Particle Acceleration and Gamma-ray Emission from Starburst Galaxies

Enrico Peretti

7th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy Barcelona, July 4-8 2022

Co-financed by the Connecting Europe Facility of the European Union

High star formation rate

High target density & strong fields

Another reason to study Starbursts

Ζ

3

Another reason to study Starbursts

Ζ

3

Motivations for studying Starburst Galaxies

• Several acceleration sites (SBN + wind)

- High rate of interactions \rightarrow Calorimetry?
- Numerous at high redshift \rightarrow Diffuse flux?

Outline

- Observations of Starburst Galaxies
- Particle Transport in Starburst Nuclei
- Acceleration and transport in starburst-driven winds
 - Diffuse emission from Starburst Galaxies

Outline

• Observations of Starburst Galaxies

• Particle Transport in Starburst Nuclei

• Acceleration and transport in starburst-driven winds

• Diffuse emission from Starburst Galaxies

Starbursts observed at GeV

- Starbursts observed at GeV
- Most nearby observed at TeV (<4 Mpc)

- Starbursts observed at GeV
- Most nearby observed at TeV (<4 Mpc)
 - Most distant: Arp 220 (77 Mpc)

<u>SFR – gamma-ray correlation</u>

SFR \rightarrow acceleration sites \rightarrow CRs CR interactions \rightarrow Non-thermal rad.

Starbursts are expected to shine on gamma rays and neutrinos

Starbursts are expected to shine on gamma rays and neutrinos

• At which level can they contribute to the observed diffuse fluxes?

7

Starbursts are expected to shine on gamma rays and neutrinos

• At which level can they contribute to the observed diffuse fluxes?

• Can they contribute to the CR flux at some level?

7

Starbursts are expected to shine on gamma rays and neutrinos

- At which level can they contribute to the observed diffuse fluxes?
- Can they contribute to the CR flux at some level?
 - SBGs and UHECRs?

Outline

• Observations of Starburst Galaxies

• Particle Transport in Starburst Nuclei

• Acceleration and transport in starburst-driven winds

• Diffuse emission from Starburst Galaxies

$$n \approx 10^{2} cm^{-3}$$
$$B \approx 10^{2} \mu G$$
$$U_{RAD} \approx 10^{3} eV cm^{-3}$$
$$v \approx 10^{2} km s^{-1}$$
$$D(p) \approx \frac{c}{3} r_{L}^{2-\delta} l_{c}^{\delta-1}$$

11

• Electrons are confined in SBNi

- Electrons are confined in SBNi
- Advection and losses regulate the transport of protons

- Electrons are confined in SBNi
- Advection and losses regulate the transport of protons
- Particles experience all phases of the ISM

$$Q = \frac{f}{\tau_{loss}} + \frac{f}{\tau_{diff}} + \frac{f}{\tau_{adv}}$$

Particle and photon spectra in SBNi

Particle and photon spectra in SBNi

Particle and photon spectra in SBNi

Particle and photon spectra in SBNi

Modeling nearby SBGs

Outline

• Observations of Starburst Galaxies

• Particle Transport in Starburst Nuclei

• Acceleration and transport in starburst-driven winds

Transport model

 $r^{2}u(r)\partial_{r}f = \partial_{r}[r^{2}D(r,p)\partial_{r}f] + \frac{1}{3}\partial_{r}[r^{2}u(r)]p\partial_{p}f + r^{2}Q(r,p) - r^{2}\Lambda(r,p)$

Transport model

 $r^{2}u(r)\partial_{r}f = \partial_{r}[r^{2}D(r,p)\partial_{r}f] + \frac{1}{3}\partial_{r}[r^{2}u(r)]p\partial_{p}f + r^{2}Q(r,p) - r^{2}\Lambda(r,p)$

Transport model

 $r^{2}u(r)\partial_{r}f = \partial_{r}[r^{2}D(r,p)\partial_{r}f] + \frac{1}{3}\partial_{r}[r^{2}u(r)]p\partial_{p}f + r^{2}Q(r,p) - r^{2}\Lambda(r,p)$

 $f_{sh}(p) \propto p^{-s} e^{-\Gamma_1(p)} e^{-\Gamma_2(p)}$

• Maximum Energy $\rightarrow 10^2 \text{ PeV}$

Standard DSA valid at low Energy

 $f_{sh}(p) \propto p^{-s} e^{-\Gamma_1(p)} e^{-\Gamma_2(p)}$

$$f_{sh}(p) \propto p^{-s} e^{-\Gamma_1(p)} e^{-\Gamma_2(p)} \qquad f_u(r,p) = f_{sh}(p) e^{-\int_r^{R_{sh}}(\frac{u_{eff}}{D}) dr'}$$

The wind suppresses the diffusion of particles back to the galaxy

Particle distribution homogenized in the downstream region

High-Energy SED and Neutrinos

High-Energy SED and Neutrinos

High-Energy SED and Neutrinos

Outline

• Observations of Starburst Galaxies

• Particle Transport in Starburst Nuclei

• Acceleration and transport in starburst-driven winds

• SBNi only

- SBNi only
- Sizeable contribution to the diffuse flux observed by Fermi-LAT

• SBNi only

- Sizeable contribution to the diffuse flux observed by Fermi-LAT
 - Neutrino flux at the level of IceCube measurment

• SBNi only

- Sizeable contribution to the diffuse flux observed by Fermi-LAT
 - Neutrino flux at the level of IceCube measurment

Multimessenger emission from Starburst Galaxies

Multimessenger emission from Starburst Galaxies

Take home messages

- Starburst galaxies can approach calorimeteric conditions
- We expect gamma rays and neutrino both from SBNi and wind
- Starburst can provide a sizeable contribution to the multimessenger diffuse flux (CRs, gamma rays, neutrinos)
 - New observatories are coming → promising observation perspectives!
Upcoming gamma-ray observations

Credit: Gabriel Pérez Diaz (IAC)/Marc-André Besel (CTAO)/ESO/ N. Risinger (skysurvey.org)

• Transport and diffusion: neutral medium?

• Transport and diffusion: neutral medium?

- Transport and diffusion: neutral medium?
 - What happens in the wind bubble?

- Transport and diffusion: neutral medium?
 - What happens in the wind bubble?

- Transport and diffusion: neutral medium?
 - What happens in the wind bubble?
 - Diffuse gamma and neutrino flux?

10

10

10-9

- Transport and diffusion: neutral medium?
 - What happens in the wind bubble?
 - Diffuse gamma and neutrino flux?

- Transport and diffusion: neutral medium?
 - What happens in the wind bubble?
 - Diffuse gamma and neutrino flux?
 - What can accelerate UHECRs in SBGs?

THANKS FOR YOUR ATTENTION!

Back up

NGC1068

Indications of neutrino production at TeV in the nearby NGC1068 while gamma is limited below 10^2 GeV

- Starburst emission?
- AGN jet? AGN wind?
 - Other sources?

 10^{6}

Leaky box model and L—SFR correlations

Starbursts as diffuse sources

The issue of the maximum energy

Starburst contribution to IceCube neutrinos strongly depends on the maximum energy achievable in SBNi

SNR in case of Bohm diffusion:

$$E_{max} = 30 PeV \times R_3 u_4 B_{mG}$$

• Magnetic field amplification can allow reaching 10-100 PeV

Maximum Energy & Luminosity

Starburst halo

Starburst halo

Tracing the emission in the wind bubble – 1 GeV

