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Basic Ideas in Particle Physics Phenomenology
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Standard Model of Elementary Particles

three generations of matter interactions / force carriers
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The LHC Era of Particle Physics

North Area
GIF++

205}
CENF
@ ALICE LHCb @

i)

ELENA
ISOLDE
BOOSTER =

m

REXHIE o
IRRAD/CHARM
L]

CTF3
- Em

= We explore this theory (and potentially others) using Particle Colliders
= The current era of Particle Physics is shaped significantly by the LHC, the world’s largest and
most powerful collider ever built
= Several other colliders and accelerators are operational, fulfilling more specialised roles
= SuperKEKB (Belle / Belle II)

= The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory
= Many others, including dedicated accelerator experiments, beam experiments, ...
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B.

The Higgs Boson Discovery
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= The discovery of the Higgs boson in 2012 stands as the crowning achievement of the LHC era

= We usually say that this discovery marked the completion of the Standard Model, but did it?

= The precise nature of the Higgs boson remains an open question

= With a large portion of the Higgs potential parameter space still unexplored
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The Current Paradigm
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= The Standard Model is arguably the most successful theory of fundamental physics
= However, it is clear that it remains incomplete . ..
= Gravity, Dark Matter, and Dark Energy are not accounted for within the SM
. and it presents several unresolved questions, often referred to as problems or puzzles:

= Hierarchy Problem: stabilising the Higgs boson requires large cancellations of quantum

corrections
g2

32 2
Flavour Puzzle: why are there three families of quarks and leptons?
Neutrino masses: not incorporated in the SM

Baryon Asymmetry Problem: the CP-violation present in Lg) is insufficient to explain the observed
matter-antimatter asymmetry

Strong CP Problem: the CP-violating term Lgp D 0 —"+ G;“,G‘“’ allowed, yet experimentally 6 ~ 0

Pyl
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Towards a Deeper Understanding of the SM and Beyond
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= Despite the many indications of potential shortcomings in the SM, no conclusive evidence
against it has been found in current data

= The unresolved puzzles and missing elements necessitate further investigation

= Mathematical approach: Quantum Gravity, extended symmetries (model building),
formal QFT, ...

= Phenomenological approach: understanding how data aligns with the SM (anomaly detection),
refining SM predictions, exploring extended symmetries (model building), determining SM
fundamental parameters, ...
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B.

Determinations of V., and V,
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= Vup and V; are two elements of the CKIM matrix that governs quark-level transitions
= These elements arise from the diagonalisation of the quark mass matriz
di — Udijd]i, VCKM = UJ Ud
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Anomaly Detection and Characterisation
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Anomaly Detection
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Anomalies in Particle Physics

= The term anomaly has different meanings in the context of Particle Physics
= In QFT, an anomaly is a symmetry of the classical theory that is broken by quantum corrections

= In the context of phenomenology, anomalies refer to deviations between experimental data and
theoretical predictions under a given null hypothesis

= Goal: to properly quantify the statistical significance of observed anomalies
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Recent Anomalies in Particle Physics
= B-meson' anomalies (b — s¢T¢7, b — clv)

= (9—2)u

= Vb, Vup puzzle
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LA B-meson is a b-quark and a light-quark bound state, i.e. B® (bd), BT (bu), B. (bs), B. (be), ...
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Traditional Frequentist Analyses

= In conventional analyses, Gaussian likelihoods are assumed

=
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= Measuring goodness-of-fit

=
=

=
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Use —logp(x|H;) as a statistic to measure agreement between data and hypothesis H;

If theoretical predictions and experimental data are normally distributed, — log p(x|H;)
follows a y2-distribution with nqef = nops in the analysis

If not normally distributed, — log p(x|H;) is only asymptotically x2 due to the central limit
theorem

Assuming x2-distribution when it is not creates biases in calculating p-values from — log p(@exp|H;)
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Experimental Data in Phenomenological Analyses

= Experimental data:

= Released from the experiments as a vector of means ;P and a covariance matrix A®*P

= Implicitly assumes a Gaussian distribution for the experimental measurements
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Theoretical Predictions in Phenomenological Analyses

= Theoretical predictions

= For the observables in the analysis @ = (z1,..., 2y ), we have functions representing their theoretical
predictions in terms of several input parameters v = (v1,...,vm)
T; = xi(l/lv s :Vm)

= The input parameters are distributed according to some distribution, usually Gaussian
v NN(”%ILINAV)

where p,, and A, means and covariance of the distribution of underlying parameters

= Implications
= Even if the distribution of parameters is Gaussian, observables with complex structures do not
distribute normally
= Only observables with a linear dependence on the underlying parameters
= The likelihood p(x|H;) will generally be distributed under a non-Gaussian distribution
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Distribution of — log p(x|H;) vs Asymptotic x?

= Using samples 28 of SM predictions for the b — s¢f observables dataset, we calculated

SM
—log p(x|Ho) for each sample = log-likelihood distribution
= Sizeable difference between the —log p(a|H;) and the asymptotic x? distribution with

corresponding degrees of freedom
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Estimating Likelihoods with Full Generality

= Goal: determine the full likelihood p(x|H;) = p(x) without introducing bias
= Known: distribution of underlying inputs p(v) (model parameters)

= Computable: p(x|v), achievable by simulating observables @ using sampled parameters v from
their known distributions

= Explicitly calculate p(x) as a marginal likelihood

p(@) = / dv p(a|)p(v)

= The curse of dimensionality: in most real-life applications v is usually high-dimensional
= Challenge: a direct computation the dv integral is generally intractable or computationally very
expensive

= Using Machine Learning techniques to learn the full likelihood function

= Using Normalising Flows to encode the densities p(z;|Ho)
= Variational Autoencoders (VAEs) provide a feasible approach to approximate p(z) with arbitrary
precision
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Anomaly Detection with VAEs
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Introducing Variational Autoencoders
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= Model: Pairs a probabilistic decoder pg(x|z) with a probabilistic encoder gy (z|x)

Latent variable z approximates underlying parameters v

VAEs do not map inputs to a deterministic latent variable, but to a probability space p(z)

=
=
= 0: parameters of the decoder
=

¢: parameters of the decoder

B. Capdevila

Winter Meeting ’25, 02/04/2025

16/25



The Variational Lower Bound

= The Variational Lower Bound (ELBO) relates to two joint probability density functions: ps and g4

L£(0,¢2) = Eq, (21 {logﬁ]

= pp(x, z): joint distribution of  and z
= q¢(z|x): approximate encoder posterior
= Simplifies to
L0, ¢;x) = By, (z]a) [log po(®|2)] — Drcr (a0 (2|)|po(2))

= Includes Kullback-Leibler divergence (KL-div) which is a distance in distribution space

Q¢(w):|
D =E,, (w) |1

K L(gs(w)]|[po(w)) e (w) [Og po(w)
= ELBO and VAE objective function

= Log-likelihood relation
log po(x) > L(0, ¢; )
= Maximize ELBO to approximate the true log-likelihood
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Deep Learning Implementation of Variational Autoencoders

= Implementation and parametrisation
= Neural Networks as parametrisers
= pe(x|z) and gy (z|x) parameterised using deep neural networks
O ={Wy,...,Wi, ,by,....,bi, }
o= {Vll,u-,VlL,Cll,...,ClL}
where W, (V}), by (¢;) are the weights and biases of the encoder (decoder) network

= This setup enables the modeling of complex, non-linear relationships between observed data and latent
variables
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Training the VAE with Theoretical and Experimental Inputs
= Generating Theoretical Predictions

= Start by sampling the distribution of underlying inputs under hypothesis Ho, p(v|Ho)
= Compute the vector of observables x® for these values to obtain a sample of theoretical predictions:
xS = (2121, R mnsample)
= Incorporating Experimental Uncertainties
= Smear the samples with experimental uncertainties to simulate realistic observational data
x's =2 —+ LAexp’w
= Lpexp: Cholesky decomposition of the experimental covariance matrix A°*P
= w ~ N(w;0,1): Normal noise vector simulating experimental noise
= Training the VAE

= Divide the smeared dataset into training and testing datasets
= Use the training dataset to optimise the parameters of the VAE, minimising the -ELBO

L0, ;) = By, (2]2) [logpo(z|2)] — BDk L (90 (2|2)|IPo(2))

= Objective: approximate the full log-likelihood distribution of the observables under Hy as
closely as possible
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Statistical Analysis Using Trained VAE for b — s¢*¢~

= Analysing the test dataset

= Compute the -ELBO distribution using the test dataset, approximating the full -log-likelihood under

hypothesis Hp.

= Evaluate -ELBO for the experimental data to compute the p-value

= Preliminary results for the b — sé¢ dataset
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Outlook
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Outlook and Continued Research

= Deepening understanding of VAE parameters

= Exploring how different parameters influence the anomaly score and VAE’s generative properties
= Ongoing hyperparameter optimisation
= Continuously refining the model to enhance its predictive accuracy and anomaly detection

= Addressing sparse covariance matrices

= Using random matrix theory techniques to sample observables and covariance matrices at the same
time (LKJ distribution, Wishart distribution)

= Will allow us to quantify the uncertainty attached to many unnatural zeros in the experimental
covariance matrix

= Expanding application scope
= Applying methodologies to SMEFT fits beyond b — st/
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Thank You!
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Dual-Branch VAE Architecture

= We need the VAE to estimate pg(z|z) = N (x; &, Ag) o
= We need two output branches: one for & and one for Az ‘

i
@)
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Refining Model Tuning and Validity in VAE Training

» Challenges in Model Tuning

= How do we determine the optimal dimensionality for the DNNs of the encoder and decoder, or the
correct value of 37

= Could these choices bias the p-value?

= The choice of neural networks’ architecture and /3 significantly affects the model’s performance and the
fidelity of the statistical results

» Testing and Validating Model Parameters

= Ongoing research and empirical testing are essential to optimise these parameters while minimising
biases

» Strategies for Validation and Hyperparameter Optimisation

= Employ validation techniques to ensure model outputs are stable and reliable across various parameter
configurations

= Use synthetic datasets to evaluate the impact of hyperparameter adjustments on model performance
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Optimising Hyperparameters

» Generating artificially anomalous data

= Used to train the VAE across different configurations to optimise anomaly detection
» Tuning g in the ELBO

= Exploring the impact of 5 on anomaly detection and VAE’s generative accuracy
» Pre-experimental blind analysis

= Ensures that the final measurement of experimental data is unbiased
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