~ r /l_p ~ 10⁶⁻⁸ (Ji & Dat

Essential to inform & advance our understanding, but should probably not (yet) be taken at face value...

Ensemble of particles Grid values of field No Particle-Particle operations

Field Solver

On Progress in our Understanding of (jetted) AGN Physics - addressing the Felix' (CDY) question

> CDY = Columbia & DIAS & Yale Initiative https://cdy-institute.ie/index.php/events/

On progress in AGN research I

• supermassive black holes at center of AGN (2020 Nobel prize, EHT)

Roger Penrose University of Oxford, UK

"for the discovery that black hole formation is a robust prediction of the general theory of relativity"

and the other half jointly to

Reinhard Genzel

Max Planck Institute for Extraterrestrial Physics, Garching, Germany and University of California, Berkeley, USA

and

Andrea Ghez University of California, Los Angeles, USA

"for the discovery of a supermassive compact object at the centre of our galaxy"

On progress in AGN research I

• supermassive black holes at center of AGN (2020 Nobel prize, EHT)

Roger Penrose	$M87^*$	April 1	1,2017
University of Oxford, OK			230 GHz
"for the discovery that black hole formation is a robust pred relativity"			
and the other half jointly to			
Reinhard Genzel			
Max Planck Institute for Extraterrestrial Physics, Garchii	Photon r	ing r≃2.5 r _s	
California, Berkeley, USA	$\Rightarrow M_{BH} \simeq 6$.5 × 109 M	
and	$50 \ \mu { m as}$		\bigcirc
Andrea Ghez	April 5	April 6	April 10
University of California, Los Angeles, USA	9	-	•
"for the discovery of a supermassive compact object at the c	0	0	0

(EHTC 2019) 20

On progress in AGN research I

• supermassive black holes at center of AGN (2020 Nobel prize, EHT)

Roger Penrose University of Oxfor	d, UK	M87*	April 11	, 2017 230 GHz	
"for the discovery th relativity"	eat black hole formation is a robust pred				
and the other half jointly to					
Reinhard Genzel Max Planck Institu California, Berkeley and	te for Extraterrestrial Physics, Garchiı y, USA	Photon rin $\Rightarrow M_{BH} \approx 6.5$ $50 \ \mu as$	g r≃2.5 rs × 109 M⊙		
Andrea Ghez University of Calife "for the discovery of	 Relevance for Horizon scale / variabition central engine (disk-BH) current jet power (e.g.) 	lity constrair I-jet) dynam , spin)	nt (t _H = 0.38 ics & conne	d) ction 20	

On progress in AGN research II

- convergence of theoretical, numerical & observational evidence for jet stratification
 - ▶ BH-driven (BZ) jet & disk-driven (BP) outflow...
 - two-flow & spine-sheath models (Sol+ 1989; Ghisellini, Tavecchio & Chiaberge 2005....)
 - Emission: limb-brightening & polarisation signatures...(Kim+ 2018...)
 - M87: significant structural patterns on sub-pc scales ⇒ presence of both slow (~0.5c) and fast (~0.92c) components....

[similar indications in Cen A, cf. EHT observations in Janssen+ 2021]

On progress in AGN research II

- convergence of theoretical, numerical & observational evidence for jet stratification
 - ▶ BH-driven (BZ) jet & disk-driven (BP) outflow...
 - two-flow & spine-sheath models (Sol+ 1989; Ghisellini, Tavecchio & Chiaberge 2005....)
 - Emission: limb-brightening & polarisation signatures...(Kim+ 2018...)
 - M87: significant structural patterns on sub-pc scales ⇒ presence of both slow (~0.5c) and fast (~0.92c) components....

[similar indications in Cen A, cf. EHT observations in Janssen+ 2021]

On progress in AGN research III

- acceleration and collimation of relativistic jets...
- ▶ jet width profile: initial parabolic & transition (at ~Bondi radius) to conical shape
- 'evidence' for gradual flow acceleration with distance, up to $\Gamma\beta \sim 5$ (e.g., Park+ 2019)

de-projected distance (pc)

conversion of magnetic to kinetic energy while collimated by ambient medium....

(e.g., Komissarov+ 2007; Beskin & Nokhrina 2006...)

- acceleration and collimation of relativistic jets...
 - ▶ jet width profile: initial parabolic & transition (at ~Bondi radius) to conical shape
 - \blacktriangleright 'evidence' for gradual flow acceleration with distance, up to $\Gamma\beta\sim5$ (e.g., Park+ 2019)
 - conversion of magnetic to kinetic energy while collimated by ambient medium....

(e.g., Komissarov+ 2007; Beskin & Nokhrina 2006...)

• convergent evidence for relativistic motion in large-scale AGN jets

- jets 'can remain' relativistic even in FR I type sources on (projected!) hundreds of pc's:
 Γ~7, D~7 (θ~8°) for 3C 264
 - jet power $L_i \sim 5 \times 10^{43}$ erg/s (Meyer+2011)
- collision of knots internal shocks....

convergent evidence for relativistic motion in large-scale AGN jets

- ▶ jets 'can remain' relativistic even in FR I type sources on (projected!) hundreds of pc's: $\Gamma \sim 7$, $D \sim 7$ ($\theta \sim 8^{\circ}$) for 3C 264
 - jet power $L_i \sim 5 \times 10^{43}$ erg/s (Meyer+2011)
- collision of knots internal shocks....

Relevance for

- ► 3C 264 as detected VHE emitter....
- particle acceleration @ shocks...
- VHE emission from large-scale jets...
- UHECR acceleration....

• extreme TeV blazars...

- ► BL Lacs with hard intrinsic VHE spectra (photon index $\Gamma_{VHE} \leq 1.5$ -1.9)
- SED peak above I TeV
- ▶ additional component(s), one with high $\gamma_{min} \gtrsim 10^{5}$, or relativistic Maxwellian-type ?
- cf. narrow pile-up feature @ 3 TeV in Mkn 501 on July 19, 2014 (MAGIC 2020);

• extreme TeV blazars...

- ► BL Lacs with hard intrinsic VHE spectra (photon index $\Gamma_{VHE} \leq 1.5$ -1.9)
- SED peak above I TeV
- additional component(s), one with high $\gamma_{min} \gtrsim 10^{5}$, or relativistic Maxwellian-type ?
- cf. narrow pile-up feature @ 3 TeV in Mkn 501 on July 19, 2014 (MAGIC 2020);

gamma-ray astrophysics in the time domain

- ultra-fast variability (down to few minutes)...
 (e.g., Aharonian+2017)
- vidence for year-type QPOs...
- power-law noise behaviour & log-normality

On progress in AGN research (selected reviews & references)

- Biteau J. et al. 2020: Progress in unveiling extreme particle acceleration in persistent astrophysical jets, NatAs 4, 124
- Blandford R., Meier D., Readhead A. 2019: Relativistic Jets from Active Galactic Nuclei, ARA&A 57, 467
- Cerruti, M. 2020: Leptonic and Hadronic Radiative Processes in SMBH Jets (Review), Galaxies 8, 72.
- Costamante, L. 2020: Blazars: an updated review, POS(MULTIF2019), 035
- Hada, K. 2020: Relativistic Jets from AGN viewed at Highest Angular Resolution (Review), Galaxies 8, I
- Marcowith, A. et al. 2020: Multi-scale simulations of particle acceleration in astrophysical systems (Review), LRCA 6, I
- Mizuno, Y. 2022: GRHMD simulations and Modeling for Jet Formation and Acceleration Region in AGN (Review), Universe 8, 85
- Rieger, F. 2019: Gamma-ray Astrophysics in the Time Domain (Review), Galaxies 7, 28
- Romero, G. 2021: The content of astrophysical jets (Review), ASNA 342, 727

Selected Theoretical Advances:

Magnetospheric Processes (conceptual)

The Occurrence of Gaps around rotating Black Holes

"Parallel electric field occurrence in under-dense charge regions"

e.g., Blandford & Znajek 1977; Thorne, Price & Macdonald 1986 Beskin et al. 1992; Hirotani & Okamoto 1998...

The Occurrence of Gaps around rotating Black Holes

"Parallel electric field occurrence \Rightarrow not enough charges to screen the field $n_{\rm GJ} = \frac{\Omega B}{2\pi ec} \simeq 10^{-2} B_4 M_9^{-1} \text{ cm}^{-3}$

e.g., Blandford & Znajek 1977; Thorne, Price & Macdonald 1986 Beskin et al. 1992; Hirotani & Okamoto 1998...

The Occurrence of Gaps around rotating Black Holes

"Parallel electric field occurrence \Rightarrow not enough charges to screen the field $n_{\rm GJ} = \frac{\Omega B}{2\pi ec} \simeq 10^{-2} B_4 M_9^{-1} \text{ cm}^{-3}$

- Null surface in Kerr Geometry (r ~ r_g≡GM/c²) for force-free magnetosphere, vanishing of poloidal electric field E_p ∝ (Ω^F-ω) ∇Ψ = 0, ω=Lense-Thirring
- Stagnation surface (r ~ several rg)

Inward flow of plasma below due to gravitational field, outward motion above \Rightarrow need to replenish charges

e.g., Blandford & Znajek 1977; Thorne, Price & Macdonald 1986 Beskin et al. 1992; Hirotani & Okamoto 1998...

The Conceptual Relevance of BH Gaps

Linking Jet Formation and High Energy Emission

- for BH-driven jets (Blandford-Znajek)
 - self-consistency: continuous plasma injection needed to activate BZ outflows (force-free MHD)

The Conceptual Relevance of BH Gaps

Linking Jet Formation and High Energy Emission

- for BH-driven jets (Blandford-Znajek)
 - self-consistency: continuous plasma injection needed to activate BZ outflows (force-free MHD)
- if BH regions becomes evacuated...
 - efficient (direct) acceleration of electrons & positrons in emergent E_{II}-field
 - accelerated e⁻, e⁺ produce γ-rays via inverse Compton
 - **γγ-absorption** triggers pair cascade...
 - \Rightarrow generating charge multiplicity (e⁺e⁻) = plasma
 - \Rightarrow ensuring electric field screening (closure)

h

The Conceptual Relevance of BH Gaps

Linking Jet Formation and High Energy Emission

- for BH-driven jets (Blandford-Znajek)
 - self-consistency: continuous plasma injection needed to activate BZ outflows (force-free MHD)
- if BH regions becomes evacuated...
 - efficient (direct) acceleration of electrons & positrons in emergent E_{II}-field
 - accelerated e⁻, e⁺ produce γ-rays via inverse Compton
 - **γγ-absorption** triggers pair cascade...
 - \Rightarrow generating charge multiplicity (e⁺e⁻) = plasma
 - \Rightarrow ensuring electric field screening (closure)
 - observable in MAGN/radio galaxies (e.g., M87)
 ⇒ γ-ray variations as signature of jet formation

(Levinson & FR 2011, FR & Levinson 2018 [review])

Solving Gauss' laws depending on different boundaries

$$\frac{dE_{||}}{ds} = 4\pi \left(\rho - \rho_{GJ}\right) \qquad [\rho_{GJ} = n_{GJ} \cdot e]$$

Solving Gauss' laws depending on different boundaries

$$\frac{dE_{||}}{ds} = 4\pi \left(\rho - \rho_{GJ}\right) \qquad [\rho_{GJ} = n_{GJ} \cdot e]$$

solve for $E_{\parallel} \Rightarrow$ calculate potential $\phi = -\int E_{\parallel} ds \Rightarrow$ determine power $L \sim \phi \cdot I$

Solving Gauss' laws depending on different boundaries

$$\frac{dE_{||}}{ds} = 4\pi \left(\rho - \rho_{GJ}\right) \qquad [\rho_{GJ} = n_{GJ} \cdot e]$$

solve for $E_{\parallel} \Rightarrow$ calculate potential $\phi = -\int E_{\parallel} ds \Rightarrow$ determine power $L \sim \phi \cdot I$

- e.g., highly under-dense, $\boldsymbol{\rho} \ll \boldsymbol{\rho}_{GJ}$
 - Boundaries:
 - $E_{II}(s=0) \neq 0, E_{II}(s=h)=0$
 - Gap potential:
 - ► $\Delta \varphi_{gap} \sim a r_g B (h/r_g)^2$
 - Gap Jet power:
 - ▶ $L_{gap} \sim L_{BZ} (h/r_g)^2 ...$

e.g., Blandford & Znajek 1977; Levinson 2000; Levinson & FR 2011

weakly under-dense: $\rho_{e} \sim \rho_{GJ}$

- Boundaries:
 - *E*_{II}(s=0)=0, *E*_{II}(s=h)=0
- ► Gap potential:
 - $\Delta \varphi_{gap} \sim a r_g B (h/r_g)^3$
- Gap Jet power:

▶ L_{gap} ~ L_{BZ} (h/r_g)⁴ ...

with $j \propto c \ (d\rho/dr) \ h$

e.g., Hirotani & Pu 2016; Katsoulakos & FR 2018

Solving Gauss' laws depending on different boundaries

$$\frac{dE_{||}}{ds} = 4\pi \left(\rho - \rho_{GJ}\right) \qquad [\rho_{GJ} = n_{GJ} \cdot e]$$

solve for $E_{\parallel} \Rightarrow$ calculate potential $\phi = -\int E_{\parallel} ds \Rightarrow$ determine power $L \sim \phi \cdot I$

h

EII

- e.g., highly under-dense, $\rho \ll \rho_{G}$
 - Boundaries:
 - $E_{II}(s=0) \neq 0, E_{II}(s=h)=0$
 - Gap potential:
 - $\Delta \phi_{gab} \sim a r_g B (h/r_g)^2$
 - Gap Jet power:

e.g., Blandford & Znajek 1977; Levinson 2000; Levinson & FR 2011

 Jet power.
 L_{gap} ~ L_{BZ} (h/r_g)² ...
 Small gap sizes 'h≪r_g' give small gamma-ray (VHE) power Lgap

weakly under-dense: $\rho_{e} \sim \rho_{GI}$

- Boundaries:
 - $E_{II}(s=0)=0, E_{II}(s=h)=0$
- Gap potential:

S

- $\Delta \phi_{gap} \sim a r_g B (h/r_g)^3$
- Gap Jet power:
 - $L_{gap} \sim L_{BZ} (h/r_g)^4 \dots$

with $j \propto c (d\rho/dr) h$

e.g., Hirotani & Pu 2016; Katsoulakos & FR 2018

Solving Gauss' laws depending on different boundaries

$$\frac{dE_{||}}{ds} = 4\pi \left(\rho - \rho_{GJ}\right) \qquad [\rho_{GJ} = n_{GJ} \cdot e]$$

solve for $E_{\parallel} \Rightarrow$ calculate potential $\varphi = -\int E_{\parallel} ds \Rightarrow$ determine power $L \sim \varphi \cdot I$

h

EII

- e.g., highly under-dense, $\boldsymbol{\rho} \ll \boldsymbol{\rho}_{GJ}$
 - Boundaries:
 - $E_{II}(s=0) \neq 0, E_{II}(s=h)=0$
 - Gap potential:
 - $\Delta \phi_{gap} \sim a r_g B (h/r_g)^2$
 - Gap Jet power:
 - ▶ $L_{gap} \sim L_{BZ} (h/r_g)^2 ...$

e.g., Blandford & Znajek 1977; Levinson 2000; Levinson & FR 2011 Taking variability as proxy for gap size ⇒ Jet power constraints become relevant for rapidly varying sources weakly under-dense: $\rho_{e} \sim \rho_{GJ}$

- Boundaries:
 - *E*_{II}(s=0)=0, *E*_{II}(s=h)=0
- ► Gap potential:

S

- $\Delta \varphi_{gap} \sim a r_g B (h/r_g)^3$
- Gap Jet power:
 - ► L_{gap} ~ L_{BZ} (h/r_g)⁴ ...

with $j \propto c (d\rho/dr) h$

e.g., Hirotani & Pu 2016; Katsoulakos & FR 2018 What sizes etc to expect ? - Self-consistent steady (ID) gap solutions I

e,g., Beskin+ 1992; Hirotani & Okamoto 1998; Hirotani+ 2016; Levinson & Segev 2017; Katsoulakos & FR 2020

 $\frac{1998}{e^+} = \frac{1}{88} = \frac{1}{$

Solve system of relevant PDEs in ID around null surface, assuming some soft photon description & treat current as input parameter:

- ▶ GR Gauss' law (E_{II})
- ▶ e⁺, e⁻ equation of motion (radiation reaction)
- ▶ e⁺, e⁻ continuity equation (*pair production*)
- Boltzmann equation for photons (IC, curvature, pair production) $\frac{dP_{\gamma}^{+}}{dr} = \dots$ etc

Boundary Conditions: Zero electric field at boundaries $\varrho \leq \varrho_{GJ}$ in boundaries # ADAF soft photon field

 $\nabla \cdot \left(\frac{\mathcal{E}_{||}}{\alpha_{l}}\right) = 4\pi(\rho_{e} - \rho_{GJ})$, $\rho_{e} = \rho^{+} + \rho^{-} = n^{+}e - n^{-}e$

 $m_e c^2 \frac{d\Gamma_e}{dr} = -e\mathcal{E}_{||}^r - \frac{P_{IC}}{c} - \frac{P_{cur}}{c}$

e.g. $J_0 = (\rho^- - \rho^+)c \left(1 - \frac{1}{\Gamma^2}\right)^{\frac{1}{2}} = \text{constant.}$

Adequate description of ambient soft photon field turns out to be of high relevance determines efficiency of pair cascade...

Example: Self-consistent steady (ID) gap solutions III

Katsoulakos & FR 2020

Figure 6. Left: The normalized distribution of the parallel electric field component $\mathcal{E}_{||}^{*r}$ shown for current values $J_o^* = -0.005$ (black line), $J_o^* = -0.157$ (red line) and $J_o^* = -0.297$ (green line). Right: The corresponding Lorentz factor distribution Γ_e of the particles.

M07.	Global Current	Gap Size	Voltage Drop	Gap Power	
///0/.	$J_o^* = J_o/c\rho_c$	h/r_g	$\times 10^{17}$ Volts	$\times 10^{41} erg s^{-1}$	
_	(1)	(2)	(3)	(4)	
	-0.4	0.8076	9.8	4.9	

NOTE—Results for the gap extension, the associated voltage drop and total gap power for a global current $J_0^* = -0.4$, assuming $M_9 = 6.5$, and $\dot{m} = 10^{-5.75}$.

(using spin parameter a_s *=1; max L_{BZ} = 2 x 10⁴³ erg/s)

Example: Self-consistent steady (ID) gap solutions III

Katsoulakos & FR 2020

Figure 6. Left: The normalized distribution of the parallel electric field component $\mathcal{E}_{||}^{*r}$ shown for current values $J_o^* = -0.005$ (black line), $J_o^* = -0.157$ (red line) and $J_o^* = -0.297$ (green line). Right: The corresponding Lorentz factor distribution Γ_e of the particles.

1107.	Global Current	Gap Size	Voltage Drop	Gap Power
///0/.	$J_o^* = J_o/c\rho_c$	h/r_g	$\times 10^{17}$ Volts	$\times 10^{41} erg s^{-1}$
-	(1)	(2)	(3)	(4)
	-0.4	0.8076	9.8	4.9

NOTE—Results for the gap extension, the associated voltage drop and total gap power for a global current $J_0^* = -0.4$, assuming $M_9 = 6.5$, and $\dot{m} = 10^{-5.75}$.

Consistent solutions possible for M87 max. voltage drop ~10¹⁸ eV

(using spin parameter a_s *=1; max L_{BZ} = 2 x 10⁴³ erg/s)

Example: Self-consistent steady (ID) gap solutions III

Katsoulakos & FR 2020

Figure 6. Left: The normalized distribution of the parallel electric field component $\mathcal{E}_{||}^{*r}$ shown for current values $J_o^* = -0.005$ (black line), $J_o^* = -0.157$ (red line) and $J_o^* = -0.297$ (green line). Right: The corresponding Lorentz factor distribution Γ_e of the particles.

M87:

Global Current	Gap Size	Voltage Drop	Gap Power
$J_o^* = J_o/c \rho_c$	h/r_g	$\times 10^{17}$ Volts	$\times 10^{41} erg s^{-1}$
(1)	(2)	(3)	(4)
-0.4	0.8076	9.8	4.9

NOTE—Results for the gap extension, the associated voltage drop and total gap power for a global current $J_0^* = -0.4$, assuming $M_9 = 6.5$, and $\dot{m} = 10^{-5.75}$.

Consistent solutions possible for M87 max. voltage drop ~10¹⁸ eV

TeV gamma-ray emission, but no strong UHECR acceleration close to BH

(using spin parameter a_s *=1; max L_{BZ} = 2 x 10⁴³ erg/s)

Issues & developments

- gaps are expected to be intermittent \implies need time-dependent studies (PIC simulations) (Levinson & Cerutti 2018; Chen+ 2018; Crinquand+ 2020, 21; Chen & Yuan 2020; Kisaka+ 2020, 21; Hirotani+ 2021...)
 - different complexity employed (e.g., SR/GR, resolution, Id/2d, radiation reaction, ambient soft field)
 - outcome generally highly sensitive to assumed ambient photon field (ϵ_{min} , PL index)
 - indications for periodic (timescale ~ r_g/c) opening of macroscopic (h ~ 0.1-1 r_g) gaps....

Issues & developments

electric field forms as multiplicity drops below I

Chen & Yuan 2020

Selected Theoretical Advances:

Modelling Parsec-Scale Jet Emission in Blazars (physics)

On shock acceleration in extreme blazars

incorporating micro-physical insights (constraints) into SED modelling:

- requirement of high minimum electron Lorentz factor $\gamma_{min,e} \gtrsim 10^3$ and low magnetisation in SSC model for extreme TeV blazars...
- possible scenario (Zech & Lemoine 2021):
 - co-acceleration of electrons and protons @ weakly magnetised shocks in jet
 - energy transfer from p to e⁻ in shock transition layer (heating/thermal coupling): $k_B T_P \sim \Gamma_s m_p c^2$ and $T_e = \xi T_p$ (pre-heating), with $\xi < 1$

and for thermal Maxwellian $(k_B T_e/m_e c^2) \sim \gamma_{\rm min}$

$$\Rightarrow \gamma_{\min} \sim \left(\frac{m_p}{m_e}\right) \Gamma_s \xi \simeq 1800 \,\Gamma_s \xi$$

On shock acceleration in extreme blazars

incorporating micro-physical insights (constraints) into SED modelling:

- requirement of high minimum electron Lorentz factor $\gamma_{min,e} \gtrsim 10^3$ and low magnetisation in SSC model for extreme TeV blazars...
- possible scenario (Zech & Lemoine 2021):
 - co-acceleration of electrons and protons @ weakly magnetised shocks in jet
 - energy transfer from p to e^{-} in shock transition layer (heating/thermal coupling): $k_B T_P \sim \Gamma_s m_p c^2$ and $T_e = \xi T_p$ (pre-heating), with $\xi < 1$ and for thermal Maxwellian $(k_B T_e / m_e c^2) \sim \gamma_{\min}$

$$\Rightarrow \gamma_{\rm min} \sim \left(\frac{m_p}{m_e}\right) \, \Gamma_s \, \xi \simeq 1800 \, \Gamma_s \, \xi$$

- generation of micro-turbulence (e.g., Weibel) \Rightarrow effective magnetization higher than initial $\sigma \leq 10^{-3}$, but decaying downstream with distance [magnetization $\sigma = B^2/(4\pi \langle \gamma \rangle nmc^2)$] \Rightarrow magnetization in radiation zone $\sigma \leq \sigma_{rad} \leq 0.01$
- high $\gamma_{\min,e}$, low $\gamma_{\max,p}$, B ~ O(mG) \Rightarrow emission leptonic (protonic suppressed)

On electron heating in relativistic shocks

Crumley+ 2019: 2D PIC of quasi-parallel, mildly relativistic ($\Gamma_s \simeq 1.5$), low- σ , e⁻p shocks

 $\sigma_0=0.007$ (downstream), high Mach number (M=15) at early times, shock Weibel-mediated, later Bell-mediated

 $x [c/\omega_{pi}]$

lower magnetizations and larger shock speeds...

(e.g., Sironi+ 2013, Vanthieghem+ 2020)

On shock acceleration in extreme blazars

- re-acceleration at multiple (\geq 2) shocks required to produce hard particle spectra (deviating from PL) and increasing $\gamma_{min,e}$
- input: for single shock spectrum, PL index s = 2.2, $\langle \gamma_e \rangle = 600 \Gamma_s \dots$
- possible caveat: significantly out of equipartition, very low m.f. (cf. flux conservation)....

\Rightarrow probing model assumptions via variability....

Similar indications from other sources & energy bands

Convex X-ray spectrum in PKS 2155-304 indicating emergence of IC contribution

- ▶ no dilution by up-scattering of synchrotron peak photons $\Rightarrow \gamma_{min,e} \sim 300$ (best fit)
- associated with peak of shocked, thermal Maxwellian: $\gamma_{min,e} \sim \left(\frac{m_p}{m_e}\right) \Gamma_s \xi$, where $T_e = \xi T_p$ with $\xi \sim 0.1$ (moderate thermal coupling)
- weakly-magnetized ($\sigma_u \Gamma_s < 0.1$) X-ray emission region dominated by e-p composition...

Selected Theoretical Advances:

 Understanding large-scale jet emission (conceptual & methodological)
Progress in understanding HE emission from large-scale AGN jets I

_Emission from large-scale jets

- extended X-ray electron synchrotron emission
- needs electron Lorentz factors $\gamma \sim 10^8$

- \blacktriangleright short cooling timescale t_{cool} $\propto~$ 1/ γ ; cooling length c t_{coo}l << kpc
- distributed acceleration mechanism required (Sun, Yang, FR+ 2018 for M87)

Progress in understanding HE emission from large-scale AGN jets II

VHE emission along the kpc-jet of Cen A

- Inverse Compton up-scattering of dust by ultrarelativistic electrons with $\chi = 10^8$
- verifies X-ray synchrotron interpretation
- continuous re-acceleration required to avoid rapid cooling

Progress in understanding HE emission from large-scale AGN jets II

VHE emission along the kpc-jet of Cen A

- Inverse Compton up-scattering of dust by ultrarelativistic electrons with $\chi = 10^8$
- verifies X-ray synchrotron interpretation
- continuous re-acceleration required to avoid rapid cooling

Parameters: ECBPL: α_1 =2.30, α_2 =3.85, γ_b =1.4 x 10⁶, γ_c =10⁸, B=23µG, W_{tot} = 4 x 10⁵³ erg

Progress in understanding HE emission from large-scale AGN jets II

VHE emission along the kpc-jet of Cen A

- Inverse Compton up-scattering of dust by ultrarelativistic electrons with $\gamma = 10^8$
- verifies X-ray synchrotron interpretation
- continuous re-acceleration required to avoid rapid cooling

VHE variability as potential probe...

How to accelerate electrons to $\gamma \sim 10^8$ and keep them energized ?

Basics of Shear Particle Acceleration

Gradual shear flow, e.g. $\vec{u} = u_z(x) \vec{e}_z$ (scattering center speed) $\vec{z} \neq \vec{u}$

▶ like 2nd Fermi, stochastic process with average gain:

$$\frac{\langle \Delta \epsilon \rangle}{\epsilon_1} \propto \left(\frac{u}{c}\right)^2 = \left(\frac{\partial u_z}{\partial x}\right)^2 \lambda^2$$

using characteristic effective velocity:

 $u = \left(\frac{\partial u_z}{\partial x}\right) \lambda$, where λ = particle mean free path

So:

$$t_{acc} = \frac{\epsilon}{(d\epsilon/dt)} \sim \frac{\epsilon}{<\Delta\epsilon>} \times \frac{\lambda}{c} \propto \frac{1}{\lambda}$$

- ▶ seed from acceleration @ shock or 2nd Fermi....
- ▶ easier for protons...(⇒ UHECR)

e.g., Jokipii & Morfill 1990; FR & Duffy 2004, 2006f; Webb+ 2018f - see FR 2019 [review]

On stochastic & shear electron acceleration in large-scale AGN jets

Radiative-loss-limited electron acceleration in mildly relativistic flows

Ansatz: Fokker-Planck equation for f(t,p) incorporating acceleration by <u>stochastic</u> and <u>shear</u>, and losses due to <u>synchrotron</u> and <u>escape</u> for cylindrical jet.

Parameters I: B = 3μ G, $v_{j,max} \sim 0.4c$, $r_j \sim 30$ pc, $\beta_A \sim 0.007$, $\Delta r \sim r_j/10$, mean free path $\lambda = \xi^{-1} r_L (r_L/\Lambda_{max})^{1-q} \propto \chi^{2-q}$, q=5/3 (Kolmogorov), $\xi=0.1$

(cf . also FR & Duffy 2019, 2022; Tavecchio 2021)

Radiative-loss-limited electron acceleration in mildly relativistic flows

Ansatz: Fokker-Planck equation for f(t,p) incorporating acceleration by <u>stochastic</u> and <u>shear</u>, and losses due to <u>synchrotron</u> and <u>escape</u> for cylindrical jet.

- ▶ from 2nd Fermi to shear...
- electron acceleration beyond γ~10⁸
 possible
- formation of multi-component particle distribution
- incorporation of escape softens the spectrum

Parameters I: B = 3μ G, $v_{j,max} \sim 0.4c$, $r_j \sim 30$ pc, $\beta_A \sim 0.007$, $\Delta r \sim r_j/10$, mean free path $\lambda = \xi^{-1} r_L (r_L/\Lambda_{max})^{1-q} \propto \chi^{2-q}$, q=5/3 (Kolmogorov), ξ =0.1

(cf . also FR & Duffy 2019, 2022; Tavecchio 2021)

Radiative-loss-limited electron acceleration in mildly relativistic flows

Ansatz: Fokker-Planck equation for f(t,p) incorporating acceleration by <u>stochastic</u> and <u>shear</u>, and losses due to <u>synchrotron</u> and <u>escape</u> for cylindrical jet.

- ▶ from 2nd Fermi to shear...
- electron acceleration beyond γ~10⁸
 possible
- formation of multi-component particle distribution
- incorporation of escape softens the spectrum

caveat: simplification of spatial transport; in general, high jet speeds needed.

If large-scale AGN jets would be multi-TeV accelerators...

- extended X-ray synchrotron requires multi-TeV electrons, as validated for Cen A
 - synchrotron X-ray emitting electrons IC up-scatter CMB to TeV energies...
 - steady IC contribution of knots and kpc-scale jet not necessarily insignificant compared to core (cf. D⁻² beaming-correction)
 - ➡ potential contribution to astrophysical TeV background (exceeding TeV blazars)

Georganopoulos+ 2016 47

Towards methodological progress in modelling large-scale jet emission

simulating synchrotron emission from relativistic jets (Mukherjee+ 2020, 2021)

- use 3D relativistic MHD jet simulations (PLUTO)
- add Lagrangian (macro)particle module to simultaneously evolve spatial and spectral evolution of non-thermal electrons producing synchrotron emission (vs. post-processing)
- ▶ focus on particle acceleration via shocks (inject with $\gamma \ge 100$ & convolve with DSA)...

Towards methodological progress in modelling large-scale jet emission

simulating synchrotron emission from relativistic jets (Mukherjee+ 2020, 2021)

- use 3D relativistic MHD jet simulations (PLUTO)
- add Lagrangian (macro)particle module to simultaneously evolve spatial and spectral evolution of non-thermal electrons producing synchrotron emission (vs. post-processing)
- ▶ focus on particle acceleration via shocks (inject with $\gamma \ge 100$ & convolve with DSA)...

Summary

Challenges in (jetted) AGN physics as a multi-scale problem

Addressing the Felix' question (progress)...

Advances in the Physics of Gamma-Ray Loud AGN

- conceptual (BH magnetosphere)
- modelling physics (shock microphysics...)
- Iarge-scale jet emission (PeV accelerators)

On bridging the gap (1st principle & 'complex reality')...

- Iots of exploration space...lots of work to do...
- joining forces & standing the test of time...

Summary

Challenges in (jetted) AGN physics as a multi-scale problem

Addressing the Felix' question (progress)...

Advances in the Physics of Gamma-Ray Loud AGN

- conceptual (BH magnetosphere)
- modelling physics (shock microphysics...)
- Iarge-scale jet emission (PeV accelerators)

On bridging the gap (1st principle & 'complex reality')...

- Iots of exploration space...lots of work to do...
- joining forces & standing the test of time...

Thank you! & Questions ?