Institute of • MARÍA **Space Sciences**

LSI +61 303 – 16 years at GeV

Overview

ASTROPHYSICS

In the INSTITUTE OF SPACE SCIENCES (ICE, CSIC) SIL

- Addressed issues during the last decades.
- Open issues.
- For discussion: Prospects how to proceed.

First observations of LS I +61 303...

- ...started ~50 years ago.
- No orbital variability detected.
- Source position not clear & source confusion → Binary could not be identified.

SICREA SCSIC IEEC

Fermi-LAT view on LS I +61 303

- Source position coincident with position known from the optical.
- Orbital variability clearly visible.
- Periodicity detected: 26.6 +/- 0.5 days.

Flux change seen with Fermi-LAT

ASTROPHYSICS

SPACE SCIENCES (ICE, CSIC)

- 2.5 years of GeV data: Detected flux increased by 33%.
- Orbital modulation got fainter.
- Spectral shape remained the same (power law with exponential cutoff).
- Flux change due to super-orbital periodicity known from radio?

Long term variability detected after 4.5 years of Fermi-LAT

MULTIMESSENGER ASTROPHYSICS

OSMIC RAYS - COMPACT OBJECTS - RELATIVISTIC ENVIRONMENTS @ THE INSTITUTE OF SPACE SCIENCES (ICE, CSIC) SINCE 2006

SICREA SCSIC IEEC

Long term variability associated with super-orbital periodicity

Super-orbital phase folded lightcurves

- Each panel shows the GeV flux at a fixed orbital position folded into the super-orbit (~4.6 years).
 Green background: periastron
 - \rightarrow no significant flux change
- Red background: apastron
 → super-orbit induces clear variation
- Black line: sinusoidal fit with fixed super-orbital period

Ackermann et al., ApJ 773, 35A (2013)

Fermi-LAT view after 16 years of GeV data → same trend

MULTIMESSENGER ASTROPHYSICS

MULTIMESSENGER ASTROPHYSICS

COSMIC RAYS - COMPACT OBJECTS - RELATIVISTIC ENVIRONMENTS @ THE INSTITUTE OF SPACE SCIENCES (ICE, CSIC) SINCE 2006

Spectra for each orbital phase bin of 0.1.

Monnier 2024, Summer project

SICREA CSIC IEEC

MULTIMESSENGER ASTROPHYSICS

COSMIC RAYS - COMPACT OBJECTS - RELATIVISTIC ENVIRONMENTS @ THE INSTITUTE OF SPACE SCIENCES (ICE, CSIC) SINCE 2006

Spectra for each orbital phase bin of 0.1.

Monnier 2024, Summer project

SICREA CSIC IEEC

MULTIMESSENGER ASTROPHYSICS

COSMIC RAYS - COMPACT OBJECTS - RELATIVISTIC ENVIRONMENTS @ THE INSTITUTE OF SPACE SCIENCES (ICE, CSIC) SINCE 2006

Spectra for each orbital phase bin of 0.1.

Monnier 2024, Summer project

SICREA CSIC IEEC

MULTIMESSENGER ASTROPHYSICS

COSMIC RAYS - COMPACT OBJECTS - RELATIVISTIC ENVIRONMENTS @ THE INSTITUTE OF SPACE SCIENCES (ICE, CSIC) SINCE 2006

Spectra for each orbital phase bin of 0.1.

Monnier 2024, Summer project

SICREA CSIC IEEC

MULTIMESSENGER ASTROPHYSICS

COSMIC RAYS - COMPACT OBJECTS - RELATIVISTIC ENVIRONMENTS @ THE INSTITUTE OF SPACE SCIENCES (ICE, CSIC) SINCE 2006

Spectra for each orbital phase bin of 0.1.

Monnier 2024, Summer project

SICREA CSIC IEEC

MULTIMESSENGER ASTROPHYSICS

COSMIC RAYS - COMPACT OBJECTS - RELATIVISTIC ENVIRONMENTS @ THE INSTITUTE OF SPACE SCIENCES (ICE, CSIC) SINCE 2006

Spectra for each orbital phase bin of 0.1.

Monnier 2024, Summer project

SICREA CSIC IEEC

MULTIMESSENGER ASTROPHYSICS

COSMIC RAYS - COMPACT OBJECTS - RELATIVISTIC ENVIRONMENTS @ THE INSTITUTE OF SPACE SCIENCES (ICE, CSIC) SINCE 2006

Spectra for each orbital phase bin of 0.1.

Monnier 2024, Summer project

SICREA CSIC IEEC

MULTIMESSENGER ASTROPHYSICS

COSMIC RAYS - COMPACT OBJECTS - RELATIVISTIC ENVIRONMENTS @ THE INSTITUTE OF SPACE SCIENCES (ICE, CSIC) SINCE 2006

Spectra for each orbital phase bin of 0.1.

Monnier 2024, Summer project

SICREA CSIC IEEC

 Spectra at fixed orbital phase for different superorbital phases.

Monnier 2024, Summer project

SICREA CSIC IEEC

Correlation studies

Parameters Ellipses : Orbit = 0.5 to 0.6

- Correlation plots along the super-orbit at fixed orbital period.
- → Correlation cutoff energy and spectral slope.
- Work ongoing...

ICREA CSIC IEEC

Periodicity studies

- Two different periods in two energy ranges
 - E > 1GeV: P₁ = 26.932 ± 0.004(stat), orbital-superorbital beat-period
 - E < 0.3GeV: P₂ = 26.485 ± 0.004(stat), orbital period

Energy-dependent variability

• 0.1 – 0.3 GeV: Flux maximum at periastron

- Synchrotron or Inverse Compton → higher flux due to increased magnetic and/or soft photon field densities

- 1 10 GeV: Gradual drift of the phase of the maximum throughout the superorbital cycle
 - Due to precession of the system components or cyclical change of Be star's disc

SICREA SCSIC IEEC

New periodic signal

New period of 26.301 ± 0.037 days.

- Not a combination of frequencies from any known period.

 \rightarrow Coupling effect between the orbital period and the retrograde stellar precession period.

Open issues@GeV energies

- Is the super-orbital behaviour stable over the years?
- Can we detect pulsations at GeV energies?
- Deeper spectral studies needed?
- What is the origin of the new periodic signal?
- How can multi-wavelength observations help in a deeper understanding of the system?
 - Optical observations to study the Be star disc
 - Correlation studies
 - Connect GeV & TeV spectra to distinguish different components
 - New periodic signal visible at other wavelengths?

Institute of Space Sciences

Institute of Space Sciences

