

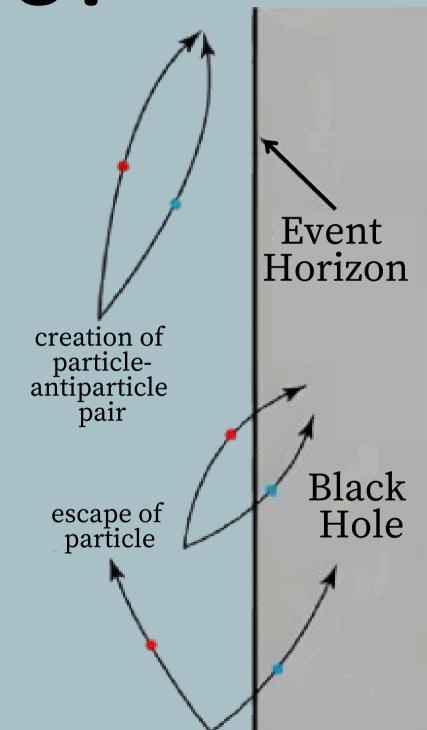
Mickael Komendyak

Ph.D in Physics

Motivation

- Understand Quantum Gravity
- Understand the last stages of life of BHs
- Solve the BH Information Paradox

Plan of the talk


- BH Information Paradox
- JT Gravity in AdS
- Correlator beyond the leading order

Information Paradox

- Tension between GR and QM
- Quantum evolution reversible => quantum information is conserved
- BH fully characterized by M, L, and Q (no-hair theorem)
 - => looks the same regardless of what fell in

Information escape?

- Quantum Field in BH background
- BH radiates particles
- Two-point correlation functions $\sim e^{-t}$
 - -> information is lost

What Went Wrong?

- Assumed a classical BH background -> QFT in curved space time
- Did not sum over metrics -> no Quantum Gravity
- Did not even account for back-reaction

Quantum Gravity in 1+1d

- Simpler model to work with
- Einstein action is topological => no propagating gravitational degree of freedom
- Need to modify Einstein gravity

Scalar Gravity

• JT action:
$$-\frac{1}{16\pi G_N} \int_{\mathcal{M}} \sqrt{g} \, \phi \left(R - 2\Lambda \right) - \frac{1}{8\pi G_N} \oint_{\partial \mathcal{M}} \sqrt{h} \, \phi(K - 1)$$

•
$$\frac{\delta S_{
m JT}}{\delta \phi}=0$$
 -> Fixing the metric: $R-2\Lambda=0$

•
$$\frac{\delta S_{
m JT}}{\delta g_{\mu\nu}}=0$$
 -> e.o.m of dilaton: $\nabla_{\mu}\nabla_{\nu}\phi-g_{\mu\nu}\nabla^{2}\phi+\Lambda\,g_{\mu\nu}\,\phi=0$

Einstein vs JT

	Einstein	JT
Eqs	$R_{\mu u}-rac{1}{2}Rg_{\mu u}+\Lambdag_{\mu u}=8\pi GT_{\mu u}$	$ abla_{\mu} abla_{ u}\phi-g_{\mu u} abla^2\phi+\Lambdag_{\mu u}\phi=8\pi G_NT_{\mu u}$ $R-2\Lambda=0$
d.o.f.	$g_{\mu u}$	ϕ

Ads JT Gravity

- $\Lambda = -1$ -> Anti-de Sitter space
- Solution of dilaton e.o.m: $\phi(Z) = \frac{a}{2Z}$
- Regularize by cutting out the space time at $Z = \varepsilon$
- Boundary curve parameterized by:

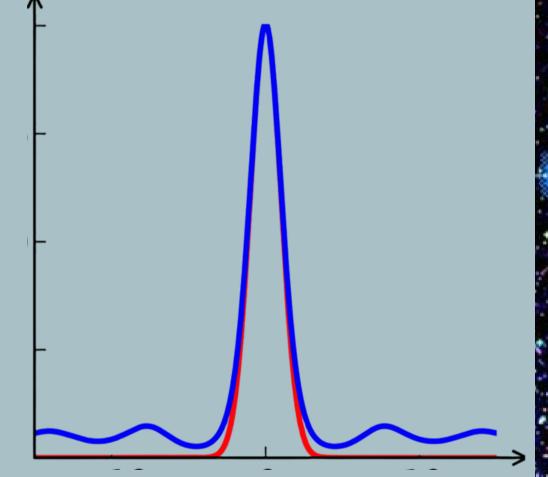
$$(T = F(t), Z = \varepsilon F'(t))$$

Quantum Gravity

- Different cut outs of AdS => different manifolds with boundary
- Parameterize different boundaries by changing F(t)
- In AdS, fluctuation of F(t) given by the Schwarzian action: $S = -\frac{1}{\lambda^2} \int dt \ \{F, t\}$

BH Correlator

- BH frame: $F(\tau) \equiv \tan \frac{\pi}{\beta} f(\tau)$
- Gravity Correlator => sum over manifolds
- Integrate AdS correlator over $f(\tau)$ using the Schwarzian


action:
$$\langle G_{ au_0, au}
angle_f = \int G_{ au_0, au} e^{-rac{1}{\lambda^2}S[f]} \mathcal{D}f$$

• Euclidean time au

Laplace's Method

- Integrals of the type $I(x) = \int_a^b f(t)e^{x\phi(t)} dt$
- ullet As $x o\infty$, main contribution comes from global maximum t^*
- Asymptotic expansion about maximum:

$$I(x) \sim f(t^*) e^{x\phi(t^*)} \sqrt{rac{2\pi}{-x\phi''(t^*)}} \left[1 + rac{C_1}{x} + rac{C_2}{x^2} + \mathcal{O}(x^{-3})
ight] .$$

Correlator Asymptotics

- Large $x \Rightarrow \text{small } \lambda$
- Expand action around classical solution: $f(\tau) = \tau + \lambda \gamma(\tau)$
- For large t, we get:

$$\langle G_{t_0,t}
angle_{\gamma} \sim e^{rac{\pi}{\lambda}} \sqrt{rac{1}{\det S''[\phi_0]}} \left(f_0(z)e^{-t} + f_2(z)t^2e^{-t}\lambda^2 + f_4(z)t^2e^{2t}\lambda^4 + \mathcal{O}(\lambda^6)
ight)$$

Backreaction?

- Partition function is one loop exact -> complete understanding of the vacuum
- Correlator loops vanish at order n=2 only
- Is backreaction important at orders $n \geq 4$?

Outlook

- Can information be extracted from the divergent part of the asymptotic series? -> Resurgence theory
- Other saddles?
- Backreaction?

Thanks for your attention