

Neutron number (N)

Unveiling the shapes of the atomic nucleus Authors: Dorian Frycz, Javier Menéndez and Arnau Rios Winter meeting 2025

The atomic nucleus

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Atomic nucleus: self-bound system of neutrons (N) and protons (Z):

- Bound by **strong force** (short range)
- Coulomb repulsion (long range)
 - → Complex internal structure!
 Importance of nuclear physics:
- Beyond Standard model physics
- Nucleosynthesis
- Connection to heavy ion collisions
 - → Precise nuclear wavefunctions

What is nuclear deformation?

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

- **Collective** behavior of the nucleus Liquid drop model resemblance (Axial) quadrupole deformation: $R(\theta, \varphi) = R_0 \{1 + \beta_2 Y_{20}(\theta, \varphi)\}$
- $\beta = 0$: Spherical
- β>0: **Prolate** (elongated spheroid)
- $\beta < 0$: **Oblate** (flattened spheroid)
 - \rightarrow Larger β implies more deformation
- \rightarrow Typical values of $0.2 < \beta < 0.3$

What types of deformation?

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Most nuclei are deformed:

- Prolate over oblate dominance
- Spherical: magic numbers $\rightarrow Z(N)=2,8,20,28,50,82...$
 - \rightarrow Especially bound nuclei

DEFORMATION RELEVANCE FOR (OTHER) PHYSICAL FIELDS

Neutrinoless double beta decay

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Beyond standard model process: ${}^{A}_{Z}X \rightarrow {}^{A}_{Z+2}Y + 2e^{-} + 2\tilde{\nu}_{e}$

- Are neutrinos its own antiparticle?
- Matter-antimatter asymmetry
- Connection to neutrino mass: $(T^{0\nu\beta\beta}_{1/2})^{-1}\propto M^2_{0\nu}\langle m_\nu\rangle^2$
- Nuclear matrix elements (M_{0u}): $M_{0
 u} = \langle f | \hat{O}_{0
 uetaeta} | i
 angle$
 - \rightarrow Depends on initial (i) and final (f) nuclear wavefunction **overlap**

Neutrinoless double beta decay

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Connection to **deformation**:

 Different shapes → different nuclear wavefunctions

If $M_{0\nu}$ is proportional to the overlap:

- Similar deformation enhance $M_{0\nu}$
- **Different** deformation supress $M_{0\nu}$
- Largest value for both **spherical** → Crucial to find easiest nuclei
- Same operators as in β -decay
 - \rightarrow Similar correlation is expected

T. R. Rodríguez and G. Martínez Pinedo, Phys. Rev. Lett. 105, 252503 (2010)

04/02/2025

ICCUB Winter Meeting 2025

7

Nucleosynthesis

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Relative abundance of nuclei in Universe

- Light nuclei (Z<4) form at the beginning
- Stars fuse nuclei until iron (Z<26)
- How do heavier nuclei form?

04/02/2025

Nucleosynthesis

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

r(apid neutron capture)-process

- Neutron star mergers
- Faster neutron captures than β-decay
- Very heavy and **neutron rich** nuclei
- Exact path depends on masses

Arcones, A., Thielemann, FK. Astron Astrophys Rev 31, 1

Neutron drip line

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

- How many neutrons can a nucleus capture before neutron emission?
 → Neutron drip line
- Deformed shapes allow for more neutrons than spherical
- Magic numbers delay r-processes:
 → Larger abundances
- Some magic numbers shift in neutron-rich nuclei
 - \rightarrow Knowledge of nuclear interactions

Arcones, A., Thielemann, FK. Astron Astrophys Rev 31, 1

04/02/2025

HOW DO WE MEASURE DEFORMATION?

Nuclear spectroscopy

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Rotation of deformed shapes:

- (Quantum) Rigid rotor: $E_{\rm rot} = \frac{\vec{L}^2}{2\mathcal{I}} \rightarrow \frac{J(J+1)}{2\mathcal{I}}$
- J: total angular momentum
- J sequence: 0⁺, 2⁺, 4⁺, 6⁺...
- In-band electromagnetic decays Measurements:
- Probability of decay to a given state $B(E2) \rightarrow \beta$
- Quadrupole moment: $Q=r^2Y_{20} \rightarrow \beta$

I+2 \rightarrow I: E2 γ transitions

04/02/2025

Heavy ion collisions

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

New method of **imaging** the nucleus shape:

- LHC heavy ion data
- **Tip-tip**: collisions along symmetry axis
- **Body-body**: orthogonal axes
 - → Shape is related to **overlap** Quark-gluon plasma evolution
 - \rightarrow hydrodynamics
- Measurement of particle shower • STAR Collaboration, Nature 635, 67-72 (2024).

04/02/2025

13

THEORETICAL DESCRIPTION OF DEFORMATION

The many-body problem

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Schrödinger equation: $\mathbf{E}\Psi = \mathbf{H}\Psi$

Nuclear shell model:

- Harmonic oscillator basis
 Nuclear interactions:
- Phenomenological nucleon scattering
- *ab-initio* interactions: χEFT

Valence space: active particles

→ Diagonalization of $10^9 x 10^9$ or larger matrices in valence space

Deformation in the sd shell

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

sd shell: from $\rm N(Z){=}8$ to $\rm N(Z){=}20$

- Quick evolution of shapes
- Axial: prolate (0°) / oblate (60°)
- Triaxial: $0^{\circ} < \gamma < 60^{\circ}$

Even-even N=Z nuclei:

- ¹⁶O: spherical
- ²⁰Ne: prolate
- ²⁴Mg: triaxial
- ²⁸Si: oblate

Shape coexistence in ²⁸Si

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Three shapes coexisting:

- Oblate rotational band (ground state)
- Prolate rotational band (~7 MeV)
- Superdeformation (E~20 MeV)

D. Frycz, et al. Phys. Rev. C 110, 054326 (2024)

04/02/2025

Conclusions

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

0.2

126

0.6

184

v (deg)

30

24 Ma

0.6

В

²⁰Ne

\15

0.8

Deformation is everywhere:

- Quadrupole axial dominance
- Affects β and $0\nu\beta\beta$ decays
- Impact on nucleosynthesis • Measurement of deformation
- Spectroscopy
- Heavy ion collisions

Complexity of deformation:

- Rapid shape evolution
- Shape coexistence

04/02/2025

THANK YOU!!! FEEL FREE TO ASK :)

04/02/2025

Shape coexistence in ⁴⁰Ca

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Three shapes coexisting:

- Spherical ground state
- Prolate normal deformed
- Superdeformed band

Subtleties:

- Spherical: $\beta \neq 0, 0^{\circ} < \gamma < 60^{\circ}$
- ND: large fluctuations
- SD: most pure one

04/02/2025

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Nucleus surface:

 $Y(\theta,\varphi) = R_0 \left[1 + \sum_{\lambda\mu} \beta_\lambda Y_{\lambda\mu}(\theta,\varphi) \right]$

For quadrupole shapes:

 $Y(\theta,\varphi) = R_0 \{ 1 + \beta_2 [Y_{20}(\theta,\varphi)\cos\gamma + Y_{22}(\theta,\varphi)\sin\gamma] \}$

- β : magnitude of deformation
- $\gamma: {\rm type} \ {\rm of} \ {\rm deformation}$
- 0°: oblate / 60°: prolate

Triaxial: 0°<γ<60°

What types of deformation?

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Most nuclei are deformed:

- Octupole some regions
- Low 3⁻ states
- Strong B(E3) transitions

Most nuclei are deformed:

- Hexadecapole
- Somewhat abundant

What types of deformation?

Low deformation

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

04/02/2025

Traditional measuring methods

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Coulomb excitation

- Scattering with high Z nuclei
- Only Coulomb field involved
- Probability of exciting a state
- Measures $B(E2, J_i \rightarrow J_f) \rightarrow \beta$

Laser spectroscopy

- Laser beam probes atomic levels
- Hyperfine splitting and isotope shifts
- Better for exotic nuclei
- Measures $Q_{spec} \rightarrow \beta$

Deformation is everywhere

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Most nuclei are deformed

- Deformation \rightarrow correlations Quadrupole moment: $Q=r^2Y_{20}$
- Deviation from sphericity
- Q=0 spherical

04/02/2025

- |Q|>0 deformed

High energy collisions

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Shape coexistence in ²⁸Si

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Two shapes coexisting:

- Oblate rotational band
- Oblate vibration
- Prolate rotational band
- Superdeformation?

Challenges:

- Large fluctuations
- Weak B(E2) values

04/02/2025

Deformation is everywhere

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Most nuclei are deformed

Experimental measurements \rightarrow

- $\beta = 0$ spherical
- $|\beta| > 0$ deformed
- Hard to extract β from experiments
 Deformation: correlations
 → lower energy
- Magic numbers: 2,8,28,50,82...

New technique: heavy ions

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

collisions at low $\langle p_t \rangle$ (b)0 $\gamma = 0$ overlar $\gamma = 30^{\circ}$ time overlap overlap $\gamma = 60^{\circ}$ B. Bally, et al. Phys. Rev. Lett. 128, 082301 (2022)

New method of imaging the nucleus shape:

- Tip-tip collisions: along symmetry axis
- Body-body: along other axes
 - → Shape is related to overlap
 Quark-gluon plasma evolution
 → hydrodynamics
- Measurement of particle shower

STAR Collaboration, Nature 635, 67-72 (2024).

04/02/2025

What is nuclear deformation?

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Collective behavior of the nucleus

- Nucleus surface parametrization: $R(\theta,\varphi) = R_0 \left[1 + \sum_{\lambda\mu} \beta_\lambda Y_{\lambda\mu}(\theta,\varphi) \right]$
- $\beta = 0$: spherical

(Axial) quadrupole deformation: $R(\theta, \varphi) = R_0 \{1 + \beta_2 Y_{20}(\theta, \varphi)\}$

- β>0: Prolate (elongated spheroid)
- β<0: **Oblate** (flattened spheroid)

Higher multipoles $(\lambda > 2)$ are less likely

Heavy ion collisions

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Heavy ion collisions

time

ICCUB Winter Meeting 2025

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

New method of imaging the nucleus shape:

LHC heavy ion data

04/02/2025

- **Tip-tip**: collisions along symmetry axis
- Body-body: orthogonal axes

 → Shape is related to overlap
 Quark-gluon plasma evolution
 → hydrodynamics
- Measurement of particle shower STAR Collaboration, Nature 635, 67-72 (2024).

B. Bally, et al. Phys. Rev. Lett. 128, 082301 (2022)

32