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Neural Networks

— \We use NN to solve a problem
not addressed before
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QCD & Holography

Quark-Gluon Plasma

Holography

e Strongly coupled QFT
* Qut of equilibrium physics

* Dual of QCD not known...

— Qualitative insights

— For example, holography as a laboratory to study
the applicability of hydrodynamics.
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Holography: Our model

* QFT on Minkowski in 3+1 dim

* Decoupled sector of the stress tensor T#Y and O

We want to make contact with phenomenology

Holography so we proceed to break conformality:

— We introduce a scalar field

* Gravity in4+1dim:

1
S~ | BV=FR 5097~V ($)
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Holography: Our model

By constructing all black branes, we

* QFT on Minkowski in 3+1 dim reconstruct the equation of state S(T)

* Decoupled sector of the stress tensor T# and O

Thermal state

Holography

Bldck brane

* Gravity in 4+1 dim:

S~ J d3+1x =g (R — 1 (0)2=V (¢)) Bekenstein-Hawking entropy S
2 Hawking temperature T
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Holography: Our model

* QFT on Minkowski in 3+1 dim

* Decoupled sector of the stress tensor T# and O

Deformed plasma

[ Real-time quantum dynamics J

Numerical Holography

Relativi
Dynamical classical gravity ]

* Gravity in4+1dim:

1
S~ | PHxv=F R - 500~V (#)

hlack bran
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Holography: Our model

* QFT on Minkowski in 3+1 dim

* Decoup!

Numerice

Relativi#

* Gravity

S

We have explored the real time dynamics in
different context by using holography

Applications in QGP, phase transitions, cosmology

We would like to perform evolutions in a holographic
theory with a given eq. of state

This is why we want to find the potential that gives
rise to a given eq. of state — inverse problem

‘'med black bran



Holography: A simple model
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* Simple, smooth at IR, captures first order/2nd order/crossover
* RG flow from CFT at the UV to a CFT at the IR

1001

e —
= —

-4 ~— — ¢M=100
“”\‘;\ 901 om=1.08 e
_6- -
. 804 —— ¢m=>5.00
—8- p
70 -7
-10] "N 4
g 12 IS 007 ./'/
. ///
—14+ ————— -
40
—164 #1v=0.80 ..'
— ¢u=1.00 301
-181 ¢y=1.08
—-= ¢u=5.00 20 y
~20 , , ‘ , , ‘ ,
0.00 025 050 0.75 1.00 125 150 1.75 00 01 02 03 04 05 06 07 08

TIN



Holography: A simple model
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Bea, Mateos ‘18

* Simple, smooth at IR, captures first order/2nd order/crossover
* RG flow from CFT at the UV to a CFT at the IR
D — L] 1

* This model has been used in several contexts in holography:
— cosmology, dynamics of phase transitions...
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Ares, Henriksson, Hindmarsh, Hoyos, Jokela ‘21
Bea, Casalderrey-Solana, Gianakopoulos, Mateos, Sanchez-Garitaonandia, Zilhao ‘21



The inverse problem
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— We address the inverse problem by using Neural Networks
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Neural Networks

| will present neural networks from the perspective of our problem

We use Physics Informed Neural Netwoks, PINNs

— The Neural Network is informed by the physical equations

— Inourcase, Einstein’s equations

99, ¢

Other uses: training on known solutions (“supervised training”; “recognizing faces™)
....but not in our work
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Neural Networks

For our purposes, we can understand a NN as a function:

f(x)

— Cos(x)
—  Exp(x)

— A solution to our equations
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For our purposes, we can understand a NN as a function:
— One hidden layer
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For our purposes, we can understand a NN as a function:
— One hidden layer

(x) Tanh[2Tanh[O 5x]- 2]

2\

Q-

Qs‘
- O — f
o/

In each neuron () Tanh(Wij x; + bj) IZ> Internally is analytical

.. ) Just a combination of tanh’s...
Activation function

Linear transformation (weights)
Shift (biases)



Neural Networks

For our purposes, we can understand a NN as a function:
— One hidden layer

— f(x) Tanh[2Tanh[O 5x]- 2]
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In each neuron () Tanh(W;;x; + b;) IZ> Internally is analytical

.. ) Just a combination of tanh’s...
Activation function

Linear transformation (weights) Finite but large number of parameters
Shift (biases) (in our case 15.000)
ift (biases
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Neural Networks

For our purposes, we can understand a NN as a function:

— One hidden layer

L O -
But.......why is this useful?

Two main pilars of NN:

* a NN can approximate any continuous function

NN can learn

In each alytical
: of tanh’s...
Activa
Linear transtormatior Jht umber of parameters

e (in our case 15.000)
Shift (biases)
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Universal approximation theorems

NN are supported on mathematical theorems

- f(x)

e
\J/

Universal approximation theorem

“With enough neurons, we can recover a given function
to a certain accuracy”
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Universal approximation theorems

NN are supported on mathematical theorems

O
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This means, that, in particular, that a NN can

represent a solution to our equations
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to a certain accuracy”



Definition of Loss

We now want this NN to be a solution to our equations
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Loss function L :=(residual of Einstein’s equations)”2
We want to minimize the loss function

This is our definition of PINNS
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Neural Networks: learning process

But..... how does it learn?

Q .
/ ® . —p | 0ss=(Egs residuals)”2
= & — @)

\/’

Analytical expression with params W, b
“Tanh(Wx + b)”

Gradient Vi pL

Gradient descent
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Einstein-Klein Gordon
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A(u), 2 (u), p(u) — Unknown functions



Our set up

Einstein-Klein Gordon

5= 2 /daﬁ\/jq [13 - (V)2 - V(@)
K& 4 2

Metric ansatz )
ds® = —Adt? + Y?(dz? + dy® + dz?) — = dtdu

u2

A(u), 2 (u), p(u) — Unknown functions

u — Holographic variable

ue [0,1]



The direct problem

n A A

e, 00 -0 00 -0

/o N/ N

~ ~ ~



The direct problem
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we solve the direct problem as a test

U _We fix the potential V/(¢) 1.41
- Run for ~million iterations 1.2
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The direct problem
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we solve the direct problem as a test

-We fix the potential V(o)
- Run for ~million iterations

- Compare with traditional
methods

1.41
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The direct problem

u

u

u

we solve the direct problem as a test

-We fix the potential V(o)
- Run for ~million iterations

- Compare with traditional
methods

-This corresponds to one black
brane solution, i.e., one (T,S) point

-We have control on the solution:

1.41

ODEs solutions

0.4

0.01

00 02 04 06 08 1.0

more Iteration, reduce the loss

Direct problem works very well!
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The inverse problem

We are given the potential V(o)
We construct the thermodynamics S(T)

m=1.08

Einstein egs. . Equation of state
) L Direct problem
§ - — "'l i "R - = VIS ! — b
\\\\»:;‘;; | Z
\ Inverse problem : S

3 0.
TIA

We are given an equation of state S(T)
and we want to reconstruct V()

— This corresponds to reconstructing the theory



The inverse problem

Einstein egs. Equation of state
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The inverse problem

Einstein egs.
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The inverse problem

Einstein egs. Equation of state
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The inverse problem

Einstein egs. Equation of state
5‘—3/d5F Lr— lver - v
A =2 T gz 2( ® ) :
\ Inverse problem : S

A

-Sampling of the eq. of state S(T), ~70 points

-Each point in the sampling corresponds to a black brane

-All these black branes are solutions of the Einstein egs with the same potential

— boundle solution



The inverse problem

Einstein egs. Equation of state
5‘—3/d5F LR— L) - V(¢
A =2 T gz 2( ® ) :
“““ — z
\ Inverse problem : S

A

-Sampling of the eq. of state S(T), ~70 points
-Each point in the sampling corresponds to a black brane
-All these black branes are solutions of the Einstein eqs with the same potential

— boundle solution

-We introduce an additional NN for V(o) (now it is an unknown)



The inverse problem

Einstein egs.

2 . 1 1 ,
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-Loss= 2 (residuals Einstein egs)*2 (sum over branes)
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The inverse problem

Einstein egs.

Equation of state
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-Loss= 2 (residuals Einstein egs)*2 (sum over branes)

-For each black brane, S and T enter as boundary conditions at the horizon



The inverse problem
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-Loss= 2 (residuals Einstein egs)*2 (sum over branes)

-For each black brane, S and T enter as boundary conditions at the horizon

-No assumptions of the functional form of V(o)
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The inverse problem

Einstein egs. Equation of state
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-Loss= 2 (residuals Einstein egs)*2 (sum over branes)
-For each black brane, S and T enter as boundary conditions at the horizon

-No assumptions of the functional form of V(o)

-We do not provide any initial guess for (), it is random.



The inverse problem

Einstein egs. Equation of state
5‘—3/d5F LR- SV - V(¢
A =2 T gz 2( ® ) :0
\\\\w\ — z
\ Inverse problem : S

A

-Loss= 2 (residuals Einstein egs)*2 (sum over branes)

-For each black brane, S and T enter as boundary conditions at the horizon
-No assumptions of the functional form of V(o)

-We do not provide any initial guess for (), it is random.

-The range of phi’s is found by the NN
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Architecture summary

Boundle solutions (70
black branes)

— § =
u — i /A(u) \
e
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) / Gradient
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uU=_°"= ¢ (w)
Tanh \ -
3 layers =9
32 neurons U, >/(q)) SiLU

Q
4 layers
‘ 16 neurons




Architecture summary

log(L)

Boundle solutions (70

O black branes) .
U = sA (w)
T g \ -
/ i \ 0.0 05 10 1',:':3 soch S2:0 25 30 3'_5166
0 i
I —— — —)
u- o CEW Loss=(Egs residuals)2 Vw bL
) / Gradient
el e descent
u-_ 2 = ¢ (u)

Tanh \

Q

3 layers =9 ﬁ/

u

32 neurons \2 (@)

4 layers
‘ 16 neurons
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Solving the inverse problem

Crossover second order first order

¢mu=>5

= = Theory
904 —— NN

As we known the original potential,

™
we can perform a further check: |<—
S~~~
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Solving the inverse problem

Crossover second order first order
¢m=5 ¢m=5
3.0 o == ==  Theory
< 901 — NN
-35 —
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)80

Relative difference

=5.04 <1%

Relative difference

~1%
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Main conclusion
We have solved the inverse problem using NN within ~1%,
not solved before with other methods



Solving the inverse problem

Crossover

¢M - 108
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Relative difference ™
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first order

¢m=1.08

| === Theory
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Relative difference
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02

Main conclusion
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We have solved the inverse problem using NN within ~1%,

not solved before with other methods



V(¢)

Solving the inverse problem

Crossover second order first order
$u=1 ‘ Ppu=1
Best run ] 20100 —— NN
_____ Rest I_ = = Theory
== == Theory a 20
Relative difference 60
- &
N <194 ol Relative difference
~1%
201
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Main conclusion
We have solved the inverse problem using NN within ~1%,
not solved before with other methods



Additional comments



Additional comments

—— Solving with NN ‘is an art’ ...we have some guide, but there is also
some part of trial and error




Additional comments

—— Solving with NN ‘is an art’ ...we have some guide, but there is also
some part of trial and error

* Choose specific architecture, number of neurons, layers, etc
e Sampling in u (holographic variable)
e Sampling in the S(T) curve



Additional comments

—— Solving with NN ‘is an art’ ...we have some guide, but there is also
some part of trial and error

* Choose specific architecture, number of neurons, layers, etc
e Sampling in u (holographic variable)
e Sampling in the S(T) curve

—— There Is some stochasticity:
- Random initial data (10 runs)
- Stochastic gradient descent



Additional comments

—— Solving with NN ‘is an art’ ...we have some guide, but there is also
some part of trial and error

* Choose specific architecture, number of neurons, layers, etc
e Sampling in u (holographic variable)
e Sampling in the S(T) curve

—— There Is some stochasticity:
- Random initial data (10 runs)
- Stochastic gradient descent

— Our method is general and applicable in generic inverse problems



Additional comments

—— Solving with NN ‘is an art’ ...we have some guide, but there is also
some part of trial and error

* Choose ¢
e Samplin
e Samplint

Thank you!

—— The

— Our method is general and applicable in generic inverse problems
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Future directions

This is just a first paper, a lot of room for improvement and extensions
—— Next step: improve accuracy

We are currently increasing the number of neurons and layers

We want to improve the resolution in problems with
large separation of scales

¢y=0.8
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— \We are also exploring transfer learning
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Our potential
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Einstein equations
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Boundary conditions

Alu=o =

>0 = 1
Glu=0 =
Vgplu=0 = 1
Aly=1 =0,
VAly=1 = —4nT



Libraries

We have chosen the Adam optimizer? for the optimization process, which uses stochas-
tic gradient descent with information about higher-order momenta (see [49] for de-
tails).

The described NN system has been implemented in the Python language through the
open source neurodiffeq library [50], built on PyTorch.

[49] D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017.

[50] F. Chen, D. Sondak, P. Protopapas, M. Mattheakis, S. Liu, D. Agarwal et al., Neurodiffeq: A
python package for solving differential equations with neural networks, Journal of Open
Source Software 5 (2020) 1931.

Computational considerations

Training and discovery of a solution with sub-per cent precision in the potential and
per cent precision in the recovered equation of state requires about 8-16 hours and a couple
of million epochs in a dedicated NVidia A40 GPU. As explained above, we performed ten



Gaussian localization vs fully connected
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Additional loss
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