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Symmetries are restored at 
high temperatures/early times
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   Cosmological phase transitions ⇒

Key to address       
open questions:

baryogenesis

Aftermath directly 
observable in GWs

Evidence for new 
fundamental physics
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[2002.04615] JHEP

Pulsar timing arrays

 NANOGrav

 PPTA

 EPTA

◦ IPTA

◦ SKA

Space-based interferometers

◦ DECIGO

◦ BBO

◦ LISA

Ground-based interferometers

 aLIGO + aVirgo (observing run 2)

◦ aLIGO (design)

◦ aLIGO + aVirgo (design)

◦ aLIGO + aVirgo + KAGRA (design)

◦ Cosmic Explorer

◦ Einstein Telescope
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Figure 1. Top: Strain noise spectra. Bottom: PLISCs and GW signal for BP #14. See text.
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Phase transition at  
Tc
⟨ϕ⟩ : G → H
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Phase transition at  
Tc
⟨ϕ⟩ : G → H

1
Strength:


Bubble collision, 
hydrodynamics
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Topology of the vacuum: 

Formation of defects and 

annihilation

Strength:


Bubble collision, 
hydrodynamics
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Phase transitions source GWs

Phase transition at  
Tc
⟨ϕ⟩ : G → H

2

1

Non-trivial interplay:


Defects as seeds for 
bubble nucleation

Topology of the vacuum: 

Formation of defects and 

annihilation

Strength:


Bubble collision, 
hydrodynamics

3
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22.1 Characteristic frequency of relic GWs 645

production as
��⇤ = ✏⇤H

�1
⇤ . (22.2)

Since H�1
⇤ is the size of the horizon at time t⇤, ✏⇤ > 1 corresponds to

super-horizon modes at the time of production. Because of causality,
the generation of super-horizon modes will be suppressed. This does
not mean that the production of modes with ✏⇤ > 1 is strictly forbidden
by causality. The spectrum of modes produced by causal mechanisms is
continuous with frequency, and does not drop suddenly to zero below a
critical frequency. Thus, to some extent, even super-horizon modes are
produced. However, at su�ciently low frequencies, such that the cor-
responding wavelengths are well outside the horizon, causality requires
that their spectrum goes to zero, as f ! 0, as

h2
0⌦gw(f) / f3 . (22.3)

This follows from the fact, for super-horizon modes, the source term
�̃TT

A (k) in eq. (19.220) should have a flat power spectrum, i.e. h|�̃TT
A (k)|2i

will be independent of k. This corresponds to white noise and reflects
the absence of causal correlations. The same will then be true for h̃A(k).
This means that, for super-horizon modes, the power spectrum PT (k)
at the time of production satisfies

PT (k) / k (22.4)

[see eq. (19.280)] or, equivalently, Sh(f) in eq. (19.284) is independent
of the frequency (recall that k = 2⇡f). Then, from eq. (19.288) or from
eq. (7.202) of Vol. 1, we get eq. (22.3).

Thus, for typical gravitons produced at time t⇤, we expect ✏⇤ = O(1)
or smaller. More precisely, in the absence of any other length-scale in
the problem, we can indeed expect that the peak of the spectrum will
be at ✏⇤ = O(1), while if other length-scales smaller than H�1

⇤ enter the
problem (or small dimensionless parameters such as a speed of sound
c2
s < 1), ✏⇤ will in general be some orders of magnitude smaller than 1.
During RD, H2

⇤ = (8⇡/3)G⇢rad. Then, from eq. (17.98),

H2
⇤ =

⇡2g⇤T 4
⇤

90m2
Pl

, (22.5)

and, using 2⇡f⇤ ⌘ H⇤/✏⇤, eq. (22.1) can be written as

f0 ' 2.65 ⇥ 10�8 1

✏⇤

✓
T⇤

1 GeV

◆⇣ g⇤
106.75

⌘1/6
Hz . (22.6)

The e↵ect of the dynamics on the value of f0 has therefore been isolated
into the parameter ✏⇤.1

1Here we have assumed that the
temperature is su�ciently high that
gS⇤ = g⇤. Otherwise, in general we

should replace g
1/6

⇤ by [g3⇤(g
S
⇤ )

�2]1/6 in
eq. (22.6); compare with eqs. (17.98)
and (17.114). Because of the power
1/6, however, this has little e↵ect.

We will typically be interested in production mechanisms taking place
at temperatures T >⇠ 100 GeV. Then the relation between time and tem-
perature during the RD phase can be obtained using eqs. (17.114) and

Book by Michele 
Maggiore, vol. 2

• GW emitted at time  with frequency . Today’s frequency  :t* 2π f* = H*/ϵ* f0

Sub-horizon modes ϵ* < 1
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Bubbles nucleated during a 
1st order phase transition

H−1
*

• Previous estimate works only for sources that are active for a short period of time:

10

FIG. 11. Slices through (0, y, z) for a simulation with vw = 0.44, ↵ = 0.5, corresponding to a deflagration. In the top row we
plot the temperature T/Tc. The midpoint of this colormap corresponds to Tn. The middle row shows the fluid velocity v. The
bottom row shows the vorticity |r⇥ v|. The bubble walls are shaded in black for the top row, and white for the middle and
bottom row.
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slice of the fluid in one of our numerical simulations. We explain the setup of our simulation in
Section 2. The main results are shown in Section 3 and we conclude in Section 4.

Figure 1: An example slice of the numerical simulation. In this figure we used ⇠w = 0.8 and
vmax = 0.1 and the box size V = L3 with L = 80⇠w/� = 64/� and the grid size N3 = 5123.

Figure 2: Schematic illustration for the numerical simulation. In the 3d simulation we generate
bubble nucleation points (denoted by the star) numerically. For each direction we embed the
1d fluid profile with direction-dependent collision time tc. The 1d profile before collision can be
obtained from the literature [28], while after collision it is obtained by solving the 1d evolution
equation (i.e. 3d evolution with spherical symmetry): see Fig. 4 and Ref. [29]. The 1d fluid profile
generally develops discontinuities (i.e. shocks), which are dealt with using the Kurganov-Tadmor
scheme [30] (see Appendix A).

2 Strategy

In order to remove the Higgs field from the simulation, we model the system in the following way:
first, consider a single bubble with spherical symmetry. Before colliding with surrounding bubbles,
the fluid adheres to the conventional self-similar solutions. After the collision, the fluid follows the
hydrodynamic equations. After collision it is reasonable to neglect the Higgs field, since it is quickly

2

Fig. from Jinno, Konstandin, Rubira, 
[2010.00971], JCAP
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• Different story for defects: loops continuously produced and decay via GWs

Cosmic strings Fundamental scale 
enters via string tension
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716 Stochastic backgrounds of cosmological origin
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Fig. 22.27 The limits on h2

0⌦gw(f) discussed in the text. The solid lines
refer to existing (2017) limits, while dashed lines are forecasts for future
experiments. The BBN limit is the solid line at f >

⇠ 1.5 ⇥ 10�11 Hz. The
bound on extra radiation in the CMB from Planck 2015 plus structure for-
mation, for adiabatic initial conditions, is almost superimposed but holds for
f >
⇠ 3 ⇥ 10�17 Hz, and is labeled “adiabatic”. The same bound for homo-

geneous initial conditions (extrapolated from the bound on adiabatic initial
conditions as discussed in Note 47) is labeled “homogeneous”. Expectations
for EUCLID for homogeneous initial conditions are shown dotted, assuming
an improvement by a factor 20 compared with Planck. The CMB limits on r
at the pivot scales k⇤ = 0.002Mpc�1 and k⇤ = 0.05Mpc�1 (corresponding to
f⇤ = 3.09 ⇥ 10�18 Hz and 7.73 ⇥ 10�17 Hz, respectively) are shown as filled
diamonds. The short segments at f = O(10 � 100) Hz show the limit set by
initial LIGO/Virgo and the limit set by advanced LIGO in the O1 run. The
expectations for the final design of advanced LIGO/Virgo and for LISA are
also shown. The present PTA limit (discussed in Section 23.5) is compared
with future expectations for the SKA.

where the second equality holds in the limit (fmin/fmax)↵ ⌧ 1. Thus
the bound on the peak value of the spectrum can be stronger or weaker
than eq. (22.293), depending on whether ↵ < 1 or ↵ > 1, respectively.
If h2

0⌦gw(f) has a constant value (h2
0⌦gw)⇤ between the frequencies fmin

and fmax, and is small outside this interval, then eq. (22.292) rather
gives

(h2
0⌦gw)⇤ <

1.3 ⇥ 10�6

log(fmax/fmin)

✓
Ne↵ � 3.046

0.234

◆
. (22.296)

As we have seen in this chapter, the spectrum of some cosmological
signals, such as those due to cosmic strings, indeed extends over many
decades in frequencies, and in this case the BBN bound is correspond-
ingly more stringent.

• Cosmological backgrounds should not spoil Big Bang Nucleosynthesis:

f0 ≳ 10−10 HzBook by Michele 
Maggiore, vol. 2

Peak value
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• Weinberg formula:

damped to the broken phase [24]. These 1d solutions are then embedded into the simulation volume
(a similar technique has been used for the scalar field evolution [31]). Every grid point potentially
obtains contributions from di↵erent bubbles that depend on when the corresponding surface element
of the bubble collided with the neighboring bubbles. In this section, we flesh out the details of this
approach.

2.1 Overview

The GW spectrum is determined from fluid dynamics and the GWs are stored in the tensor com-
ponents hij of the metric

ds2 = �dt2 + a2(�ij + hij)dxidxj . (1)

Neglecting cosmic expansion during the transition,2 the time evolution of hij for each Fourier
component is given by

ḧij + k2hij =
2

M2
P

⇤ij,klTkl, (2)

where MP = 1/
p

8⇡G is the reduced Planck mass, ⇤ij,kl = PikPjl � PijPkl/2 with Pij = �ij � k̂ik̂j
is the projection tensor for the transverse-traceless (TT) part, and Tij is the energy-momentum
tensor of the system. In our setup the energy-momentum tensor Tij stems from the fluid dynamics
during and after transition3. Throughout the paper we assume an equation of state for radiation
and a perfect fluid

Tµ⌫ = wuµu⌫ + pgµ⌫ , (3)

where w, p, uµ, and gµ⌫ are the enthalpy density, pressure, fluid four-velocity, and metric, respec-
tively. Notice that only the first term contributes to the GW production. The GW spectrum is
then written in terms of the source term using Weinberg’s formula [34]

⌦GW(q) ⌘
1

⇢tot

d⇢GW

d ln q
=

q3

4⇡2⇢totM2
PV

Z
d⌦k

4⇡

h
⇤ij,klTij(q,~k)T ⇤

kl(q,~k)
i

q=k
. (4)

Here ⇢tot is the total energy density of the Universe, q and ~k are GW frequency and wavenumber,
respectively, with k ⌘ |~k|. Also, V is the simulation volume and our convention for the Fourier
transform is

Tij(q,~k) =

Z
dt ei q t

Z
d3x e�i~k·~x Tij(t, ~x). (5)

The Fourier transform in the time direction is performed over the simulation time T .
In this paper we propose modeling the 3d energy-momentum tensor field Tij from 1d (more

precisely 3d with spherical symmetry) hydrodynamic simulations. The main idea is illustrated in
Fig. 2. For every bubble we construct the fluid along radially outgoing rays. Depending on whether
the corresponding surface element of the bubble already collided with surrounding bubbles or not,
we either embed the self-similar solution or the fluid profile obtained from 1d hydro simulations.

2Throughout the paper we neglect the e↵ect of cosmic expansion. See Ref. [32] for this e↵ect.
3Since the plasma friction makes it di�cult for bubbles to run away, the plasma energy dominates over the scalar

contribution. The energy contained in the plasma scales with the bubble radius to the third power, while the energy
in the scalar field grows with the bubble radius square [33].

3

Energy momentum 
tensor of the source

Anisotropic 
component
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Runaway bubbles Terminal velocity

h2 Ω0
GW ∼ 10−7 K2 ( H*

β ) × …

Kinetic energy 
of the fluid

h2 Ω0
GW ∼ 10−7 ( α

1 + α )
2

( H*

β )
2

Latent heat
Bubble size


 time to complete the PT∼
 extra suppression if shocks form in 

less than a Hubble time
… ×

10

FIG. 11. Slices through (0, y, z) for a simulation with vw = 0.44, ↵ = 0.5, corresponding to a deflagration. In the top row we
plot the temperature T/Tc. The midpoint of this colormap corresponds to Tn. The middle row shows the fluid velocity v. The
bottom row shows the vorticity |r⇥ v|. The bubble walls are shaded in black for the top row, and white for the middle and
bottom row.

Fig. from Cutting, Hindmarsh, 
Weir, [1906.00480], PRL
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Figure 1. Top: Strain noise spectra. Bottom: PLISCs and GW signal for BP #14. See text.
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Defects in cosmology



QCD axion strings
• Global string solution

m−1
ρ

r

ρ(r)
fa

∝ [1 − (mρr)−2]

α(θ) : 0 → 2π

VPQ(Φ)

• Potential for PQ field

Φ = ρeiα

δ ≈ m−1
ρ
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The scaling regime

Strings Walls

• A network of topological defects approaches a scaling regime with  
defects per Hubble volume at any time, provided efficient energy losses

ξ = 𝒪(1)

[Press, Ryden, Spergel 1989]

Simone Blasi - 4th BIG meeting

μ ∼ f 2
a σ ∼ ma f 2

a



⇒
Time

 scalar field simulation with CosmoLatticeℤ2

(Minkowski)

The scaling regime
• A network of topological defects approaches a scaling regime with  

defects per Hubble volume at any time, provided efficient energy losses
ξ = 𝒪(1)
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# of walls per 
Hubble volume

Time
(Radiation domination)

The scaling regime
• A network of topological defects approaches a scaling regime with  

defects per Hubble volume at any time, provided efficient energy losses
ξ = 𝒪(1)
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Energy density Energy fraction

Cosmic strings

Domain walls ρdw =
σH
ξ(t)

ρcs =
μH2

ξ(t)2
Ω ∼ G μ

Ω ∼ G σ t

≪ 1

“Domain wall problem”

The scaling regime
• A network of topological defects approaches a scaling regime with  

defects per Hubble volume at any time, provided efficient energy losses
ξ = 𝒪(1)
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Problem or blessing?
• Domain walls have observable implications! But need to annihilate before 

dominating the critical density (or inflated away) 

NDW = 1

a = π

 goes from  
across the wall..
a 0 → 2π

..but it is the same point! 
(gauge symmetry)

NDW > 1

 is only approximate (biased)ℤ2N

Simone Blasi - 4th BIG meeting



GWs from domain walls
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• GWs are radiated by domain walls 
during:


- the scaling regime (long-lasting 
source, dominated by later times)


- the final phase of collapse and 
annihilation


• Given the collapse at  :


with standard  relation to 

T = T*

f0 T*

Ω0
peak ∼ 10−6 Ω* 2

DW

2



3K\VLFV /HWWHUV % ��� ������ ������

�

N. Kitajima, J. Lee, K. Murai et al.

Fig. 3. Numerical results of the GW spectrum from the DW annihilations for 
! = 5∕"0 –80∕"0 with # = 0.025 (top), # = 0.05 (middle), # = 0.1 (bottom). 
For ! ≤ 15∕"0, results are shown at intervals Δ! = 1∕"0, and for 20∕"0 ≤ ! ≤
80∕"0, results are shown at intervals Δ! = 10∕"0. The black dashed and lines 
represent the spectrum at the time ! = 10∕"0 and 80∕"0, respectively. The 
scale of the DW width ∼"−1

0 corresponds to $∕"0 ="0! , and the GW spectrum 
is suppressed at smaller scales.

where !′ = 4∕"0 and %! = 0.2∕"0. The magnitude of the bias is de-
termined by #. We investigate various values for #, specifically, # =
0.025, 0.05, and 0.1. Note that the bias has a different form from the re-
alistic QCD-induced potential for alleviating the numerical cost, but we 
expect that this difference does not significantly change our results. The 
conformal time !eq corresponding to the temperature &eq (defined in 
the main text) is obtained by solving Δ' = 2()4*(!eq) = 2

√
2)2∕(3!2eq). 

Here, we have used + = 2
√
2"0)2∕3 in the ,4 model.

In Fig. 3, we present the numerical results of the GW spectra for the 
case of # = 0.025, 0.05, and 0.1. We have followed the evolution of the 
system over the conformal time ! in the range of (1 –80)∕"0 and con-
firmed that the DWs entirely disappear by ! ∼ 20∕"0. Beyond this point, 

Table 1
Mapping from the numerical parameters to the physical 
ones.
# &eq∕&QCD -. -Ω /∗(&eq) + [GeV3]

0.025 1.003 0.45 31 10.75 3.0 × 1015
20 2.2 × 1015

0.05 1.07 0.47 20 10.75 1.6 × 1015
20 1.1 × 1015

0.1 1.16 0.46 15 10.75 7.1 × 1014
20 5.2 × 1014

the GW spectrum ceases to evolve. For the range ! = 5∕"0 − 15∕"0, 
spectra are shown at intervals of Δ! = 1∕"0, and from ! = 20∕"0 to 
! = 80∕"0, they are shown at intervals of Δ! = 10∕"0. Among them, the 
black dashed line corresponds to ! = 10∕"0, while the black solid line 
represents ! = 80∕"0. Here the density parameter ΩGW is evaluated at 
the time of the production, and it is a combination of ΩGW($)(0pl∕))4
that is calculated in the numerical simulations. $ is the wavenumber 
evaluated on the comoving coordinates. To obtain the current GW spec-
trum, one needs to determine the physical value of ) using the matching 
method we will describe shortly, and multiply the dilution factor due to 
the redshift as well.

Note that, while DWs are collapsing due to potential bias, they are 
boosted by the false vacuum energy, and acquire a typical spatial scale 
smaller than in the scaling regime. Focusing on the case of # = 0.05 (the 
middle figure), one can clearly see that for ! ≈ 10∕"0 (indicated by the 
black dashed line), a dominant source of GW emerges from the subhori-
zon scale around $∕"0 ∼ 1, whereas the peak in the scaling regime at 
that time corresponds to $∕"0 ∼ 0.5. This contribution at subhorizon 
scales comes to dominate the whole GW spectrum afterward. This is at-
tributed to the collapse of the DWs accelerated by the potential bias, 
which has not been considered in earlier studies [8–10]. For the case of 
# = 0.025 (and 0.1), the subhorizon peak rises slowly (quickly), which is 
also consistent when it comes from the collapse of boosted DWs.

The GW spectrum should be suppressed on scales much smaller than 
the DW width since there is no corresponding physical process. In Fig. 3, 
the scale of the DW width ∼ "−1

0 corresponds to $∕"0 = "0! , which 
is close to the bump around $∕"0 = (10). We can see that the GW 
spectrum is indeed suppressed at scales smaller than the DW width.

To translate the numerical results to the physical ones, we match 
quantities at ! = !eq. Specifically, we first determine &eq by matching 
the relative height of the bias as *(!eq)∕# = 1(&eq)∕10. Then, we solve 
2(&eq) = ("0!2eq)−1 and 1(&eq) = 2()4*(!eq) to determine the corre-
sponding physical values of ( and ), where we set  = 1 for simplicity. 
Here 2 is the physical Hubble parameter, and we need to fix the value 
of /∗(&eq) to evaluate it. Since the time-dependence of /∗ is not included 
in the numerical simulation, we have adopted two different values 
/∗(&eq) = 10.75 and 20. This results in a slightly different estimate of 
ΩGW as shown in the main text, which should be regarded as the uncer-
tainty of the matching. One can also match the comoving wavenumber 
$ corresponding to the horizon scale at & = &eq. Then, the physical GW 
spectrum is obtained by multiplying ()∕0pl)4 to the one obtained in the 
numerical simulations. The dilution factor is taken into account by mul-
tiplying the radiation density parameter, except for a slight change in 
the relativistic degrees of freedom. We repeat the numerical simulations 
and the matching procedure for the case of # = 0.1 and 0.025. For each 
case, we determine + through the matching. By identifying the peak lo-
cation where the GW abundance is the maximum, we can evaluate -.
and -Ω. A summary of the matching of the parameters can be found in 
Table 1. See Fig. 2 in the main text for the current GW spectrum for the 
three different biases.

We note that in our analysis we did not include the axion strings to 
simplify the analysis. We believe that this is a fairly good approximation 
when 3DW = 2 because two DWs attached to a single string can be 
approximated by a single DW.

Kitajima, Lee, Murai, Takahashi, Yin, PLB [2306.17146]
Ferreira, Notari, Pujolàs, Rompineve, JCAP [2401.14331]

Simulation of the 
collapse

GWs from domain walls
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• GWs are radiated by domain walls 
during:


- the scaling regime (long-lasting 
source, dominated by later times)


- the final phase of collapse and 
annihilation


• Given the collapse at  :


with standard  relation to 

T = T*

f0 T*

Ω0
peak ∼ 10−6 Ω* 2

DW

2



GWs from cosmic strings
Simone Blasi - 4th BIG meeting

• Loops are continuously chopped off 
the long string network:


- GW emission dominated by the 
decay of these loops


- Spectrum is flat up to matter-
radiation equality


• GW amplitude (flat spectrum):

Ω0
flat ∼ 10−4 ( Gμ

Γ )
1/2

Figure 2. Gravitational wave spectrum from a cosmic string network with ↵ = 0.1 and Gµ =
10�11

, 10�13
, 10�15

, 10�17. Also shown are the current sensitivities of LIGO and EPTA (solid
bounded regions), and the projected future sensitivities of LISA, DECIGO/BBO, ET/CE, and
SKA (dash bounded regions).

are the current and future sensitivities of LIGO [98–101], and the projected sensitivities

of LISA [102], DECIGO/BBO [33], Einstein Telescope (ET) [34, 35], and Cosmic Ex-

plorer (CE) [36]. The solid triangle in the upper left of the plot indicates the current limit

from the European Pulsar Timing Array (EPTA) [103], and the expected sensitivity of the

future Square Kilometre Array (SKA) [104]. We see that the strongest current bound on

these GW spectra comes from EPTA and implies Gµ . 2⇥ 10�11. Other recent estimates

of the GW spectrum from a scaling cosmic string network relative to current and future

searches includes Refs. [90, 105, 106].

2.3 Connecting GW frequencies to loop formation and emission times

The GW spectra shown in Fig. 2 all share a characteristic shape, with a dropo↵ at lower

frequencies and a flattening at higher ones. This shape is related to the cosmological

background evolution when the loops contributing to a given frequency were formed and

emitted GWs [27]. In this section, we connect the GW frequency seen today to the time

at which the dominant contribution to that frequency was emitted by the string network.

Later, we show how this connection can be used to test the evolution of the very early

universe.

We begin with a simple analytic estimate of the frequency-time connection. (See also

Ref. [107].) For this, it is su�cient to focus exclusively on the k = 1 mode which we find

to be the dominant one in the cases of interest. We also set tF ! 0 for now, and return

to non-zero values later on. The expression of Eq. (2.14) involves an integral over the

GW emission time t̃, with the contribution to the signal over the time interval (t̃, t̃ + dt̃)

– 7 –
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Fig. from SB, Brdar, Schmitz, [2009.06607], PRL

4 The NANOGrav Collaboration
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Figure 1. Summary of the main Bayesian and optimal-statistic analyses presented in this paper, which establish multiple lines
of evidence for the presence of Hellings–Downs correlations in the 15-year NANOGrav data set. Throughout we refer to the
68.3%, 95.4%, and 99.7% regions of distributions as 1/2/3� regions, even in two dimensions. (a): Bayesian “free-spectrum”
analysis, showing posteriors (gray violins) of independent variance parameters for a Hellings–Downs-correlated stochastic process
at frequencies i/T , with T the total data set time span. The blue represents the posterior median and 1/2� posterior bandsa

for a power-law model; the dashed black line corresponds to a � = 13/3 (SMBHB-like) power-law, plotted with the median
posterior amplitude. See §3 for more details. (b): Posterior probability distribution of GWB amplitude and spectral exponent
in a HD power-law model, showing 1/2/3� credible regions. The value �GWB = 13/3 (dashed black line) is included in the 99%
credible region. The amplitude is referenced to fref = 1yr�1 (blue) and 0.1 yr�1 (orange). The dashed blue and orange curves
in the log

10
AGWB subpanel shows its marginal posterior density for a � = 13/3 model, with fref = 1yr�1 and fref = 0.1 yr�1,

respectively. See §3 for more details. (c): Angular-separation–binned inter-pulsar correlations, measured from 2,211 distinct
pairings in our 67-pulsar array using the frequentist optimal statistic, assuming maximum-a-posteriori pulsar noise parameters
and � = 13/3 common-process amplitude from a Bayesian inference analysis. The bin widths are chosen so that each includes
approximately the same number of pulsar pairs, and central bin locations avoid zeros of the Hellings–Downs curve. This binned
reconstruction accounts for correlations between pulsar pairs (Romano et al. 2021; Allen & Romano 2022). The dashed black
line shows the Hellings–Downs correlation pattern, and the binned points are normalized by the amplitude of the � = 13/3
common process to be on the same scale. Note that we do not employ binning of inter-pulsar correlations in our detection
statistics; this panel serves as a visual consistency check only. See §4 for more frequentist results. (d): Bayesian reconstruction
of normalized inter-pulsar correlations, modeled as a cubic spline within a variable-exponent power-law model. The violins plot
the marginal posterior densities (plus median and 68% credible values) of the correlations at the knots. The knot positions are
fixed, and are chosen on the basis of features of the Hellings–Downs curve (also shown as a dashed black line for reference): they
include the maximum and minimum angular separations, the two zero crossings of the Hellings–Downs curve, and the position
of minimum correlation. See §3 for more details.

NANOGrav 15yr dataset
• Cosmic strings no longer a good fit (as it was for NG 12.5yr)
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Domain walls at NG15

NANOGrav 15-year New-Physics Signals 31
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Figure 12. Same as in Fig. 5, but for domain walls decaying to SM particles (left panel) and a dark sector (right panel).
Fig. 31 in Appendix C.5 shows extended versions of the two plots that include the spectral shape parameters b, c and the
SMBHB parameters ABHB and �BHB.

et al. 2021). In our MCMC analysis of the dw-dr model,
we follow Ferreira et al. (2022) and use �N

max
e↵ = 0.39 as

the upper bound on our prior for the parameter �Ne↵ .
Assuming that all the domain wall energy is converted
to dark radiation at T⇤, �Ne↵ is related to ↵⇤ by

�Ne↵ ' 0.62

✓
10.75

g⇤

◆1/3 ✓
g⇤,s

g⇤

◆✓
↵⇤
0.1

◆
, (58)

where, as before, both g⇤ and g⇤,s are evaluated at T⇤.
In the dw-sm model, BBN restricts the possible values

of the decay temperature to T⇤ & 2.7 MeV (Jedamzik
2006; Bai & Korwar 2022) for any detectable value of ↵⇤.
Following Ferreira et al. (2022), we also impose ↵⇤ < 0.3
to avoid any possible deviation from radiation domina-
tion and to evade bounds from �Ne↵ .

RESULTS AND DISCUSSION

The reconstructed posterior distributions for the pa-
rameters T⇤ and ↵⇤ (T⇤ and �Ne↵) of the dw-sm (dw-
dr) model are reported in Fig. 12, for both the case
where the domain walls are assumed to be the only
source of GWs (blue contours) and the scenario where
we consider the superposition of the domain wall and
SMBHB signals (red contours). Full corner plots includ-
ing the posterior distributions of the spectral shape pa-
rameters b and c are reported in Fig. 31 in Appendix C.5.

For both the dw-sm and dw-dr models, with and
without the inclusion of the SMBHB signal, we find that
the GWB produced by domain walls peaks around 10�8

Hz such that most of the low frequency bins are fit by the
low-frequency tail of the spectrum (see Figs. 3 and 19).
Specifically, for the dw-sm (dw-dr) model, we find that
T⇤ 2 [110, 275] ([79, 153]) MeV at the 68% credible level
and T⇤ 2 [76, 505] ([54, 198]) MeV at the 95% credible
level. When including the SMBHB contribution to the
GWB, we find T⇤ 2 [108, 309] ([54, 216]) MeV at the
68% credible level and T⇤ 2 [67, 843] (no bound on T⇤)
MeV at the 95% credible level for the dw-sm (dw-dr)
model. We notice that, with and without the inclusion of
SMBHBs, the recovered transition temperature for the
dw-sm model is high enough to evade BBN constraints.

For the dw-dr model, the posterior distribution for
�Ne↵ is peaked near the upper prior boundary, signaling
that larger values fit the observed signal better. Specif-
ically, we find �Ne↵ & 0.32 at the 68% credible level
and �Ne↵ & 0.25 at the 95% credible level. Includ-
ing the contribution from SMBHBs allows the distribu-
tion for �Ne↵ to extend to lower values, and we find
�Ne↵ & 0.23 at the 68% credible level and no bound at
the 95% credible level. We thus conclude that the dw-
dr model prefers large �Ne↵ values in the vicinity of
existing bounds. This means that the most promising
parameter regions, i.e., regions that are not yet ruled
by �Ne↵ but still manage to fit the NANOGrav signal,
point to �Ne↵ values within the reach of upcoming ex-
periments, including CMB-S4 (Abazajian et al. 2022),
which promises to be sensitive to �Ne↵ values as small
as �Ne↵ ' 0.06 at the 95% confidence level.

• Need network which is 10% energy 
budget, annihilating at QCD temperature

• QCD as a trigger: ALP domain walls 
biased by QCD potential*

SB, Mariotti, Rase, Sevrin, 
[2302.06952], JCAP

Low T . Here we notice that the drop of the reflection probability is not exponential at
low momentum, but rather |R|2 ' 0.54↵2k4. Here we expect that the BE statistics does not
play a role: the integrand is dominated by the highest momentum before the exponential
suppression kicks in, k & T . We then use our simplified formula,

�P ' v
2

⇡2

Z 1

0

dkk3(0.54↵2k4/m4
a)e

�k/T ' 500 · ↵2

✓
T

ma

◆4

T 4, (36)

namely �P ⇠ v↵2T 8/m4
a.

High T . Here I think it’s important to use the BE distribution. One needs to do the
integral numerically in this case, but I think we should find something

�P ⇠ vm3
aT (37)

with coe�cient that are probably di↵erent, but qualitatively the same as the case with no
cancellation discussed in the preprint.

V (a) = �⇤4 cos (2Na) (38)

�a00(z)F 2
a + V 0(a) = 0 (39)

ak(z) =
2

N
tan�1emaz + k

⇡

N
(40)

µ ⇠ log(m⇢R) · F 2
a (41)

� ⇠ maF
2
a (42)

q =

✓
u
d

◆
! eiaN�5Qa

✓
u
d

◆
(43)

fa = Fa/(2N) (44)

�[g(a)]DW = ±
✓
E

N
� 8

3

◆
⇡ (45)

La �
1

4⇡
a
⇣
↵dNdG

0G̃0 + ↵sNsGG̃
⌘

(46)
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Figure 1. One and two sigma contours for the DW interpretation of the signal as provided by
the [1] collaboration (blue and yellow dots). The prediction of a DW network with QCD induced
bias (∆V ∼ ε2m2

πf
2
π) are displayed as lines with varying DW tension.

with n " 7 and χ1/4
0 " 75.6MeV, even though some uncertainty on these parameter still

remains (see e.g. [140] and references therein). Similarly to the low-temperature case,
some approximate alignment between QCD and the dark-QCD can lead to a parametric
suppression of the natural bias |∆Vk|(T ) ∼ χ(T ) to

|∆Vk|(T ) ∼ ε2χ(T ) . (3.6)

In our analysis we consider as a bias eq. (3.4) for T ! 150MeV and eq. (3.6) for T "
150MeV.

From this simple estimate we can already draw some conclusions in the light of the
recent PTA results. In ref. [1], the collaboration has performed a bayesian analysis on
the NANOGrav data for the DW interpretation. The results were displayed in a two
dimensional plane of T∗ vs α∗ as 1 and 2 sigma contours, as shown in figure 1, for the case
of DWs as the only source contributing to the GW signal.

In order to compare the NANOGrav contours with the scenario we are discussing, we
can first use equations (2.8) and (2.9) to relate directly the fraction of energy density to
the annihilation temperature, for a given bias potential,

α∗ " 0.15
(

∆V 1/4

100MeV

)4 (
T∗

100MeV

)−4 ( g∗
10

)−1
. (3.7)

Plugging in ∆V ∼ ε2m2
πf

2
π in the equation above we obtain a line in the T∗ vs α∗ plane.8

Notice that each point on this line corresponds to a specific domain wall tension.
8In the region relevant for NANOGrav the network annihilates below T = 150MeV in our model, so

that it is consistent to use the temperature independent potential (3.4).
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Fig: Bubble chamber

Thanks to M. Nee!

Interplay: impurities



“If monopole (or vortex) solutions exist for a metastable or 
false vacuum, a finite density of monopoles (or vortices) can 
act as impurity sites that trigger inhomogeneous nucleation 
and decay of the false vacuum.”

“Now one has to ask the following question: Is the early 
universe really sufficiently pure in order for supercooling 
to take place? The aim of this paper is to show that in 
most cases the early universe is very pure. […] In this paper 
we consider ordinary particles as impurities.”

“In particle physics it is often assumed that phase 
transitions are nucleated by thermal fluctuations. In 
practice, […] except in very pure, homogeneous samples, 
phase transitions are often nucleated by various forms of 
impurities and inhomogeneities of nonthermal origin.”

“What if the transition was nucleated by impurities? In 
this case the mean spacing between bubbles has 
nothing to do with free energies of nucleation and is 
simply the spacing between the relevant impurities. ”



Simone Blasi - 4th BIG meeting

ξ ∼ 1
H−1 • Nucleation probability no longer the 

same everywhere!

• Competition between seeded bubbles, 
and hom. bubbles far from the defect

Seeded bubbles
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Particle physics 
QCD axionSM +  scalar (xSM)ℤ2

SB, Mariotti [2405.08060], SciPost
Figure 3: Field profiles showing the critical bubble nucleated on the domain wall for

benchmark 1 (left) and benchmark 2 (right). The shading represents the value |S|/vS and

black contours show lines of constant h. The orange lines show the contours |S|/vS = 0.75.

3.2 Results for the bounce action

With the numerical procedures described in the previous section we are now in a position

to compare the bounce solutions for the catalysed and homogeneous configurations. If we

restrict ourselves to the leading order in the high–T expansion we can crosscheck the results

previously presented in ref. [61] with the new ones obtained with the MPT. This is shown

in appendix A for a given benchmark point, and we find a very good agreement between

the various methods in their region of applicability.

In this section we instead focus on the results obtained with the MPT with the full

1–loop thermal potential. To this end, we consider two benchmark points in parameter

space, indicated by the red and blue stars in figure 2. Benchmark 1 is the following choice

of parameters (corresponding to benchmark C in section 4.2.2 of [2]):

(, ⌘, mS) = (1.5, 3.3, 250 GeV) , (3.7)

and benchmark 2 is the choice:

(, ⌘, mS) = (1.5, 2.3, 250 GeV) . (3.8)

In figure 3 we show the critical bubbles at nucleation for both benchmarks.

In figure 4 the bounce action for the catalysed transition is compared to the homoge-

neous bounce action for a range of temperatures for each benchmark. Also shown is a lower

bound on the bounce action derived within the thin wall approximation, and therefore re-

liable for T ⇡ Tc, as detailed in appendix B. For both benchmark points, the catalysed

bounce action is much smaller than the homogeneous bounce, BDW < Bhom. Given the

exponential dependence of the decay rate on the bounce action, at a given temperature the

catalysed process will dominate the homogeneous decay,

�hom(T ) ⌧ ⇠H(T )�DW(T ) . (3.9)
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SB, Mariotti [2203.16450], PRL

 wallℤ2

Figure 1: Three–dimensional representation of a critical bubble of broken electroweak

symmetry seeded by the QCD axion string. The string is shown in red, and it is taken to

be straight and aligned with the vertical z direction. The Higgs bubble in green is nucleated

around the string with a non–spherical shape, corresponding to the surface where the Higgs

field is h(r, z) ⇠ 25GeV for illustration purposes. Detailed information is given in Sec. 5.3.

Let us also mention that, as one expects a large hierarchy between the EW scale and

the PQ scale, our analysis will be based on an e↵ective field theory (EFT) for the Higgs field

where the heavy degrees of freedom (including the basic axion string) are integrated out 3.

Our EFT matches the known results for the SM + axion (or ALP) EFT, see e.g. [74–76],

but additionally allows to take into account the presence of the axion string in a simple way.

We will also comment on how the relevance of the di↵erent higher–dimensional operators in

the ALP EFT is modified in the string background. We believe that our approach provides

an e�cient framework to study the dynamics of EW–scale states coupled to strings of large

tension, which can be applied to many extensions of the SM.

This paper is organized as follows. In Sec. 2 we introduce our Lagrangian and comment

on the di↵erent realizations depending on whether the EW phase transition is first order

or not. We also present a brief overview of the possible QCD axion string solutions allowed

by the model. In Sec. 3 we derive the EFT for the Higgs field in the string background,

and carry out the relevant computations that are needed to study the thermal history of

the Higgs sector. This is discussed in detail in Sec. 4 for the minimal SM + PQ scenario,

and in Sec. 5 for a model with a first order EW phase transition. We conclude in Sec. 6.

2 Setup

Our setup consists of a complex scalar field � charged under a global U(1) Peccei–Quinn

symmetry coupled to the scalar sector of the Standard Model via a portal interaction of

3
See [72, 73] for a similar approach in the context of branes and strings with fluxes.

– 3 –
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• Domain wall network mimicked by Ising model, bubbles nucleated on the walls

Seeded

Figure 4: Final spectra of the gravitational waves with (left) and without (right)
the domain wall network. The strength of the phase transition is ↵ = 0.05, and the
velocities of the bubble walls are (from top to bottom) vw = 0.4, 0.55 and 0.8.
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• Domain wall network mimicked by Ising model, bubbles nucleated on the walls

Seeded

Figure 4: Final spectra of the gravitational waves with (left) and without (right)
the domain wall network. The strength of the phase transition is ↵ = 0.05, and the
velocities of the bubble walls are (from top to bottom) vw = 0.4, 0.55 and 0.8.
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Total signal will be in general a superposition of defects 
+ bubbles,  most relevant for heavy defects



Superheated bubbles

Figure 1: Schematic representation of the thermally corrected potential of a phase transition
triggered by the vacuum energy, denoted as direct PT (blue arrow), and a phase transition
against the vacuum energy, triggered by thermal corrections, referred to as inverse phase
transition (darker red arrow).

1 Introduction

Phase transitions (PTs) in the early universe plasma, usually called cosmological phase
transitions, have recently received much attention mostly due to the broad range of in-
teresting consequences that they can bring to the early universe thermal history. From
a phenomenological perspective, cosmological phase transitions can be at the origin of the
baryogenesis [1–14], the production of heavy dark matter [15–26], primordial black holes [27–
31] and possibly observable gravitational wave (GW) [32–36]. Moreover, from a theoretical
perspective, PTs between a local minimum and a deeper, local or global, minimum are
commonplace in quantum field theory, where it is believed that the vacuum structure is
a complicated manifold. In a related way, PTs appear naturally in a large variety of mo-
tivated BSM models like composite Higgs [37–41], extended Higgs sectors [42–51], axion
models [52, 53], dark Yang-Mills sectors [54, 55], B � L breaking sectors [56, 57].

For all these reasons, the hydrodynamics of cosmological phase transitions have been in-
tensively studied in the past, alongside with their hydrodynamical properties, their e�ciency
to turn vacuum energy into bulk motion, sound speed e↵ects [58–65] and gravitational wave
imprint [66–68]. A thorough classification of the di↵erence modes of expansion of bubbles
wall has been presented [69–72]. Five consistent types of solutions survived the examina-
tion: weak and Chapman-Jouguet (CJ) deflagrations, weak and CJ detonations and hybrid
solutions, which are supersonic deflagrations glued to rarefaction waves. The collapse of
cosmological droplets, because of their possible impact on the production of GW [73] and
PBH production [74], also received attention. In a direct phase transition, the vacuum un-
dergoes a transition from a local higher minimum of the zero–temperature potential to a
deeper minimum, as presented by the blue arrow (direct PT) in Fig.1. The acceleration of
the bubbles of the new phase is then triggered mostly by the vacuum energy release.

A much less studied situation is the expansion of bubbles of inverse phase transitions,
where the transition is from a lower minimum (of the zero–temperature potential) to a higher

3

Supercooled branch 

Superheated branch 
Are these two phase transitions 

qualitatively the same?

The  potential matters!T = 0

Simone Blasi - 4th BIG meeting

Barni, SB, Vanvlasselaer [2406.01596], 
JCAP

Bea, Casalderrey-Solana, Mateos, 
Sanchez-Garitaonandia [2406.14450]

(Buen-Abad, Chang, Hook [2305.09712] 
PRD)
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Figure 3. Left: In standard direct phase transitions with –+ > 0, we depict contours of constant
–+ in the allowed region in the plane (v≠, v+), where v± are the fluid velocities in the wall frame.
Shaded red regions indicate the presence of deflagrations and detonations, which are forbidden by
hydrodynamical constraints, as we explain in the text. Right: Same as the left panel, but for the
case of inverse phase transitions with –+ < 0. In the shaded red regions we similarly highlight the
impossibility of strong inverse detonations (v+ Æ cs), while strong inverse deflagrations will decay to
inverse hybrids.

where we have defined1

–+ © ‘+ ≠ ‘≠
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+

, r ©
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+

a≠T 4
≠

, –N © ‘+ ≠ ‘≠
a+T 4

N

, (2.10)

with –N characterizing the strength of the PT at the nucleation temperature TN . It is then2

conventional to define the vacuum energy in the true minimum to be zero: ‘≠ = 0 and ‘+ © ‘.3

Notice that by doing so we are specifying our transition to proceed from a phase with a4

higher vacuum energy to a phase with a lower one. This is the usual behavior expected for a5

cooling phase transition, as it complies with the structure of the zero-temperature potential.6

The parameter r can be eliminated from eq. (2.9) to write v+(v≠, –+),7

v+(v≠, –+) = 1
1 + –+

✓
v≠
2 + 1

6v≠

◆
±

s✓
v≠
2 + 1

6v≠

◆2

+ –2
+

+ 2
3–+ ≠ 1

3

�
. (2.11)

In figure 3 are reported the two di�erent branches ± for constant values of –+. The left8

panel refers to direct PTs, with –+ > 0, while as we will discuss in section 3 the right panel9

refers to inverse PTs, with –+ < 0.10

Phase transitions and discontinuities are accompanied by an increase in the entropy of11

the plasma. We discuss the conservation of entropy current12

ˆµ(su
µ) = 0, s © w

T
(Entropy in continuous waves) . (2.12)

– 6 –

Direct transitions

Espinosa, Konstandin, No, Servant [1004.4187] JCAP

3.1 Detonations

A pictorial representation of a typical detonation is depicted in Fig. 3, right plot. The
corresponding velocity profile is as in Fig. 4, lower left plot. More precisely, in detonations
the phase transition wall moves at supersonic speed ξw (ξw > c+s ) hitting fluid that is at rest
in front of the wall. In the wall frame, the symmetric-phase fluid is moving into the wall at
v+ = ξw and entering the broken phase behind the wall where it slows down so that v− < v+.
In the rest frame of the bubble center, the fluid velocity right after the wall passes jumps to
v(ξw) = µ(v+, v−) (the Lorentz transformation (28) from the frame of the wall to the rest
frame of the center of the bubble) and then slows down until it comes to a stop, at some
ξ < ξw, forming a rarefaction wave behind the wall. From the previous discussion we know
that v will go to zero smoothly at ξ = c−s .

deflagration
ξw < cs

ξw > cs ξw > cs

hybrid detonation

Figure 3: Pictorial representation of expanding bubbles of different types. The black circle is the
phase interface (bubble wall). In green we show the region of non-zero fluid velocity.

In order to obtain a consistent solution in the region c−s < ξ < ξw, one needs 0 < ∂ξv <∞
which, using eq. (27), requires µ(ξ) > µ(ξw) ≥ c−s behind the wall. Consequently, detonation
solutions are confined to the lower right corner of fig. 2, as indicated. Boosting to the wall
frame this implies v− ≥ c−s , since v− = µ(ξw, v(ξw)). Therefore, detonations can be divided
into Jouguet detonations (v− = c−s ) and weak detonations (v− > c−s ); strong detonations
(v− < c−s ) are not consistent solutions of the fluid equations, see fig. 1.2

Fig. 4 shows also the enthalpy profile (bottom right) for a detonation. Concerning this
profile, remember that the matching conditions across the wall give

wN = w+ = w−

(

1− ξ2w
ξw

)(

v−
1− v2−

)

, (34)

where the subscript N denotes the plasma at the temperature of nucleation far in front of

2As c−
s

can be different from 1/
√
3 in the most general case, the forbidden region v

−
< c−

s
, shaded in

Fig. 1, will be shifted in those cases.

10
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Figure 3. Left: In standard direct phase transitions with –+ > 0, we depict contours of constant
–+ in the allowed region in the plane (v≠, v+), where v± are the fluid velocities in the wall frame.
Shaded red regions indicate the presence of deflagrations and detonations, which are forbidden by
hydrodynamical constraints, as we explain in the text. Right: Same as the left panel, but for the
case of inverse phase transitions with –+ < 0. In the shaded red regions we similarly highlight the
impossibility of strong inverse detonations (v+ Æ cs), while strong inverse deflagrations will decay to
inverse hybrids.
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with –N characterizing the strength of the PT at the nucleation temperature TN . It is then2

conventional to define the vacuum energy in the true minimum to be zero: ‘≠ = 0 and ‘+ © ‘.3

Notice that by doing so we are specifying our transition to proceed from a phase with a4

higher vacuum energy to a phase with a lower one. This is the usual behavior expected for a5

cooling phase transition, as it complies with the structure of the zero-temperature potential.6
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In figure 3 are reported the two di�erent branches ± for constant values of –+. The left8

panel refers to direct PTs, with –+ > 0, while as we will discuss in section 3 the right panel9

refers to inverse PTs, with –+ < 0.10

Phase transitions and discontinuities are accompanied by an increase in the entropy of11

the plasma. We discuss the conservation of entropy current12
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Inverse bubble expansion
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Figure 8. Velocity profiles for inverse detonations (left), inverse hybrids (middle) and inverse
deflagrations (right).

Types of discontinuities for cosmological inverse phase transitions
Inverse Detonations
(p+ < p≠, v+ > v≠)

Inverse Deflagrations
(p+ > p≠, v+ < v≠)

Weak v+ < cs, v≠ < cs v+ > cs, v≠ > cs

Chapman-Jouguet v+ = cs, v≠ < cs v+ = cs, v≠ > cs

Strong v+ > cs, v≠ < cs v+ < cs, v≠ > cs

Table 2. Types of discontinuity for the inverse phase transitions.

Following the same steps as before and eliminating the pressures and the r parameter in1

favor of –+ and v≠, we obtain the same relation between the velocities2

v+(v≠, –+) = 1
1 ≠ |–+|

✓
v≠
2 + 1

6v≠

◆
±

s✓
v≠
2 + 1

6v≠

◆2

+ –2
+

≠ 2
3 |–+| ≠ 1

3

�
, (3.2)

with the only di�erence that –+ is now negative. Notice that the limit –+ æ ≠1 is actually3

smooth. The isocontours with constant –+ are reported in the right panel of figure 3.4

3.2 The types of solutions for inverse PTs5

Similarly to the case of direct phase transitions, we expect that several types of fluid solutions6

can exist for inverse phase transitions. We found five di�erent possible expansion modes,7

analogously to the direct case, that we called: i) inverse detonations (weak and CJ), ii) inverse8

deflagrations (weak and CJ), and iii) inverse hybrids, displayed in the left, right, and middle9

panels, respectively, of figure 8. Our naming of inverse detonations and deflagrations relies10

on the mirror symmetry that can be drawn from figure 5.311

3.2.1 Inverse detonations12

The first possibility, in analogy with detonations, would be to build an inverse detonation by13

gluing a reaction front with ›w = v≠ < cs and a rarefaction wave going from v(›+
w ) to 0 at14

3
The distinguishing physical characteristic of detonations setting it apart from deflagrations, as stated

in [85], is that the fluid just behind the reaction front is in motion rather than the propagation exceeding the

speed of sound. The mirror symmetry flips this physical interpretation, as for instance for inverse detonations

the fluid will be in motion ahead of the reaction front.
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• Fluid is sucked in by the advancing bubble wall:
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Figure 5. Profiles of the fluid velocity v(›) in the plasma frame, both for the case of (standard) direct
phase transitions (–+ > 0), and for inverse phase transitions (–+ < 0). The former case is described in
the quadrant I and has v(›) > 0, while the latter is in the quadrant II with v(›) < 0. The gray shaded
region is unphysical as it would imply that the fluid moves faster than the wall, |v(›)| > |›|. The red
shaded region would similarly give unphysical velocity profiles as the dot-dashed red line indicates the
maximum velocity that a detonation-type of solution can have, i.e. the sound speed in a frame moving
at ›, v(›) = µ(›, cs). The dashed blue line shows the velocity of the shock front for deflagrations,
that is µ(›sh, v(›sh))›sh = c

2
s. The di�erent quadrants describe di�erent physical systems: I) bubble

and II) inverse bubble expansion as › > 0, III) droplet and IV) inverse droplet collapse with › < 0.
The quadrants are related among each other by a mirror symmetry v æ ≠v and › æ ≠›. The
colored profiles in orange, green and blue, in the I quadrant, describe a deflagration, a hybrid, and a
detonation, respectively, and in the II quadrant an inverse deflagration, an inverse-hybrid, and an
inverse detonation, respectively. The other profiles are obtained by symmetry (see also [80]).

In this section, we delineate the di�erent types of solutions possible for direct cosmological1

phase transitions. In figure 5 we present all the possible solutions of eq. (2.25). The four2

quadrants describe di�erent physical situations: I) direct bubble expansion [71, 83, 84], II)3

inverse bubble expansion (this work), III) direct droplet collapse (see [74] for a recent study)4

and IV) inverse droplet collapse. In this section we will remind the solutions in quadrant I5

and study in depth the solutions of quadrant II in section 3. Table 1 summarizes the various6

flows that can exist across the discontinuity.7

Direct phase transitions admit three bubble expansion modes: i) detonations ii) defla-8

grations and iii) hybrid solutions.9

– 11 –

Inverse 
expansion

Direct 
expansion

Droplet 
collapse

Inverse droplet 
collapse



Kinetic energy of the fluid
Best efficiency (50%) 

for αN = − 1/3

proofs JCAP_052P_0724

0.2 0.4 0.6 0.8 1.0

10-4

0.001

0.010

0.100

1

Figure 11. E�ciency factor for converting the energy budget into bulk fluid motion for direct PTs
(left) and in the inverse case (right). The red dashed line is the Jouguet velocity. The red shaded region
shows where no consistent solution with such a choice of wall velocity and e�ciency can be found.

4.2 Thermodynamic quantities for inverse PTs1

In this section, we aim to build the profiles for the thermodynamic quantities of interest for2

the inverse PTs. All the details are collected in appendix B and the profiles for the inverse3

transitions are presented in the bottom row of figure 10.4

E�ciency factor. For the inverse PTs, we start by considering the energy density before5

the nucleation event to be the one of radiation,6

fltot = eR = 3
4wN , (4.7)

where wN is the enthalpy of the + phase at the nucleation temperature. On the other hand,7

the kinetic energy density of the fluid is given by8

flkin Ã v
2
“

2
w . (4.8)

It is again instructive to split the conservation of energy. For the inverse PTs, we obtain9

3
4

Z
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initial thermal energy
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vacuum energy
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fluid motion
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4

Z
w›

2
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| {z }
final thermal energy

, (4.9)

where w.r.t. to the standard case we see that the total amount of energy at our disposal is the10

initial thermal energy that will be converted not only into kinetic and final thermal energy, but11

also into vacuum energy. Indeed, it is apparent from eq. (4.9) that inverse phase transitions12

are happening “against the vacuum” and would not be possible at zero temperature.13

In order to understand what are the appropriate boundaries of integration, we can14

consider the total enthalpy before nucleation inside a sphere that will contain all the space15

a�ected by the fluid perturbation after nucleation. This sphere has radius v̄ = Max(›w, cs),16

where for instance v̄ = cs for inverse detonations.17
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E�ciency factor. For the inverse PTs, we start by considering the energy density before5

the nucleation event to be the one of radiation,6

fltot = eR = 3
4wN , (4.7)

where wN is the enthalpy of the + phase at the nucleation temperature. On the other hand,7

the kinetic energy density of the fluid is given by8
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where w.r.t. to the standard case we see that the total amount of energy at our disposal is the10

initial thermal energy that will be converted not only into kinetic and final thermal energy, but11

also into vacuum energy. Indeed, it is apparent from eq. (4.9) that inverse phase transitions12

are happening “against the vacuum” and would not be possible at zero temperature.13

In order to understand what are the appropriate boundaries of integration, we can14

consider the total enthalpy before nucleation inside a sphere that will contain all the space15

a�ected by the fluid perturbation after nucleation. This sphere has radius v̄ = Max(›w, cs),16

where for instance v̄ = cs for inverse detonations.17
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• Fraction of the critical energy density that goes into bulk fluid motion:
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