Hadron Spectroscopy and Finite Energy Sum Rules

NADINE HAMMOUD

Institute of Cosmos Sciences of the University of Barcelona ICCUB Winter Meeting 2025

February 4,2025

Matter: From Molecule to Quarks

All particles are composed of quarks and gluons.

Understanding the Building Blocks: Quarks and Gluons

- Quarks and gluons possess a "color charge", denoted by R, B, and G.
- Color-charged particles exchange gluons in strong nuclear interactions. In doing so, these color-charged particles are often "glued" together.

< □ > < □ > < □ > < □ > < □ > < □ >

Color-charged particles cannot be found individually. For this reason, the color-charge quarks are **confined** in groups (hadrons) with other quarks. These composites are color neutral i.e. $R\bar{R}$, $B\bar{B}$, etc.

Mesons in the Constituent Quark Model

Ordinary mesons are quark-antiquark bound states with defined J^{PC} quantum numbers.

Some combinations are forbidden, such as J^{PC} : 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, and so on..

《曰》《圖》《臣》《臣》

Exotic Mesons

Nature is much more than the **CQM**: QCD does not prohibit the existence of unconventional meson states such as hybrids (qqg), tetraquarks (qqqq) and glueballs.

A lot of exotic states observed experimentally, but their nature is still far from being understood

- Mesons are the simplest hadronic bound state: the ideal "laboratory" to study the interaction between quarks, to understand the role of gluon and the phenomenon of confinement.
- To perform such studies it's important to achieve a precise measurement of the meson spectrum, with determination of resonance masses and properties.
- The presence of states with manifest gluonic component (i.e. exotics) would be the opportunity to directly look inside hadron dynamics.

イロト イロト イヨト イヨト

Exotic Mesons: how to find them?

Facilities like GlueX at JLab, COMPASS at CERN, BESII/BESIII, etc. have searched and/or continue to search for exotic resonances using various reactions like:

- photoproduction (GlueX),
- πp scattering (COMPASS),
- e^+e^- annihilation (BES).

Jefferson Lab

JLab's dedicated experiments: GlueX (Hall D) and MesonEx (Hall B)

イロト イロト イヨト イヨト

(日)

$\eta\pi$ at COMPASS COMPASS PLB740 (2015)

イロト イロト イヨトイ

э

S-Matrix Theory

$$A(s,t) = \sum_{l} A_{l}(s)P_{l}(z_{s})$$

Analyticity

$$A_{l}(s) = \lim_{\epsilon \to 0} A_{l}(s+i\epsilon)$$

The S-matrix Theory

Build models based on:

- Analyticity
- Crossing Symmetry
- Unitarity
- Lorentz Symmetries
- Global Symmetries of QCD

イロト イポト イヨト イヨト

Low Energy Fit of P and D waves Rodas et al PRL122 (2019)

 $\pi_1(1400)$ vs $\pi_1(1600)$

イロト イロト イヨト イヨ

Low Energy Fit of P and D waves Rodas et al PRL122 (2019)

Poles	Mass (MeV)	Width (MeV)
$a_2(1320)$	$1306.0 \pm 0.8 \pm 1.3$	$114.4 \pm 1.6 \pm 0.0$
$a_{2}^{\tilde{i}}(1700)$	$1722\pm15\pm67$	$247\pm17\pm63$
π_1	$1564\pm24\pm86$	$492\pm54\pm102$

イロト イロト イヨト イヨ

$\eta\pi$ at COMPASS COMPASS PLB740 (2015)

イロト イロト イヨト イヨト

$\eta\pi$ at COMPASS

イロト イロト イヨト イヨト

$\eta\pi$ at COMPASS

New COMPASS Data

Mass of of both $\eta\pi$ and $\eta^{(\prime)}\pi$ systems vs $\cos\theta_{GJ}$ for full mass range and t $\in [-1, -0.1] \text{ GeV}^2$

New COMPASS Data

Mass of both $\eta\pi$ and $\eta^{(\prime)}\pi$ systems vs $\cos\theta_{GJ}$ for full mass range and t $\in [-1, -0.1]$ GeV² in Logarithmic scale

Finite Energy Sum rules

- Derived using Cauchy's theorem: $\oint_C A(s, t)ds = 0$:
- Connect low-energy and high-energy dynamics.
- Predict high-energy observables from low-energy data.
- Constrain low-energy models using high-energy results.

Finite Energy Sum rules

Summary: Why Study $\pi p \rightarrow \pi \eta p$?

- Available experimental data provided by COMPASS experiment.
- Theory:
 - Validate analytic consistency of scattering amplitudes via FESR.
 - Apply Regge theory to $\pi\eta$ and πp systems.
- Phenomenology:
 - Extract parameters for a_2, f_2, ρ Regge trajectories.
 - Explore dynamics of $\pi\eta$ production and exotic mesons.
- Applications:
 - Refine vertex models for double Regge exchange.
 - Reduce the uncertainty of the π_1 pole position studied in PRL 122, 042002 (2019).

イロト イポト イヨト イヨト

Beijing Electron Positron Collider (BEPC)

BESIII at BEPC provides the world's largest τ -charm data sets from e^+e^- annihilation making it an ideal laboratory for the search of glueballs and exotic states.

Hunting for gluonic excitations in J/ψ decays at BESIII

PRL 129 (2022) 192002, PRD 106 (2022) 072012

- Radiative decays of *J*/ψ provide a gluon-rich environment for gluonic excitations.
- First observation of the isoscalar exotic state $\eta_1(1855)$ in $J/\psi \rightarrow \gamma \eta \eta'$.
- Identifying an isoscalar 1⁻⁺ hybrids is crucial for establishing the hybrid multiplet.

• □ ▶ • 4 □ ▶ • Ξ ▶

- To apply FESR to the πR → πη process, it is essential to determine the correct set of couplings. This requires studying simpler toy models, such as:
 - $\pi\pi \to \pi\pi$,
 - $\eta\eta \rightarrow \eta\eta$,
 - $\pi\eta \to \pi\eta$.

These models provide the foundation for extracting couplings necessary for the target process.

- With these couplings in hand, FESR can be applied to $\pi p \rightarrow \pi \eta p$, enabling:
 - Verification of FESR predictions for the process,
 - Advancement toward broader objectives, such as constraining exotic meson dynamics and improving phenomenological models.

イロト イポト イヨト イヨト 二日

Thank you

Analysis of $\pi p \rightarrow \pi \eta p$

イロト イロト イヨト イヨト

SRL i.e. $s \to \infty$, fixed $s_{\pi\eta}$

At low energies, the amplitude is primarily dominated by resonance production and can be expressed as a sum of partial wave amplitudes, which can be extracted from experimental data:

$$A = \sum_{L, M} a_l(s_{\eta\pi}) \sin(M\Phi) Y_{lM}(\theta, 0)$$

Low Energy Amplitude - Preliminary Results

(a) $\Phi_2 = 0$ case

(b) $\Phi_2 = \arctan(\mathsf{BW}_{a_2})$ case

Figure: Imaginary part of the total low energy amplitude as a function of $m_{\eta\pi}$ for $t_1 = -0.1$, $u_3 = -0.33$, $s_{\eta p} = 200 \text{ GeV}^2$.

Low Energy Amplitude - Preliminary Results

The *D*-wave (L = 2, M = 1) calculated from the Breit Wigner of a_2 meson vs the one calculated from the theoretical results of PRL model (PRL 122, 042002 (2019))

A D M A A P M

Low Energy Amplitude - Preliminary Results

(a) Using theoretical P and D waves data from PRL

(b) Using Φ_2^{PRL}

Figure: Imaginary part of the total low energy amplitude as a function of $m_{\eta\pi}$ for $t_1 = -0.1$, $u_3 = -0.33$, $s_{\eta p} = 200 \text{ GeV}^2$.

PRL 122, 042002 (2019)

DRL i.e. $s, s_{\pi\eta}, s_{\eta p} \to \infty$

High-energy amplitudes are dominated by Regge trajectories:

$$A(s,t) \sim \beta(t)s^{\alpha(t)}, \quad \alpha(t) = \alpha_0 + \alpha' t.$$

The total amplitude can be written as:

 $A_{\mathsf{Th}}(m_{\eta\pi}, \Omega) = c_{a_{2}\mathbb{P}} A_{a_{2}\mathbb{P}} + c_{a_{2}f_{2}} A_{a_{2}f_{2}} + c_{f_{2}\mathbb{P}} A_{f_{2}\mathbb{P}} + c_{f_{2}f_{2}} A_{f_{2}f_{2}} + c_{\mathbb{P}\mathbb{P}} A_{\mathbb{P}\mathbb{P}} + c_{\mathbb{P}f_{2}} A_{\mathbb{P}f_{2}}$

(a) Fast- π

(b) Fast-η

Figure: From arXiv:2104.10646v2 [hep-ph] 19 Jul 2021

High Energy Amplitude- Preliminary Results

The general amplitude for $\pi p \rightarrow \pi \eta p$:

$$A(s, s_{\pi\eta}, s_{\eta p}) \sim \frac{\Gamma(1-\alpha_1)\Gamma(1-\alpha_2)}{(s_{\pi\eta})^{\alpha_1}(s_{\eta p})^{\alpha_2}} V(\alpha_1, \alpha_2, \kappa).$$

where

$$W(\alpha_1, \alpha_2, \kappa) = \frac{\Gamma(\alpha_1 - \alpha_2)}{\Gamma(1 - \alpha_2)} {}_1F_1 \left(1 - \alpha_1, 1 - \alpha_1 + \alpha_2, -\kappa\right), \ \kappa = \frac{\alpha' s_{\pi\eta} s_{\eta p}}{s}$$

Real and Imaginary parts of the high energy amplitude for the fast- π process as a function of $m_{\eta\pi}$ for $t_1 = -0.1, u_3 = -0.33, s_{\eta p} = 200 \text{ GeV}^2$.

Reducing $2 \rightarrow 3$ to $2 \rightarrow 2$

Our preliminary analysis indicates that the total amplitude is independent of $s_{\eta p}$, enabling us to simplify the 2 \rightarrow 3 process to a more manageable 2 \rightarrow 2 process, $\pi R \rightarrow \pi \eta$.

