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OUTLINE

e Millisecond Pulsar Binaries (MPBs) — “Spider” Pulsars:
An evolved pulsar actively interacts with its low-mass companion

Evaporation

A

 Emission Characteristics of MPBs: Broadband spectral
properties, pulsar wind interactions, and multi-wavelength
emission behavior

* Intra-Binary Shock (IBS) X-ray Emission: Formation, :
variability patterns, and basic model 5 " o v

A NuSTAR

M Fermi-

e Orbitally-Modulated Gamma-Ray (GeV) Signatures:
Observation, model, and implications for pulsar wind

* Outstanding Challenges and Future Directions:
Intriguing issues and future observations
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Millisecond Pulsar Binaries provide clues to wind-wind interaction
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https://web.stanford.edu/~dkandel/research.html

 MPB (redbacks and black widows): A non-accreting millisecond pulsar and
a tidally-locked low-mass (< M) companion in a compact, circular orbit
(Pyrp < 1 day)

* Interaction between the pulsar and the companion: leads to diverse

observational phenomena such as radio/y-ray eclipse, companion heating,
evaporation, intrabinary-shock emission, and eclipses etc

* Valuable targets for studies of the interaction: well-known compact
objects, circular and compact orbit, and distinct X-ray light curves
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Emission from IBS provides important clues to the interaction

IBS formation in MPBs: Both analytical and
numerical models support the existence of IBSs,
explaining the shock-driven interactions between pulsar
and companion winds

rding+1990
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* Emission modeling: Phenomenological and n" *I[h‘,!lj‘:!i{i{“m
numerical IBS-based models have successfully bk El “ l
reproduced observed X-ray spectra and light curves of
MPBs, validating theoretical predictions - ‘

i

* High-energy astrophysics and wind-wind
interaction: Studies of MPBs offer crucial insights into
wind-wind interactions and the complex shocked flow

dynamics, contributing to our understanding of gamma- &
ray binary phenomena »

Bosch- Ramon+20 17
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IBSs can be best probed by X-ray data

XMM13 —— NuSTAR
XMM16 CXO

PSR J2339-0533 (Sim+24)

Park+25: PSR J1723-2837
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Basic scenario for X-ray emission from IBSs
* Shocked electrons flow along the shock, emitting synchrotron X-rays

* Hard PL X-ray spectra (I'y~1.1 — 1. 3): magnetic reconnection
* Orbital modulation caused by Doppler beaming of the flow

 These X-ray data provide information on the IBS properties (e.g., B, flow
speed, relative wind strength, shock structure, etc)
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IBSs can be best probed by X-ray data
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XMM13 —— NuSTAR
XMM16 CXO

PSR J2339-0533 (Sim+24)

Park+25: PSR J1723-2837
Observer’s LoS along the orbit
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Basic scenario for X-ray emission from IBSs
* Shocked electrons flow along the shock, emitting synchrotron X-rays

* Hard PL X-ray spectra (I'y~1.1 — 1. 3): magnetic reconnection
* Orbital modulation caused by Doppler beaming of the flow

 These X-ray data provide information on the IBS properties (e.g., B, flow
speed, relative wind strength, shock structure, etc)
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IBSs can be best probed by X-ray data
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Basic scenario for X-ray emission from IBSs
* Shocked electrons flow along the shock, emitting synchrotron X-rays

* Hard PL X-ray spectra (I'y~1.1 — 1. 3): magnetic reconnection
* Orbital modulation caused by Doppler beaming of the flow

 These X-ray data provide information on the IBS properties (e.g., B, flow
speed, relative wind strength, shock structure, etc)
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MPBs exhibit light curves that align with the IBS scenario

PSR J1959+2048 PSR J1946-5403
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Black widow light curves (Sim+2024)

Y . I LI Hﬂ-HH]{ hﬂ }'H#_ Redback light curves
b LS ;ﬁ i W M # (Wadiasingh+17)

e X-ray spectra and LCs of MPBs share common features
v' Hard I'y < 1.5 spectrum

v Single-to-double peak LC structures

v' Maximum LC brightness at specific orbital phases

* These features have been well reproduced by IBS models
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e X-ray emission modeling: X-ray data in MPBs have
been successfully explained through the IBS scenario,
providing important insights into the wind-wind
interaction

* Challenges from y-ray observations: Detections
of orbitally modulated y-ray signals in MPBs present a
challenge to existing IBS models, suggesting additional
high-energy emission mechanisms beyond the IBS
process
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Beyond the IBS X-rays: Non-magnetospheric ~GeV emissions

* Orbitally-modulated y-ray (~“GeV) emissions have been detected in five MPBs
(3 RBs and 2 BWs): non-magnetospheric origin for these signals

* The maximum of the y-ray orbital light curves occurs at ¢ = 0. 25 (pulsar
behind the companion)

* In two RBs, the orbitally-modulated y-ray emissions are accompanied by
variations in the pulsar’s spin profile.=> these non-magnetospheric emissions
also exhibit millisecond-scale structure

* These Fermi-LAT data can provide new insights into the interaction

10
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How are the orbitally-modulating gamma rays produced?

Inverse-Compton scenarios

(1) Inverse-Compton (IC) upscattering by IBS electrons
(2) IC by the preshock pulsar-wind electrons

(1) IC upscattering by IBS electrons

The measured X-ray spectrum implies that IBS electrons are energetic: y, ~ 10°
These electrons would upscatter stellar photons to y2 hvgg~TeV (NOT GeV)

(2) IC upscattering by the preshock pulsar’s wind

The preshock wind zone is relatively small, resulting in a short residence time (7, )
The IC flux is estimated to be F; ~

10-16 "WESD'SSYW( — ) (t‘”) erg s~ cm? (Sim+24)

d,chc lergem=3/ \1s
The predicted IC flux is lower by orders of magnitude than the observed y-ray
fluxes

These scenarios fail to explain the observed gamma-ray properties!

2025-05-06
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Synchrotron emission from the companion region

(van der Merwe+20, Sim+24)

Energetic primary preshock pairs pass through the IBS and emit synchrotron
photons under the companion B

* Synchrotron emission energy: hvgy =~ 1.6 X 107! B. y2 keV:
Ye~10778 for GeV emission under B,~0.1 kG

* Generation of ye~107_8 electrons: pulsar voltage drop AV =
6.6 X 1012 B;,P~2 volts (Ruderman+75, Kalapotharakos+15)

v\l B \2
* Synchrotron cooling time: t.,,; ~ 8 X 10~* (1—(;) (0 T kG) s; fast enough for producing

millisecond variation as well

corl Nt _10 $MpEsp3s
TG Nelcool erBz8X1O 10 14 /)59

2 2
3rd kpc

independent of companion B at the emission site in the cooling
dominant regime

* Synchrotron flux: Fgy =

e Orbital modulation: Changes in the emission “frequency”

depending on B (oc r—lg; dipole) at the emission site is the key factor

that generates the modulation in the LAT band
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The orbitally modulated y-ray signals in MPBs
may imply

e acceleration of pairs to 10—100 TeV by the pulsars

* their interaction with the companion’s strong B

Several other mterestmg |ssues warrant attention
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Long-term X-ray and optical variability
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e X-ray variabilities have been observed in some MPBs; |
likely induced by clumpy stellar wind

* Intriguingly, Fy-F, anti-correlation (J1227) in the
long-term variability was observed; the IBS blocks the
companion’s emission (de Martino+15, Park+25) - can
provide information on the system inclination

Kefala+23

* Precise measurements of variabilities and their timescales
can yield crucial insights into the interaction
2025-05-06 ’ \"i.m@‘- v 15




Potential TeV emission from MPBs
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* X-ray emission from IBS implies high-energy electrons
* IC upscattering by IBS electrons should appear at TeV energies

* The predicted TeV flux depends strongly on the assumed system
state (e.g., flare?) and IBS parameters

 CTA may detect a few MPBs, helping understand the IBS better

16
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Summary
* The orbitally-modulated y-rays is consistent with the shock-

penetrating scenario: MSPs accelerate primary e” /e™ to 10—
100 TeV energies which interact with companion B

* A comprehensive understanding of pulsar-companion
interactions require further observations, detailed emission
modeling, and theoretical studies

* IBS models suggest that the CTA will be capable of detecting
TeV emission from some MPBs

2025-05-06
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Different X-ray LC phasing between RBs and BWs?
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X-ray light curves (d iasingh+17)
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IBS

* Optical phasing: Both BWs and RBs exhibit an optical max. at p = 0.75

(pulsar-to-companion wind strength ratio f3)
- X-ray max at ¢ = 0.75 for RB (strong wind) and 0. 25 for BW (weak wind)
- However, BW J1124 has a max. at ¢ = 0.75; Can its < 0. 1M companion have
a strong wind? Or other factors determine the IBS orientation (e.g., B;
Wadiasingh+2018) = Need to confirm the light-curve measurement for J1124

2025-05-06 18
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