Constraining Primordial Black Holes with Gravitational Waves

Sachiko Kuroyanagi IFT UAM-CSIC / Nagoya University

29 Nov 2024

KA

Gravitational wave (GW) observation

Advanced-VIRGO (2017-)

Primordial Black Holes (PBHs)

= Black holes generated in the early universe

could originate from

- Inflation
- Reheating
- Phase transitions
- Collapse of cosmic strings
- Scalar field instabilities

etc.

Origin of the observed 30 M_• BBHs could be primordial.

Bird et al., PRL 116, 201301 (2016) Clesse & Garcia-Bellido, PDU 10, 002 (2016) Sasaki et al., PRL 117, 061101 (2016)

GWs as a probe of PBHs

Today

Stochastic GW background search

GW background as a probe of the early universe!

Scalar-induced GWs

R. Saito & J. Yokoyama, PRL 102, 161101 (2009)

Scalar-induced GWs

2nd order of scalar perturbations $ds^{2} = a^{2}(\eta)[-(1+2\Phi)d^{2}\eta + [(1-2\Psi)\delta_{ii} + h_{ii}]dx^{i}dx^{j}]$

GWs from PBH mergers

S. Clesse & J. García-Bellido, Phys. Dark Univ. 18, 105 (2017)

Expected constraints

for monochromatic mass function

with threshold of SNR = 8

① Scalar-induced GWs

2 PBH mergers

 \rightarrow can be avoided if BH has longer lifetime (possible with quantum effects?) V. Those

V. Thoss et al., MNRAS 532, 1, (2024) 451-459 K. Kohri et al., arXiv:2409.06365

Spectrum for broad mass function

lognormal mass function with width Δ

How to provide a constraint from LVK data

Data is available at https://dcc.ligo.org/LIGO-G2001287/public

pygwb

Open access Python module published from the LVK collaboration for a stochastic background analysis

Renzini et al., ApJ 952, 25 (2023) https://pypi.org/project/pygwb/ see also https://pygwb.docs.ligo.org/pygwb/

pygwb 1.5.1

How to detect a stochastic background

What we do in the LVK stochastic search

Renzini et al., ApJ 952, 25 (2023)

Overlap reduction function

Detectors are located at different site and facing different direction

Figure from A. Nishizawa et al. PRD 79, 082002 (2009)

Variance: level of noise

Likelihood analysis

Likelihood analysis

Probing GWs with features

FAQ: Can we detect features in GW background?

Likelihood

$$p(\hat{C}_{k}^{IJ}|\Theta) \propto \exp\left[-\frac{1}{2}\sum_{IJ}\sum_{k}\left(\frac{\hat{C}_{k}^{IJ}-\Omega_{M}(f_{k}|\Theta)}{\sigma_{IJ}^{2}(f_{k})}\right)^{2}\right]$$

k: frequencies

 \rightarrow Yes, features can be detected if the signal has high enough SNR (at least 1) in the corresponding frequency bin.

1 LVK O3 constraint on scalar induced GWs

Many inflationary models predicting large curvature perturbations (and producing PBHs) exhibit Non-Gaussianity (NG)

- ultra slow roll inflation
- multi field inflation
- couplings leading to particle production, etc.

R. Inui, S. Jaraba, SK, S. Yokoyama, JCAP 05 (2024) 082

Note on the form of non-Gaussianity

Our assumption: local type non-Gaussianity

$$\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + F_{\rm NL}\zeta_g^2(\mathbf{x})$$

perturbative expansion

The form of non-Gaussianity can be very different

1.0

0.8

 $\begin{array}{c} 0.6 \ \phi \\ \Delta \phi_{\text{well}} \\ 0.4 \end{array}$

0.2

0.0

1.5

---- Tail exp.

G. Perna et al., arXiv:2403.06962

5th order non-neglible contribution?

$$\begin{split} \mathcal{R}(\mathbf{x}) &= \mathcal{R}_g(\mathbf{x}) + f_{\rm NL}(\mathcal{R}_g^2(\mathbf{x}) - \langle \mathcal{R}_g^2 \rangle) + g_{\rm NL}\mathcal{R}_g^3(\mathbf{x}) \\ &+ h_{\rm NL}(\mathcal{R}_g^4(\mathbf{x}) - 3\langle \mathcal{R}_g^2 \rangle^2) + i_{\rm NL}\mathcal{R}_g^5(\mathbf{x}) \end{split}$$

R. Inui et al., arXiv:2411.07647

logarithmic non-Gaussianity

$$\hat{\zeta}(r) = -\frac{1}{\gamma} \ln \left(1 - \gamma \hat{\zeta}_g(r)\right)$$

2 LVK O3 constraint on PBH mergers

Note on the merger rate modeling

② PBH mergers Lots of uncertainties in theoretical prediction!

Theoretical uncertainties

<u>merger rate</u>

$$R_{\rm EB} = \frac{1.6 \times 10^6}{\rm Gpc^3 yr} \times \underline{f_{\rm sup}(m_1, m_2, f_{\rm PBH})} f_{\rm PBH}^{53/37} f(m_1) f(m_2)$$
$$\times \left(\frac{t}{t_0}\right)^{-34/37} \left(\frac{m_1 + m_2}{M_{\odot}}\right)^{-32/37} \left[\frac{m_1 m_2}{(m_1 + m_2)^2}\right]^{-34/37}$$

f_{sup}: suppression factor

Raidal et al., JCAP 1902, 018 (2019)

takes into aaccount binary disruption by

- local matter inhomogeneities
- initial Poisson fluctuations

PBH clusters

 \rightarrow modification of semi-major axis and eccentricity

- Tested by N-body simulation, but picture may completely change for wide mass function.
- Simulation is difficult for wide mass range.

Theoretical uncertainties

$$R_{\rm LB} \approx R_{\rm clust} f_{\rm PBH}^2 f(m_1) f(m_2) \frac{(m_1 + m_2)^{10/7}}{(m_1 m_2)^{5/7}} {\rm yr}^{-1} {\rm Gpc}^{-3}$$

Rclust: clustering factor

$$R_{\rm clust} \approx 3.6 h^4 \left(\frac{\Omega_{\rm DM}}{0.25}\right)^2 \left(\frac{\delta_{\rm loc}}{10^8}\right) \left(\frac{v_0}{10~{\rm km/s}}\right)^{-11/7}$$

estimated by a very simplified picture

- kicks
- dynamical friction
- What is the cluster density?
 - How many?
 - distribution?
- Picture changes for wide mass function
- \rightarrow need to follow BH dynamics throughout the history of the universe

Individual binary search

Searching primordial black holes

Detection of BH with < ~1M. can be a strong evidence of primordial origin

f [Hz]

Search method

Chirp time (at Newtonian order)

$$\tau_0 = \frac{5}{256} M^{-5/3} (\pi f_0)^{-8/3} \eta^{-1}$$

Total mass: $M=m_1+m_2$ Symmetric mass ratio: $\eta=rac{m_1m_2}{(m_1+m_2)^2}$ Lowest frequency: f_0

0.2 - 2 M Subsolar mass search

LVK collaboration, PRL 121, 231103 (2018); PRL 123, 161102 (2019); PRL 129, 061104 (2022); arXiv:2212.01477 Nitz & Wang, ApJ, 915, 54 (2021) Phukon et al., arXiv:2105.11449 Morrás et al., PDU 42, 101285 (2023)

→ compact binary coalescence (CBC) search

10-7 - 0.2 M Planetary mass search

Miller et al., PDU 32, 100836 (2021) Miller et al., PRD 105, 062008 (2022)

\rightarrow continuous wave (CW) search

Planetary mass BH constraints

LVK collaboration, PRD 106, 102008 (2022)

Continuous wave (CW) search

Initial target: spinning neutron star with mass asymmetry

 \rightarrow can be used to constrain small mass PBH binaries with small frequency change

Constraints from CW search

Miller et al., PDU 32, 100836 (2021) PRD 105, 062008 (2022) fraction with respect to dark 10⁵ merging rate (kpc⁻³ yr⁻¹) 107 10⁶ 10⁵ 10^{4} 104 10^{-7} 10-6 10^{-5} 10^{-4} chirp mass (M_{\odot}) **Frequency evolution** $=\frac{96}{5}\pi^{8/3}$ $\dot{f}_{\rm gw}$ f is too large strain amplitude is too small **Powerflux pipeline**

 \rightarrow searched periodic signal allowing spin-up of $f \leq 1.00 \times 10^{-9} \text{ Hz/s}$

Let us explore > 10⁵M.

Application of Viterbi algorithm

Step-by-step scan for most probable signal location

amplitude excess in the f-t plane

Figure from Bayley et al. PRD 100, 023006 (2019)

Planetary mass search

Already used in CW search

Not very sensitive, but fast and agnostic

Search method

Signal duration is large when BH mass is small

Chirp time (at Newtonian order)

$$\tau_0 = \frac{5}{256} M^{-5/3} (\pi f_0)^{-8/3} \eta^{-1}$$

 \rightarrow We divide the data into optimal length and perform SFT

Example: Chirp signal for NS binary

SFT: short Fourier transform

Search method

When f is relatively large, the signal do not stay in one frequency bin

Frequency evolution $\dot{f}_{gw} = \frac{96}{5} \pi^{8/3} \left(\frac{G\mathcal{M}}{c^3}\right)^{5/3} f_{gw}^{11/3}$

 \rightarrow We have to divide the data into optimal length

Example: Chirp signal for NS binary

Optimal SFT length

SFT to maximize detection efficiency

condition: signal has to stay in a single frequency bin of the SFT

Working example

O3 Gaussian noise is assumed

 $[\mathcal{M}_c, d_L] = [10^{-2} M_{\odot}, 147 \text{Kpc}]$

Recovery by Viterbi

Sensitivity

for equal mass binary

Solid: analytic estimation Dots: simulation

Summary

Gravitational wave is a unique probe of primordial black hole scenarios

Stochastic search

- Inui et al. (+SK) JCAP 05, 082 (2024), arXiv: 2311.05423
 We have provided constraint on scalar induced GWs using LVK
 O3 data, by taking into account the effect of non-Gaussianity in curvature perturbations.
- Boybeyi et al. (+SK) in preparation

We have provided constraint on PBH binaries using LVK O3 data by considering both early and late binary formation.

Continuous wave search

Alestas et al. (+SK) PRD 109, 123516 (2024)
 We have formulated a method to search planetary mass (10⁻² - 10⁻⁵M_☉) PBH with the application of Viterbi algorithm.

Subsolar mass search

 \rightarrow mismatch: SN is reduced

Template bank

How do we find the correct template? \rightarrow We simply try many and search for parameter values that maximize the SNR.

Typically, the discreteness of the template bank is selected in a way that ensures the loss of SNR is less than 3%

Figure from Owen, PRD 53, 6749 (1996)

Challenge in subsolar mass search

Low mass event continues long time and has more oscillation cycles.

Figure from Krastev, PLB 803, 135330 (2020)

 \rightarrow sensitive to small phase shift by variation of parameters

 \rightarrow insensitive to small phase shift

→ need to decrease the grid size
 of the template bank
 → more computation time

Challenge in subsolar mass search

Low mass event requires fine gridding to avoid mismatch.

LVK collaboration, PRX 6, 041015 (2016)

Remedy(?): cutting low frequency

Magee et al. PRD 98, 103024 (2018)

Number of template: $N \propto m_{\min}^{-8/3} f_{\min}^{-8/3}$

 \rightarrow Increasing f_{min} helps to reduce computation time, but it reduces the SNR

← $f_{min} = 45Hz$ is commonly used in LVK search, allowing 20% loss in volume

Sub-solar mass search in LVK

O3b $f_{\min} = 45 \text{Hz}$					LVK collaboration, arXiv:2212.01477							
		search	range: m_1 m_2 0.1 $\chi_{1,2}$	$\begin{array}{c} 10 \] \ M_{\odot} \\ 1.0 \] \ M_{\odot} \\ 1.0 \ q \end{array}$	\odot cf. number of tem \Box_{\odot} 01: 500332 $\eta \equiv m_2/m_1$ 02: 992461 O3: ?					templates		
Triggers with FAR < 2 yr ⁻¹												
	$FAR [yr^{-1}]$	Pipeline	GPS time	$m_1 \ [M_\odot]$	$m_2 \ [M_{\odot}]$	χ_1	χ_2	H SNR	L SNR	V SNR	Network SNR	
_	$0.20 \\ 1.37 \\ 1.56$	GstLAL MBTA GstLAL	$\begin{array}{c} 1267725971.02\\ 1259157749.53\\ 1264750045.02 \end{array}$	$0.78 \\ 0.40 \\ 1.52$	$0.23 \\ 0.24 \\ 0.37$	$0.57 \\ 0.10 \\ 0.49$	$0.02 \\ -0.05 \\ 0.10$	$6.31 \\ 6.57 \\ 6.74$	6.28 5.31 6.10	- 5.81 -	8.90 10.25 9.10	
Idle	10^4 10^3 10^3 10^3 10^2 0.3	$10^{4} \begin{bmatrix} 10^{4} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		2.5	Assumption: early binary formation Sasaki et al. PRL 117, 061101 (2016) Raidal et al. JCAP 02, 018 (2019)			PBH fraction	Here $I_{\text{D}}^{(1)} = I_{\text{D}}^{(1)} =$			

chirp mass

PBH mass

Sub-solar mass search in LVK

O2 Extended search of O2 data (allowing large mass ratio)

<u>Triggers with FAR < 2 yr⁻¹</u>

Phukon et al., arXiv: 2105.11449

-1.00

0.2

0.4

χp

0.6

0.8

1.0

FAR [yr ⁻¹]	$\ln \mathcal{L}$	UTC time	mass 1 $[M_\odot]$	mass 2 $[M_\odot]$	spin1z	spin2z	Network SNR	H1 SNR	L1 SNR			
$\begin{array}{r} 0.1674 \\ 0.2193 \\ 0.4134 \\ 1.2148 \end{array}$	8.457 8.2 7.585 6.589	2017-03-15 15:51:30 2017-07-10 17:52:43 2017-04-01 01:43:34 2017-03-08 07:07:18	3.062 2.106 4.897 2.257	0.9281 0.2759 0.7795 0.6997	0.08254 0.08703 -0.05488 -0.03655	-0.09841 0.0753 -0.04856 -0.04473	8.527 8.157 8.672 8.535	8.527 - 6.319 6.321	- 8.157 5.939 5.736			
reana	reanalysis by \rightarrow SNR is reduced						Morrás et al., PDU 42, 101285 (2023					
remo	, i.			Paramete	er	IMRPhe	IMRPhenomPv2 IMRPhenomX					
exter	nding	Tmin to 20Hz		Signal to	Noise Rati	io 7.98	$7.98\substack{+0.62\\-1.03}$					
using	using more accurate waveform						4.65	$4.65^{+1.21}_{-2.15}$				
							⊙) 0.77	$0.77^{+0.50}_{-0.12}$				
	Hanford	original data clean data glitch model 1.4 1.2 000 0.8 0.6		PhenomPv2 PhenomXPHM NS-BH SSM-BH	c\$1/(Gm ²)	0° 0° 0.8 0.6 0.4 0.2 0.0 msgnitude	cS ₂ /(Gm ² ₂) ³⁰ ⁵¹ ⁵ ⁵ ⁵ ⁵ ⁵ ⁵ ⁵ ⁵	- IMRPhenomPv2 - IMRPhenomXPHM - Prior				

0.5

1.0

1.5

posterior probability per pixel

2.0

-14.19 -14.16 -14.13 -14.1 -14.07 -14.04 -14.01 -13.98 -13.95 -13.92 Time [seconds] from 2017-04-01 01:43:34.677 UTC (1175046232.677)

0.4

2

3

4

 $m_1^{\text{source}}[M_{\odot}]$

Whitened Strain