Improving Statistical Analyses in Particle Physics Phenomenology

B. Capdevila University of Barcelona, ICCUB

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

EXCELENCIA MARIA DE MAEZTU 2020-2023

In collaboration with:

A. Scaffidi; arXiv:250x.xxxx

- 1. Motivation: Basic Ideas in Particle Physics Phenomenology
- 2. Anomaly Detection
- 3. Anomaly Detection with VAEs
- 4. Outlook and Continued Research

Basic Ideas in Particle Physics Phenomenology

Standard Model of Elementary Particles

The LHC Era of Particle Physics

- \Rightarrow We explore this theory (and potentially others) using **Particle Colliders**
- ⇒ The current era of Particle Physics is shaped significantly by the LHC, the world's largest and most powerful collider ever built
- \Rightarrow Several other colliders and accelerators are operational, fulfilling more specialised roles
 - \Rightarrow SuperKEKB (Belle / Belle II)
 - \Rightarrow The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory
 - $\Rightarrow\,$ Many others, including dedicated accelerator experiments, beam experiments, \ldots

The Higgs Boson Discovery

CMS, CMS-PAS-HIG-17-015

 \Rightarrow The discovery of the **Higgs boson** in 2012 stands as the crowning achievement of the LHC era

- \Rightarrow We usually say that this discovery marked the completion of the Standard Model, but did it?
 - $\Rightarrow\,$ The precise nature of the Higgs boson remains an open question
 - $\Rightarrow\,$ With a large portion of the Higgs potential parameter space still unexplored

The Current Paradigm

$$\begin{aligned} \mathcal{L}_{\rm SM} &= i \left(\overline{\ell}_L \not D \ell_L + \overline{e}_R \not D e_R + \overline{Q}_L \not D Q_L + \overline{u}_R \not D u_R + \overline{d}_R \not D d_R \right) \\ &- \frac{1}{4} G^A_{\mu\nu} G^{A\mu\nu} - \frac{1}{4} W^I_{\mu\nu} W^{I\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \\ &+ \left(D_\mu \phi \right)^\dagger \left(D^\mu \phi \right) - \mu^2 \phi^\dagger \phi - \lambda \left(\phi^\dagger \phi \right)^2 \\ &- \left(\overline{\ell}_L Y^\ell \phi e_R + \overline{Q}_L Y^u \epsilon \phi^* u_R + \overline{Q}_L Y^d \phi d_R + \text{h.c.} \right) \end{aligned}$$

 \Rightarrow The Standard Model is arguably the *most successful* theory of fundamental physics

- \Rightarrow However, it is clear that it remains incomplete ...
 - \Rightarrow Gravity, Dark Matter, and Dark Energy are not accounted for within the SM
 - ... and it presents several unresolved questions, often referred to as *problems* or *puzzles*:
 - \Rightarrow Hierarchy Problem: stabilising the Higgs boson requires large cancellations of quantum corrections
 - \Rightarrow Strong CP Problem: the CP-violating term $\mathcal{L}_{SM} \supset \theta \frac{g_s^2}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu}$ allowed, yet experimentally $\theta \sim 0$
 - \Rightarrow Flavour Puzzle: why are three **three families** of **quarks** and **leptons**?
 - \Rightarrow Neutrino masses: not incorporated in the SM
 - \Rightarrow Baryon Asymmetry Problem: the CP-violation present in \mathcal{L}_{SM} is insufficient to explain the observed matter-antimatter asymmetry

 $\Rightarrow \dots$

Towards a Deeper Understanding of the SM and Beyond

Ĺ

$$\begin{aligned} \mathcal{F}_{\text{BSM}} \supset i \left(\overline{\ell}_L \not \!\!\!D \ell_L + \overline{e}_R \not \!\!\!D e_R + \overline{Q}_L \not \!\!\!D Q_L + \overline{u}_R \not \!\!\!D u_R + \overline{d}_R \not \!\!\!D d_R \right) \\ &- \frac{1}{4} G^A_{\mu\nu} G^{A\mu\nu} - \frac{1}{4} W^I_{\mu\nu} W^{I\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \\ &+ \left(D_\mu \phi \right)^\dagger \left(D^\mu \phi \right) - \mu^2 \phi^\dagger \phi - \lambda \left(\phi^\dagger \phi \right)^2 \\ &- \left(\overline{\ell}_L Y^\ell \phi e_R + \overline{Q}_L Y^u \epsilon \phi^* u_R + \overline{Q}_L Y^d \phi d_R + \text{h.c.} \right) + \dots \end{aligned}$$

- ⇒ Despite the many indications of potential shortcomings in the SM, no conclusive evidence against it has been found in current data
- \Rightarrow The unresolved puzzles and missing elements necessitate further investigation
 - \Rightarrow Mathematical approach: Quantum Gravity, extended symmetries (model building), formal QFT, ...
 - ⇒ Phenomenological approach: understanding how data aligns with the SM (anomaly detection), refining SM predictions, exploring extended symmetries (model building), determining SM fundamental parameters, ...

Determinations of V_{cb} and V_{ub}

BC, Gambino, Nandi; JHEP 04 (2021) 137 [arXiv:2102.03343] Bordone, BC, Gambino; Phys. Lett. B 822 (2021) 136679 [arXiv:2107.00604]

 \Rightarrow V_{ub} and V_{cb} are two elements of the **CKM matrix** that governs quark-level transitions

 \Rightarrow These elements arise from the diagonalisation of the *quark mass matrix*

$$u_L^i \to U_u^{ij} u_L^j, \quad d_L^i \to U_d^{ij} d_L^j, \quad V_{\rm CKM} = U_u^\dagger U_d$$

Winter Meeting '25, 02/04/2025

Anomaly Detection and Characterisation

Anomaly Detection

- \Rightarrow The term **anomaly** has different meanings in the context of Particle Physics
- \Rightarrow In QFT, an anomaly is a symmetry of the classical theory that is broken by quantum corrections
- ⇒ In the context of *phenomenology*, anomalies refer to **deviations** between **experimental data** and **theoretical predictions** under a given **null hypothesis**
- \Rightarrow Goal: to *properly* quantify the statistical significance of observed anomalies

Recent Anomalies in Particle Physics

- \Rightarrow B-meson¹ anomalies $(b \rightarrow s\ell^+\ell^-, b \rightarrow c\ell\nu)$
- $\Rightarrow (g-2)_{\mu}$
- $\Rightarrow V_{cb}, V_{ub}$ puzzle
- \Rightarrow ...

¹A B-meson is a b-quark and a light-quark bound state, i.e. B^0 ($\bar{b}d$), B^+ ($\bar{b}u$), B_s ($\bar{b}s$), B_c ($\bar{b}c$), ...

Winter Meeting '25, 02/04/2025

Traditional Frequentist Analyses

 \Rightarrow In **conventional analyses**, Gaussian likelihoods are assumed

$$p(\boldsymbol{x}|H_i) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{x}_{H_i}, \boldsymbol{\Lambda}_{H_i}) = \frac{1}{\sqrt{(2\pi)^n |\boldsymbol{\Lambda}_{H_i}|}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}_{H_i})^T \boldsymbol{\Lambda}_{H_i}^{-1}(\boldsymbol{x} - \boldsymbol{x}_{H_i})\right)$$

 $\Rightarrow \Lambda_{H_i}$ is the sum of theoretical and experimental covariances

$$oldsymbol{\Lambda}_{H_i} = oldsymbol{\Lambda}_{H_i}^{ ext{th}} + oldsymbol{\Lambda}^{ ext{exp}}$$

- \Rightarrow Measuring goodness-of-fit
 - \Rightarrow Use $-\log p(\boldsymbol{x}|H_i)$ as a statistic to measure agreement between data and hypothesis H_i
 - ⇒ If theoretical predictions and experimental data are normally distributed, $-\log p(\boldsymbol{x}|H_i)$ follows a χ^2 -distribution with $n_{dof} = n_{obs}$ in the analysis
 - ⇒ If not normally distributed, $-\log p(\boldsymbol{x}|H_i)$ is only asymptotically χ^2 due to the central limit theorem
 - \Rightarrow Assuming χ^2 -distribution when it is not creates biases in calculating *p*-values from $-\log p(\mathbf{x}_{exp}|H_i)$

Experimental Data in Phenomenological Analyses

 \Rightarrow Experimental data:

- \Rightarrow Released from the experiments as a vector of means μ^{exp} and a covariance matrix Λ^{exp}
- \Rightarrow Implicitly assumes a Gaussian distribution for the experimental measurements

$$p(\boldsymbol{x}^{\mathrm{exp}}) = \mathcal{N}(\boldsymbol{x}^{\mathrm{exp}}; \boldsymbol{\mu}^{\mathrm{exp}}, \boldsymbol{\Lambda}^{\mathrm{exp}})$$

$4.0 < q^2 < 6.0 { m GeV}^2 / c^4$		$F_{ m L}$	P_1	P_2	P_3	P'_4	P'_5	P'_6	P'_8	
P_1	$0.088 \pm 0.235 \pm 0.029$	$F_{ m L}$	1.00	0.04	0.05	-0.10	-0.04	-0.14	-0.17	0.14
P_2	$0.105 \pm 0.068 \pm 0.009$	P_1		1.00	0.06	0.07	-0.06	-0.10	-0.03	0.02
P_3	$-0.090\pm0.139\pm0.006$	P_2			1.00	-0.02	-0.14	-0.09	-0.03	-0.01
P'_4	$-0.312\pm0.115\pm0.013$	P_3				1.00	-0.01	0.07	0.19	-0.01
P'_5	$-0.439 \pm 0.111 \pm 0.036$	P'_4					1.00	0.02	0.04	0.01
P'_6	$-0.293 \pm 0.117 \pm 0.004$	P'_5						1.00	0.09	0.00
P'_8	$0.166 \pm 0.127 \pm 0.004$	P'_6							1.00	0.02
		P'_8								1.00

LHCb, arXiv:2003.04831

Theoretical Predictions in Phenomenological Analyses

- \Rightarrow Theoretical predictions
 - ⇒ For the observables in the analysis $\boldsymbol{x} = (x_1, \ldots, x_n)$, we have functions representing their theoretical predictions in terms of several input parameters $\boldsymbol{\nu} = (\nu_1, \ldots, \nu_m)$

$$x_i = x_i(\nu_1, \ldots, \nu_m)$$

 \Rightarrow The **input parameters** are distributed according to some distribution, usually Gaussian

 $oldsymbol{
u}\sim\mathcal{N}(oldsymbol{
u};oldsymbol{\mu}_
u,oldsymbol{\Lambda}_
u)$

where μ_{ν} and Λ_{ν} means and covariance of the distribution of underlying parameters

- \Rightarrow Implications
 - \Rightarrow Even if the distribution of parameters is Gaussian, observables with complex structures **do not distribute normally**
 - \Rightarrow Only observables with a linear dependence on the underlying parameters
 - \Rightarrow The likelihood $p(\mathbf{x}|H_i)$ will generally be distributed under a non-Gaussian distribution

Distribution of $-\log p(\boldsymbol{x}|H_i)$ vs Asymptotic χ^2

- ⇒ Using samples $x_{\text{SM}}^{(s)}$ of SM predictions for the $b \to s\ell\ell$ observables dataset, we calculated $-\log p(\boldsymbol{x}|H_0)$ for each sample ⇒ log-likelihood distribution
- ⇒ Sizeable difference between the $-\log p(\boldsymbol{x}|H_i)$ and the asymptotic χ^2 distribution with corresponding degrees of freedom

Estimating Likelihoods with Full Generality

- \Rightarrow Goal: determine the full likelihood $p(\mathbf{x}|H_i) = p(\mathbf{x})$ without introducing bias
- \Rightarrow Known: distribution of underlying inputs $p(\nu)$ (model parameters)
- ⇒ Computable: $p(x|\nu)$, achievable by simulating observables x using sampled parameters ν from their known distributions
- \Rightarrow Explicitly calculate $p(\mathbf{x})$ as a marginal likelihood

$$p(\boldsymbol{x}) = \int d\boldsymbol{\nu} \; p(\boldsymbol{x}|\boldsymbol{\nu}) p(\boldsymbol{\nu})$$

- \Rightarrow The **curse of dimensionality**: in most real-life applications ν is usually high-dimensional
- ⇒ Challenge: a direct computation the $d\nu$ integral is generally intractable or computationally very expensive
- \Rightarrow Using Machine Learning techniques to learn the full likelihood function
 - \Rightarrow Using Normalising Flows to encode the densities $p(x_i|H_0)$
 - ⇒ Variational Autoencoders (VAEs) provide a feasible approach to approximate p(x) with arbitrary precision

Anomaly Detection with VAEs

Introducing Variational Autoencoders

\Rightarrow VAE framework

- \Rightarrow Model: Pairs a probabilistic decoder $p_{\theta}(\boldsymbol{x}|\boldsymbol{z})$ with a probabilistic encoder $q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$
- \Rightarrow Latent variable *z* approximates underlying parameters ν
- \Rightarrow VAEs do not map inputs to a deterministic latent variable, but to a probability space p(z)
- $\Rightarrow \ \theta$: parameters of the decoder
- $\Rightarrow \phi$: parameters of the decoder

The Variational Lower Bound

 \Rightarrow The Variational Lower Bound (ELBO) relates to two joint probability density functions: p_{θ} and q_{ϕ}

$$\mathcal{L}(heta, \phi; oldsymbol{x}) = \mathbb{E}_{q_{\phi}(oldsymbol{z} \mid oldsymbol{x})} \left[\log rac{p_{ heta}(oldsymbol{x}, oldsymbol{z})}{q_{\phi}(oldsymbol{z} \mid oldsymbol{x})}
ight]$$

- $\Rightarrow p_{\theta}(\boldsymbol{x}, \boldsymbol{z})$: joint distribution of \boldsymbol{x} and \boldsymbol{z}
- $\Rightarrow q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$: approximate encoder posterior
- \Rightarrow Simplifies to

$$\mathcal{L}(\theta, \phi; \boldsymbol{x}) = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) \right] - D_{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p_{\theta}(\boldsymbol{z}))$$

 \Rightarrow Includes Kullback-Leibler divergence (KL-div) which is a distance in distribution space

$$D_{KL}(q_{\phi}(w)||p_{\theta}(w)) = \mathbb{E}_{q_{\phi}(w)} \left[\log \frac{q_{\phi}(w)}{p_{\theta}(w)} \right]$$

- $\Rightarrow\,$ ELBO and VAE objective function
 - \Rightarrow Log-likelihood relation

$$\log p_{\theta}(\boldsymbol{x}) \geq \mathcal{L}(\theta, \phi; \boldsymbol{x})$$

 $\Rightarrow\,$ Maximize ELBO to approximate the true log-likelihood

Deep Learning Implementation of Variational Autoencoders

- \Rightarrow Implementation and parametrisation
 - \Rightarrow Neural Networks as parametrisers
 - $\Rightarrow p_{\theta}(\boldsymbol{x}|\boldsymbol{z})$ and $q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$ parameterised using deep neural networks

$$\theta = \{W_{l_1}, \dots, W_{l_L}, b_{l_1}, \dots, b_{l_L}\}$$
$$\phi = \{V_{l_1}, \dots, V_{l_L}, c_{l_1}, \dots, c_{l_L}\}$$

where W_l (V_l), b_l (c_l) are the weights and biases of the encoder (decoder) network

 \Rightarrow This setup enables the modeling of complex, non-linear relationships between observed data and latent variables

Training the VAE with Theoretical and Experimental Inputs

- \Rightarrow Generating Theoretical Predictions
 - \Rightarrow Start by sampling the distribution of underlying inputs under hypothesis H_0 , $p(\boldsymbol{\nu}|H_0)$
 - ⇒ Compute the vector of observables x^s for these values to obtain a sample of theoretical predictions: $x^s = (x^1, \dots, x^{n_{\text{sample}}})$
- \Rightarrow Incorporating Experimental Uncertainties
 - \Rightarrow Smear the samples with experimental uncertainties to simulate realistic observational data

$$x^{\prime s} = x^s + L_{{f \Lambda}^{
m exp}} w$$

- $\Rightarrow L_{\Lambda^{exp}}$: Cholesky decomposition of the experimental covariance matrix Λ^{exp}
- $\Rightarrow w \sim \mathcal{N}(w; \mathbf{0}, \mathbf{1})$: Normal noise vector simulating experimental noise
- \Rightarrow Training the VAE
 - \Rightarrow Divide the smeared dataset into training and testing datasets
 - \Rightarrow Use the training dataset to **optimise the parameters** of the VAE, **minimising** the -ELBO

$$\mathcal{L}(\theta, \phi; \boldsymbol{x}) = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) \right] - \frac{\beta D_{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p_{\theta}(\boldsymbol{z}))$$

 \Rightarrow Objective: approximate the full log-likelihood distribution of the observables under H_0 as closely as possible

Statistical Analysis Using Trained VAE for $b\to s\ell^+\ell^-$

- \Rightarrow Analysing the test dataset
 - \Rightarrow Compute the -ELBO distribution using the test dataset, approximating the full -log-likelihood under hypothesis H_0 .
 - $\Rightarrow\,$ Evaluate -ELBO for the experimental data to compute the p-value
- \Rightarrow Preliminary results for the $b \rightarrow s\ell\ell$ dataset

Outlook

Outlook and Continued Research

- $\Rightarrow\,$ Deepening understanding of VAE parameters
 - \Rightarrow Exploring how different parameters influence the anomaly score and VAE's generative properties
- \Rightarrow Ongoing hyperparameter optimisation
 - \Rightarrow Continuously refining the model to enhance its predictive accuracy and anomaly detection
- \Rightarrow Addressing sparse covariance matrices
 - ⇒ Using random matrix theory techniques to sample observables and covariance matrices at the same time (LKJ distribution, Wishart distribution)
 - \Rightarrow Will allow us to quantify the uncertainty attached to many unnatural zeros in the experimental covariance matrix
- \Rightarrow Expanding application scope
 - \Rightarrow Applying methodologies to SMEFT fits beyond $b \rightarrow s\ell\ell$

Thank You!

Backup Slides

Dual-Branch VAE Architecture

Refining Model Tuning and Validity in VAE Training

- ► Challenges in Model Tuning
 - ⇒ How do we determine the optimal dimensionality for the DNNs of the encoder and decoder, or the correct value of β ?
 - \Rightarrow Could these choices bias the *p*-value?
 - \Rightarrow The choice of neural networks' architecture and β significantly affects the model's performance and the fidelity of the statistical results
- ▶ Testing and Validating Model Parameters
 - \Rightarrow Ongoing research and empirical testing are essential to optimise these parameters while minimising biases
- ▶ Strategies for Validation and Hyperparameter Optimisation
 - \Rightarrow Employ validation techniques to ensure model outputs are stable and reliable across various parameter configurations
 - \Rightarrow Use synthetic datasets to evaluate the impact of hyperparameter adjustments on model performance

Optimising Hyperparameters

- ▶ Generating artificially anomalous data
 - $\Rightarrow\,$ Used to train the VAE across different configurations to optimise anomaly detection
- $\blacktriangleright\,$ Tuning β in the ELBO
 - $\Rightarrow\,$ Exploring the impact of β on anomaly detection and VAE's generative accuracy
- \blacktriangleright Pre-experimental blind analysis
 - $\Rightarrow\,$ Ensures that the final measurement of experimental data is unbiased

