

Highlights from VERITAS

John Quinn (University College Dublin) on behalf of the VERITAS Collaboration

VERITAS Status

Facility and Collaboration:

- Located at the Fred Lawrence Whipple Observatory in southern Arizona @ 1,268 m a.s.l.
 - CTA prototype SCT telescope co-located
- VERITAS just completed its 15th year of full-array operations.
- International Collaboration:
 - 97 members incl. 32 graduate students and 16 Postdocs
 - +20 active Associate Members

Gamma 2022 - VERITAS Highlights - Quinn

Funding Sources:

- **USA**: National Science Foundation, Smithsonian Astrophysical Observatory
- Canada: Natural Sciences and Engineering Research Council
- **Germany**: Helmholtz Association
- News:
 - **Recommended** for next NSF operations funding cycle through 2025
 - Two instrument upgrade grants awarded

VERITAS & pSCT Outstanding Contribution Awards

- directly".
 - Simon Swordy Award (graduate students)
 - Trevor Weekes Award (postdocs)

2021 Simon Swordy Award Winner: Deivid Ribiero (Columbia):

for wide-ranging contributions to VERITAS & the pSCT including ... data analysis software, remote observing capability, pSCT optics, mentoring and outreach

https://veritas.sao.arizona.edu/about-veritas/veritas-outstanding-contribution-awards

• Awards to "...formally recognize the significant contributions of more early-career members of the collaboration in the critical service work that enables scientific publications of VERITAS and/or the pSCT, but do not result in any scientific publications

+ VERITAS Code of Conduct

VERITAS Performance

Field of view	3.5° diameter
Energy Range	~85 GeV to ~30 TeV
Effective Area	~10 ⁵ m ² at 1 TeV
Sensitivity	1% Crab in <25 h

200GeV Ч Ч Flux

Angular Resolution (r ₆₈)	~0.08° @ 1 TeV
Energy Resolution	~17%
Sys. Errors: Flux	~20%;
Sys. Errors: Spectral Index	~ 0.1

Long-term instrument response well understood: (Adams et al., A&A 658, A83 (2022)):

VERITAS Observations

VERITAS Observations

- Season: September to July each year.
- Good-weather γ -ray data / yr:
 - ~950 h in "dark time"
 - ~250 h in "bright moon" (illum. 30-65%)
- 4-Telescope efficiency: ~ 97%
- Stellar Intensity Interferometry Observations:
 - Utilise very bright and full-moon time
 - 250 hrs+ / year

COVID impact :

- Shut down on 17 March 2020
- Resumed in early September 2020 with remote observing capability - long term option.

VERITAS y-ray Science Program

Fermi GI: Fermi Guest **Investigator Program**

DDT: Director's Discretionary Time

Time Allocation Committee

Gamma 2022 - VERITAS Highlights - Quinn

Deep observations of the young Supernova Remnants

- Tycho's SNR : 147 hrs: E_{cut} (TeV) = 1.70 ± 1.23 (2 σ) (Archambault et al, 2017)
- Cassiopeia A : 65 hrs: E_{cut} (TeV) = 2.31 ± 0.51 (4 σ) (Abeysekara et al, 2020)

Studies of the origins of unidentified, hard-index sources

- MGRO J2019+37
- MGRO J1908+06
- **VER J2227+608 (SNR G106.4+2.7 region, "Boomerang")**

Studies of ultra-high-energy gamma-ray sources

- Followup observation of HAWC sources (2HWC follow-up: <u>Abeysekara et al, 2018</u>)
- Followup observation of LHAASO sources: including LHAASO J2108+5157 & LHAASO J0341+5258

See talk by Nahee Park on LHAASO J2108+5157 & Boomerang MWL this afternoon

Galactic Science: Search for PeVatrons

LHAASO J2108+5157

- A point-like source detected by LHAASO with no known counterparts in TeV gamma rays
- Non-detection after 35 hours of VERITAS observations in point and extended (0.25°) analyses
- VERITAS limits below IC CMB Model of Cao et al., 2021.
 - Point-source upper limits (95%) shown.

 10^{-9}

S⁻¹ 10^{-10} C C S 10^{-11} (erg 10^{-12} dN/dE

E²

 10^{-15}

Galactic Science: Search for PeVatrons

Gamma 2022 - VERITAS Highlights - Quinn

Galactic Science: Galactic Centre Region

Galactic Science: Binaries

- VERITAS has detected three binary systems and conducts extensive monitoring
- See talk by Sonal Patel on Wednesday

VERITAS & MAGIC data from: Abeysekara et al., ApJ, 867 L19 (2018)

X-ray data and modelling: Chen & Takata, A&A, 658, 153 (2022)

VERITAS:

- 180 hrs from Oct 2009 to November 2021
- Flux and spectra as function of orbital phase
- Correlation studies
- Superorbital modulation study

AGN Science: Blazars and Radio Galaxies

Science drivers:

- particle location, content & acceleration mechanisms, magnetic fields in Blazar and Radio Galaxy jets
- Statistical properties of TeV emitting blazars as a population and contributions to cosmic ray and neutrino astrophysical fluxes

Observations:

- ~200 hrs per year: monitoring & ToO
 - MWL coverage: especially Swift XRT
 - 2022-2025 simultaneous with IXPE (Manel Errando poster)
- Flaring:
 - OJ 287 (Oliver Hervet talk this afternoon)
 - Mrk 421 giant flare (*Abeysekara at al., ApJ, 890, 97 (2020*))
 - FSRQs (<u>Adams et al., ApJ, 924, 95 (2022)</u>)
 - Radio Galaxies (Lucy Fortson talk this afternoon)
- Multi-year deep exposures on many objects:
 - Unbiased HBL Survey (Manel Errando talk yesterday)
 - HBL variability & spectra (Pedro Batista talk yesterday & Ste O'Brien poster)
 - Markarian 421 snapshots every night (Olivier Hervet poster)

Blazar	Туре	z
1ES 0647+250	HBL	>0.29
3C 66A	IBL	0.33 < z < 0.41
RGB J2243+203	HBL	>0.39
PG 1553+113	HBL	0.43 < z < 0.58
1ES 0033+595	HBL	0.467?
HESS J1943+213	HBL	?
RGB J2056+496	Blazar	?

AGN	Туре	Z
M 87	FR I	0.004
NGC 1275	FR I	0.018
IC 310	FR I/HBL	0.019
3C 264	FR I	0.026

Blazar	Туре	z
Mkn 421	HBL	0.030
Mkn 501	HBL	0.034
1ES 2344+514	HBL	0.044
1ES 1959+650	HBL	0.047
1ES 1727+502	HBL	0.055
BL Lac	IBL	0.069
1ES 1741+196	HBL	0.084
W Comae	IBL	0.102
VER J0521+211	IBL	0.108
RGB J0710+591	HBL	0.125
H 1426+428	HBL	0.129
B2 1215+30	HBL	0.131
S3 1227+25	IBL	0.135
1ES 0806+524	HBL	0.138
1ES 0229+200	HBL	0.139
1ES 1440+122	HBL	0.163
RX J0648.7+1516	HBL	0.179
1ES 1218+304	HBL	0.182
RBS 0413	HBL	0.190
1ES 1011+496	HBL	0.212
MS 1221.8+2452	HBL	0.218
RBS 1366	HBL	0.237
1ES 0414+009	HBL	0.287
OJ 287	LBL	0.306
TXS 0506+056	HBL	0.337
1ES 0502+675	HBL	0.341
PKS 1222+216	FSRQ	0.432
PKS 1424+240	IBL	0.601
Ton 599	FSRQ	0.720
PKS 1441+25	FSRQ	0.939

AGN Science: Decade+ Monitoring of HBLs

Unbiased HBL Survey

- Talk by Manel Errando yesterday
- Unbiased study of 36 HBLs selected from 3HSP (Chan et al. 2019) based on synchrotron peak energy and luminosity.
- >2,000 hrs of archival data + new observations (all exposures > 8 hrs)

RBS 1366 (RGB J1417+257)

- z = 0.237
- Extreme HBL: $\log \nu_{peak}^{sync}$ [Hz] ≈ 17.2
- Proposed as TeV-peaked BL Lac (<u>Constamante (2020</u>))
- Possible UHECR accelerator (Twoomey et al., (2020))

AGN Science: new detection of RBS 1366

- Acquired additional data for unbiased Luminosity Function study \Rightarrow 60 hrs total.
- Analysis of complete data set $> 5\sigma \Rightarrow$ New VHE Extreme HBL
 - Flux ~ 0.5% Crab
 - Spectral index: -3.1 ± 0.5 (preliminary)

MWL data and SSC scaling courtesy of Eileen Meyer

VERITAS: H 1426+428 multi-year

Poster by Ste O'Brien+

- 2008 2016 (86 hrs):
 - Detection: 13.7σ,
 - mean flux: (1.77 ± 0.14) % Crab, no evidence for VHE variability
 - spectrum: PL with $\Gamma = -2.79 \pm 0.12$ (up to 2.5 TeV)
 - MWL study with optical, Swift (UVOT, XRT, BAT), Fermi-LAT
 - Time-averaged SED modelled by Finke

Spectral Energy Distribution(s)

- 2021 (42 hrs):
 - Detection: 16.8σ,

mean flux; (3.40 ± 0.24)% Crab

- spectrum: PL with $\Gamma = -2.61 \pm 0.07$ (up to 6.3 TeV)
- EBL-corrected (Finke et al., 2010) spectrum shows no evidence for a cutoff up to at least 6 TeV

Due to viewing angles larger than blazars, radio galaxies can aid understanding of jet physics

Catalog of VHE-detected radio galaxies

Name	Cross-ID	Туре	Distance	BH ma [10 ⁸ M
Cen A	NGC 5128	FRI	3.7 Mpc	(0.5-1)
M87	NGC 4486, Virgo A	FRI	16 Mpc	(20-60)
NGC 1275	3C84, Perseus A	FR I	70 Mpc	3-4
IC 310	B0313+411	FR I/ BL Lac	80 Mpc	3 [0.3?
3C 264	NGC 3862	FRI	95 Mpc	4-5
PKS 0625-35	OH 342	FR I/ BL Lac	220 Mpc	~10

VERITAS detected so far

VERITAS Radio Galaxy Program

DUBLI

Multi-messenger and transients

Extensive follow-up programs:

- Neutrinos
- Gravitational Waves
- Fast Radio Bursts
- Gamma-ray Bursts
- Tidal Disruptions
- Superluminous Supernovae

VERITAS Neutrino ToO Program

- Automatic repointing for alerts from IceCube through GCN (GOLD and BRONZE) or private email.
- - No detections
- TXS 0506+056:
 - collected >100 hrs so far.
 - Low-flux state since 2018 (0.5% Crab in 61 hrs).
 - MWL campaigns including NuSTAR+Swift to characterise long-term behaviour.
 - Paper in preparation.
- Collaborative papers with MAGIC, FACT, H.E.S.S. and IceCube.

Name	Energy [TeV]	Signalness	FACT	H.E.S.S.	MAGIO
IceCube-171106A	230	0.75	19 h	—	4.5 h
IceCube-181023A	120	0.28	1 h		
IceCube-190503A	100	0.36			0.5 h
IceCube-190730A	299	0.67			3.1 h
IceCube-190922B	187	0.50	5.4 h		2.2 h
IceCube-191001A	217	0.59	2.0		2.3 h
IceCube-200107A					2.7 h
IceCube-200926A	670	0.44		1.3 h	1.0 h
IceCube-201007A	683	0.88		3.25 h	0.5 h
IceCube-201114A	214	0.56		14.5 h	6 h
IceCube-201222A	186	0.53			

MAGIC, IceCube, FACT, H.E.S.S. and VERITAS collaborations PoS ICRC2021 960

• 9 follow-up observations on real-time neutrino alerts since TXS 0506+056 + 1 from Gamma-ray Follow-Up (GFU) program.

VERITAS Gamma-Ray Burst Program

- Gamma-ray burst observations have high-priority interrupt all other observations.
- 211 GRBs observed to date
- 127 bursts with a position < VERITAS PSF (Swift [122], INTEGRAL[4], MAXI[1])
 - No detections, stacked analysis underway

Gamma 2022 - VERITAS Highlights - Quinn

Fast Radio Bursts: Gamma and Optical

VERITAS - CHIME Synergy

- Contemporaneous CHIME data on all VERITAS observations of repeaters if VERITAS observes ~35 minutes from culmination.

- Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a radio (400-800 MHz) wide FoV instrument that has detected > 500 FRBs.
- VERITAS is able to observe simultaneously with CHIME.
 - VERITAS performs simultaneous gamma-ray and rapid optical observations (2-4 pixels)
- Data taken on ~11 FRBs (mostly repeaters) with overlapping VHE data on 21 bursts.
- See talk by Matthew Lundy tomorrow

VERITAS Optical Science: Transients

- VERITAS Enhanced Current Monitor: measures 2-4 pixels in the camera at a rate of 1,200 - 2,400 Hz down to a magnitude limit of ~12 mag
 - Applications:
 - FRBs (talk by Matthew Lundy tomorrow)
 - Direct measurement of stellar angular diameters by the VERITAS Cherenkov Telescopes (Nature <u>Astronomy, 3, 511 (2019)</u>
- VERITAS NSF-funded FADC upgrade
 - Continuous NSB monitoring of all pixels.
 - Capability:
 - Full FoV optical transients on timescales from μ s to 10s of seconds (mag. \sim 10 to \sim 19)

DUBLIN

VERITAS Optical Science: Stellar Intensity Interferometry

- group, improving hardware and analysis techniques, science targeting + lots of observations.

rotators, Limb darkening (post upgrade)

VERITAS Optical Science: LASERs from Space

- Optical SETI:
 - A Search for Brief Optical Flashes Associated with the SETI Target KIC 8462852 (Abeysekara et al., ApJ 818, 33 (2016))
 - Breakthrough Listen joint project
- **LIDAR Satellites**
 - e.g CALIPSO:
 - 20 ns pulses at 532 nm with pulse rate of 20 Hz (publicly) available calibrations of pulse intensity to 0.4%)
 - 700 km altitude
 - Detectable down to at least ~50 degrees elevation
 - Observable a few times per month. 1 minute exposures.
 - Applications:
 - Proof-of-principe for OSETI
 - Relative telescope efficiency
 - Optical performance
 - Time-dependent array efficiency
 - Cross-calibration with other IACTs

GEO: x_x=1.53 x_y=0.64.dta=1.54;4mgft=0.047;ardth=0.039;size=11275(15864 ices=0.15 ices:Deate=0.15 ices:Deate=

- VERITAS has a strong and varied science program in the gamma-ray and optical regimes.
- We are a relatively small consortium compared to others (with lots of data) and welcome collaboration...

VERITAS Poster Contributions at Gamma 2022:

Colin Adams	Search for Axion-like Particles
Ste O'Brien	Multiwavelengt
Olivier Hervet	Looking for a repeating
Dongguan Tak	Indirect Dark Matter Searches in VHE
Manel Errando	VERITAS observations

VERITAS Oral Contributions at Gamma 2022:

Nahee Park	Multiwavelength stud
Sonal R. Patel	VERITAS
Matthew Lundy	VERITAS Search for Gamr
Olivier Hervet	A multiwave
Manel Errando	An unbiased search for
Pedro Batista	Characterizing the V
Lucy Fortson	The Great January 2017 Fla

Summary

• VERITAS is operating well and has been recommended for the next cycle of NSF operations funding through 2025

with Observations of the Blazar Markarian 421 with VERITAS

th observations of the TV Blazar H 1426+428

flaring pattern in Mrk 421, from X-ray to gamma ray

Gamma Rays with Legacy VERITAS Dwarf Spheroidal Observations

s of TV blazars in the IXPE first-year observing plan

lies of Galatic PeVatron candidates with VERITAS

observations of gamma-ray binaries

ma-ray and Optical Counterparts to Fast Radio Bursts

elength look on the 2017 flare of OJ 287

[•] TV emission from high-frequency peaked BL Lacs

'HE emission of the extreme HBLs with VERITAS

are of NGC 1275: VERITAS and Multiwavelength Resuls

VERITAS hybrid Summer Collaboration Meeting 2022 at DESY (Zeuthen)

Gamma 2022 - VERITAS Highlights - Quinn

