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The Milky Way

Most recent artist’s impression of the Milky Way (credit: ESA/Gaia/DPAC, 
Stefan Payne-Wardenaar CC BY-SA 3.0 IGO or ESA standard License) 



Galactic bar

• Gaia data broadens our 
knowledge of the bar

• Size: 3-5 kpc

• Rotation frequency = Pattern 
speed: 30-50 1/Gyr (see a 
recent review of Hunt & 
Vasiliev 2025)

• Appears to be slowing down
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Galactic bar

• Gaia data broadens our 
knowledge of the bar

• Size: 3-5 kpc

• Rotation frequency = pattern 
speed: 30-50 1/Gyr (see a 
recent review of Hunt & 
Vasiliev 2025)

• Appears to be slowing down 
(Chiba, Friske & Schönrich 
2021)



Pattern speed of bars
• Bars slow down via dynamical friction in DM 

haloes (e.g. Sellwood & Weinberg 1980;  
Athanassoula 2003)

• Gas can stop or weaken the slowdown (e.g. 
Villa-Vargas et al. 2009, 2010; Athanassoula 
2014; Beane et al. 2023)  

Athanassoula (2003)
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Pattern speed and dark matter

Dark matter

Modified gravity

Ghafourian et al. (2020)



Tools of Galactic Dynamics
Classical:

Idealised N-body simulations, test 
particles, perturbation theory etc.

Pros:

-full control of the ingredients

-simplicity

Cons:

-real galaxies are never in a state of 
the assumed initial conditions
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Tools of Galactic Dynamics
Contemporary (last ~15 yrs):

Population of galaxies in cosmological 
simulations, zoom-ins

Cons:

-Lots of sub-grid assumptions for galaxy 
formation physics

-Control of the ingredients entangled  

Pros:

-Realism in complexity (real Universe is 
also a mess!)

-Statistics
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TNG50 simulations

www.tng-project.com

• Part of the IllustrisTNG 
suite (Pillepich et al. 2019; 
Nelson et al. 2019a,b)

•  cosmology

• Moving mesh hydro

• Subgrid model including: 
star formation, gas cooling, 
AGN & stellar feedback, 
magnetic fields …

ΛCDM

http://www.tng-project.com
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Pattern speed evolution of bars in 
TNG50

• N=62 barred galaxies

• Measurements with the 
recent code 
patternSpeed.py 
(Dehnen, Semczuk & 
Schönrich 2023)

Semczuk et al. (2024)



Takeaway points

• Bars that start at high  slow down more

• Maximum circular velocity scales the initial 
 

• AGN feedback blows up the gas, which 
can prevent the slowdown

Ωp

Ωp
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Sagittarius dwarf galaxy

Credit: V. Belokurov/SDSS

• Discovered as a progenitor of the Sagittarius stream by Ibata et al. 
(1994)

•



Sagittarius dwarf galaxy
• Discovered as a progenitor of the Sagittarius stream by Ibata et al. 

(1994)

• Hypothesised to perturb the Milky Way disc (warp, spiral arms, 
corrugation, Gaia phase spiral, star formation episodes …)

Purcell et al. (2011)
Antoja et al. (2018; 2023)



Sagittarius-like interactions in TNG50

• Most work on Sag-MW 
interactions were done using 
the classical near-equilibrium 
tools

• Goal: check how 
cosmologically evolved discs 
react to Sag-like perturbations

Semczuk et al., in prep



Sagittarius-like interactions in TNG50

• Morphology and 
kinematics are often 
affected

• Little effect on the star 
formation rates

Semczuk et al., in prep



Summary

• Gaia allows us to study dynamics of the Milky 
Way under an extremely good “microscope”

• We learn more details on phenomena like bar 
slowdown and vertical perturbations of discs

• Models, theory, simulations have a lot of catching 
up to fully grasp these phenomena   

• AGN feedback blows up the gas, which can 
prevent the slowdown


