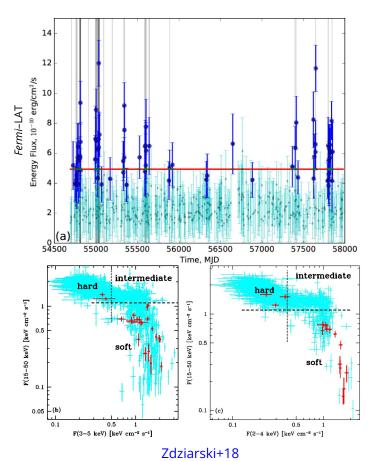


Results of the long-term campaign on Cygnus X-3 by MAGIC

E. Molina*, L. Barrios-Jiménez, M. Carretero-Castrillo, J. Becerra González, M. Ribó and J.M. Paredes, for the MAGIC Collaboration

*Instituto de Astrofísica de Canarias (IAC)

Variable Galactic Gamma-Ray Sources VII Barcelona, 6 May 2025


Introduction: Microquasars in gamma rays

Source	HE (0.1 - 100 GeV)	VHE (0.1 - 100 TeV)	UHE (> 100 TeV)	Comments
Cygnus X-1	Yes	4.1σ excess	No	VHE excess in a single observation night. 4.0 σ hint above 25 TeV with LHAASO.
Cygnus X-3	Yes	No	No?	UHE emission from a region compatible with the source position.
GRS 1915+105	Yes	No	Yes	Different emitting regions for each energy range.
MAXI J1820+070	No	No	Yes	
SS 433	Yes	Yes	Yes	Different emitting regions for each energy range. Emission far from the binary, except for UHE.
V404 Cygni	4.5 σ excess?	No	No	Updated <i>Fermi</i> –LAT analysis shows no excess.
V4641 Sgr	No	Yes	Yes	Emission far from the binary.

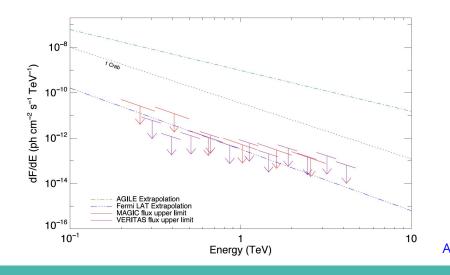
Acero+09, Aleksić+10, Archambault+13, Loh+16, Ahnen+17, Piano+17, Abeysekara+18, Fang+20, Abe+22, Harvey+22, LHAASO+23, H.E.S.S.+24, Dmytriiev+24, LHAASO+24, Martí-Devesa+24

Introduction: Cygnus X-3

- Cyg X-3 is a **high-mass microquasar** with a black hole or neutron star and a ~11 M_{\odot} Wolf-Rayet companion. Zdziarski+13, Koljonen+17
 - Distance: 9.7 ± 0.5 kpc Reid+23
 - Orbital period: 4.792354 ± 0.00001 h Parsignault+76
- Consistently detected at HE, mostly during a soft
 X-ray state. e.g. Zdziarski+18
- HE and radio flares are regularly observed when the source is in the **soft state**.
- No confirmed detection at VHE or UHE.

Introduction: The MAGIC telescopes

- Two 17-m Cherenkov telescopes located in the Canary island of La Palma, Spain.
- Photomultiplier cameras with a ~**3.5° FoV**.
- Energy range: ~30 GeV 100 TeV
- Differential sensitivity at hundreds of GeV
 below 2% of the Crab Nebula flux in 50h.
- Energy resolution: **15 23%**
- Angular resolution: ~0.09° at 100 GeV



https://magic.mpp.mpg.de/

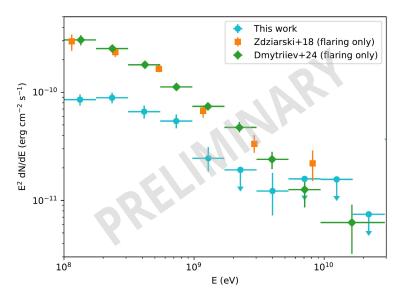
Aleksić+16

Previous VHE observations

- MAGIC and VERITAS have been observing Cyg X-3 for several years. Publications:
 - MAGIC: **57h** after cuts, between 2006 and 2009 (**mono** data). Aleksic+10
 - VERITAS: **44h** after cuts, between 2007 and 2011. Archambault+13
- No detection or significant hints obtained.

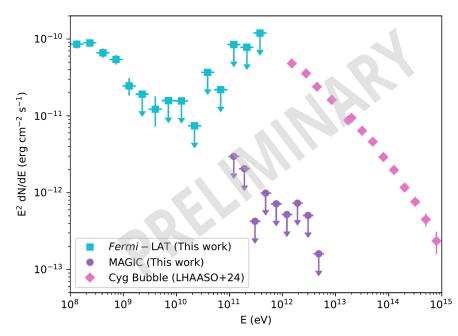
New(er) VHE observations

- Further Cyg X-3 observations were performed with MAGIC between 2010 and 2024, for a total of 190h.
- After quality selection cuts, **132.2h** of data remain, spanning 12 years of data (2013 2024).
 - A **point-like** analysis is performed.
- A significant part of the observations were done **during flaring states at HE**.
- Huge effort by the analyzers.

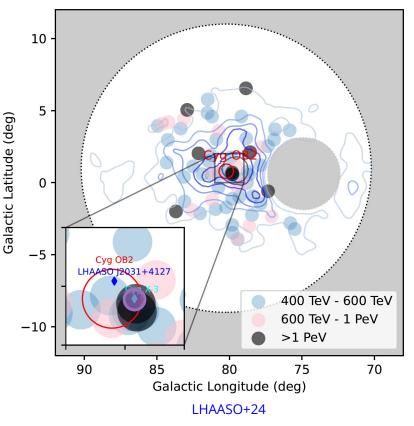

Year	Month	Obs. time (h)	Zenith angles (°)
2013	Nov	1.3	32 - 49
2014	May	6.6	15 - 40
	Jun	1.0	13 - 31
	Oct	4.8	11 – 53
2015	Jul	0.8	11 – 47
	Nov	1.3	32 - 47
2016	May	1.0	19 – 31
	Aug	9.6	11 - 45
	Sep	42.8	11 – 52
2018	Jul	2.1	11 – 37
	Aug	6.2	11 – 23
2019	Apr	1.0	38 - 50
	Jun	11.3	11 – 52
2020	Jun	4.4	11 – 25
	Jul	5	11 - 23
	Aug	3.2	11 - 30
	Sep	8.0	10 - 23
	Oct	1.9	22 - 44
2021	Apr	1.2	29 - 46
	Jun	1.9	28 - 51
2024	Apr	0.7	54 - 58
	Jun	2.0	22 - 50
	Jul	14.1	10 - 47
Total		132.2	10 - 58

Luis Barrios-Jiménez

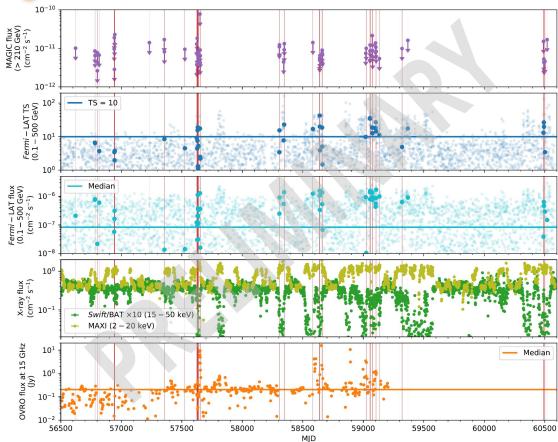
Mar Carretero-Castrillo


Results: SED – HE

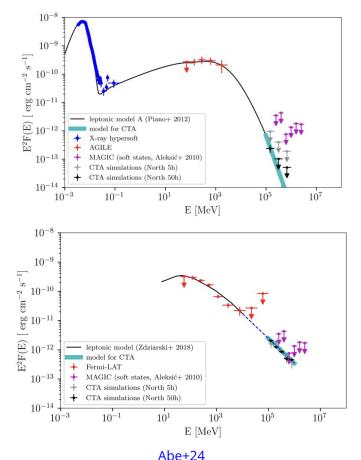
- *Fermi*–LAT data **coincident with the MAGIC observations** were also analysed.
 - To have enough statistics, daily time bins centered at midnight UTC are used, for a total of 65 days of LAT data.
- Complex region that needs some care with the analysis.
- Our fluxes are a factor ~2 below those in the literature, which **only use flaring states**.
 - Discrepancies likely explained by different datasets and choice of analysis parameters.


Results: SED – VHE

- Still, no detection at VHE.
- MAGIC ULs are consistent with an extrapolation of the *Fermi*–LAT spectrum.
- Below 10 TeV, the contribution of Cyg X-3 to the Cygnus Bubble flux has to be below ~1%.
- Coming soon:
 - MAGIC VHE excesses seem to show some degree of correlation with orbital phase and HE flaring state. Detailed study on its way. Stay tuned!


Results: SED – VHE

- Still, no detection at VHE.
- MAGIC ULs are consistent with an extrapolation of the *Fermi*–LAT spectrum.
- Below 10 TeV, the contribution of Cyg X-3 to the Cygnus Bubble flux has to be below ~1%.
- Coming soon:
 - MAGIC VHE excesses seem to show some degree of correlation with orbital phase and HE flaring state. Detailed study on its way. Stay tuned!


Results: Light Curve

MAGIC observations

Prospects with CTA

- Based on the HE data, a detection of Cyg X-3 in flare with CTA may be possible in a few (tens of) hours.
- Highly dependent on the assumed model, and in particular on the extrapolation of the HE flux to VHE.
- Alternatively, one may focus on the higher energies to bridge the gap with LHAASO.
 - High zenith angle observations?

Interpretation and summary

- Cyg X-3 is not detected after analyzing more than 130h of MAGIC observations.
- The non-detection may be explained by a high background "veiling" the emission of the source.
- MAGIC ULs are compatible with the *Fermi*-LAT spectrum, and limit to < 1% the contribution of Cyg X-3 to the LHAASO Bubble flux below 10 TeV.
- Excess hints are present during HE flares and changing with orbital phase.
- Stay tuned for a more detailed VHE study.

THANK YOU FOR YOUR ATTENTION

Edgar Molina (emolina@iac.es)

in collaboration with: L. Barrios-Jiménez, M. Carretero-Castrillo, J. Becerra González, M. Ribó and J.M. Paredes, on behalf of the MAGIC Collaboration

Variable Galactic Gamma-Ray Sources VII Barcelona, 6 – 8 May 2025

CIENCIA, INNOVACIÓN

Cofinanciado por la Unión Europea

