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Quark-Gluon PlasmaT

Hadrons

Tc

μ

QCD & Holography

Holography

Qualitative insights

• Strongly coupled QFT

• Out of equilibrium physics

• Dual of QCD not known…

For example, holography as a laboratory to study 

the applicability of hydrodynamics.
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Black brane

Thermal state

Bekenstein-Hawking entropy S

Hawking temperature T

By constructing all black branes, we 

reconstruct the equation of state S(T)
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• QFT on Minkowski in 3+1 dim
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Holography

𝒪

• Gravity in 4+1 dim :

Deformed black brane

Deformed plasma

Dynamical classical gravity

Real-time quantum dynamics

Numerical

Relativity

• We have explored the real time dynamics in 

different context by using holography

• Applications in QGP, phase transitions, cosmology

• We would like to perform evolutions in a holographic 

theory with a given eq. of state

• This is why we want to find the potential that gives 

rise to a given eq. of state  inverse problem 
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Holography: A simple model

• Simple, smooth at IR, captures first order/2nd order/crossover

Bea, Mateos ‘18

• RG flow from CFT at the UV to a CFT at the IR

• This model has been used in several contexts in holography:

cosmology, dynamics of phase transitions...

Casalderrey-Solana, Mateos, Serantes ‘23

Ares, Henriksson, Hindmarsh, Hoyos, Jokela ‘21

Bea, Casalderrey-Solana, Gianakopoulos, Mateos, Sanchez-Garitaonandia, Zilhao ‘21

.....
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I will present neural networks from the perspective of our problem

We use Physics Informed Neural Netwoks,  PINNs

The Neural Network is informed by the physical equations

Other uses: training on known solutions (“supervised training”; “recognizing faces”)

....but not in our work

In our case, Einstein’s equations
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For our purposes, we can understand a NN as a function:

In each neuron  

Finite but large number of parameters

(in our case 15.000)

Internally is analytical
...

One hidden layer

Linear transformation (weights)

Activation function

Shift (biases)

Just a combination of tanh’s...

𝑇𝑎𝑛ℎ(𝑊𝑖𝑗𝑥𝑖 + 𝑏𝑗)

𝑥 𝑓(𝑥)
But.......why is this useful?

Two main pilars of NN:

• a NN can approximate any continuous function

• NN can learn
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Universal approximation theorems

Universal approximation theorem

“With enough neurons, we can recover a given function

to a certain accuracy”

NN are supported on mathematical theorems

...

𝑥 𝑓(𝑥)
This means, that, in particular, that a NN can 

represent a solution to our equations

But.... how do we get to that NN?



Definition of Loss

We now want this NN to be a solution to our equations

Loss function    L := (residual of Einstein’s equations)^2

We want to minimize the loss function

This is our definition of PINNs

...

𝑥 𝑓(𝑥)
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But.....  how does it learn?

Gradient descent

Loss=(Eqs residuals)^2

Gradient 
“𝑇𝑎𝑛ℎ(𝑊𝑥 + 𝑏)”

Analytical expression with params W, b 

𝛻𝑊,𝑏𝐿
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Our set up

Einstein-Klein Gordon 

𝑢 Holographic variable 

𝐴(𝑢), 𝛴(𝑢), 𝜙(𝑢) Unknown functions

Metric ansatz

𝑢 𝜖 [0,1]
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The direct problem

𝐿=(Einstein eqs)^2

Gradient

u

u

u

𝐴(𝑢)

𝛴(𝑢)

𝜙(𝑢)
𝛻𝑊,𝑏𝐿

we solve the direct problem as a test

-We fix the potential V(φ)

- Compare with traditional 

methods

Direct problem works very well!

- Run for ~million iterations

-We have control on the solution: 

more iteration, reduce the loss

-This corresponds to one black 

brane solution, i.e., one (T,S) point. 
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Inverse problem

Einstein eqs. Equation of state
Direct problem

We are given the potential  V(φ)

We construct the thermodynamics S(T)

This corresponds to reconstructing the theory
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The inverse problem

Inverse problem

Einstein eqs. Equation of state

-Sampling of the eq. of state S(T),  ~70 points

-Each point in the sampling corresponds to a black brane

-All these black branes are solutions of the Einstein eqs with the same potential

-We introduce an additional NN for V(φ) (now it is an unknown)

boundle solution
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The inverse problem

Inverse problem

Einstein eqs. Equation of state

-For each black brane, S and T enter as boundary conditions at the horizon 

-The range of phi’s is found by the NN

-Loss= Σ(residuals Einstein eqs)^2   (sum over branes)

-We do not provide any initial guess for V(φ), it is random.

-No assumptions of the functional form of V(φ)
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Our method is general and applicable in generic inverse problems



Additional comments

Solving with NN ‘is an art’ ...we have some guide, but there is also 

some part of trial and error

• Choose specific architecture, number of neurons and layers, etc

• Sampling in u (holgraphic variable)

• Sampling in the S(T) curve

There is some stochasticity:

- Random initial data (10 runs)

- Stochastic gradiend descent

Our method is general and applicable in generic inverse problems

Thank you!
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Future directions

This is just a first paper, a lot of room for improvement and extensions

We are currently increasing the number of neurons and layers

We want to improve the resolution in problems with 

large separation of scales

Next step: improve accuracy

We are also exploring transfer learning



Our potential



Einstein equations



Boundary conditions



Libraries

Computational considerations



Gaussian localization vs fully connected



Additional loss



References NN in holography

The only papers that reconstruct the theory:

Other papers (reconstruct solutions):

......+ 15 references
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