ALMA observations of binary pulsar PSR B1259-63 /LS2883

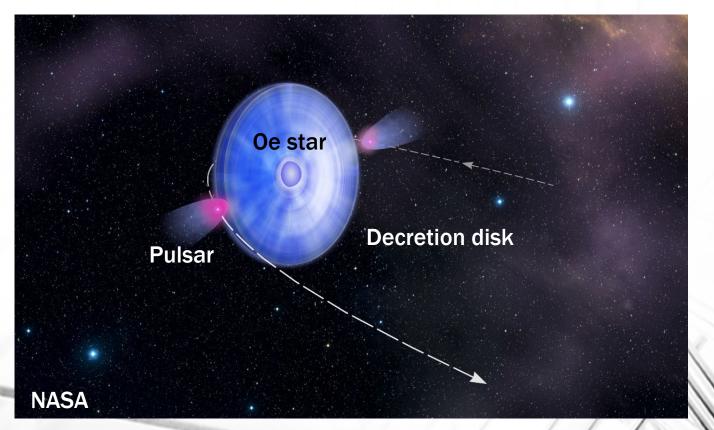
Yutaka Fujita (Tokyo Metro. U.)

Akiko Kawachi (Tokai U.) Atsuo T. Okazaki (Hokkai-Gakuen U.) Hiroshi Nagai (NAOJ) Norita Kawanaka (Tokyo Metro. U.)) Takuya Akahori (NAOJ)

Fujita et al. (2024) ApJL, 977, L22

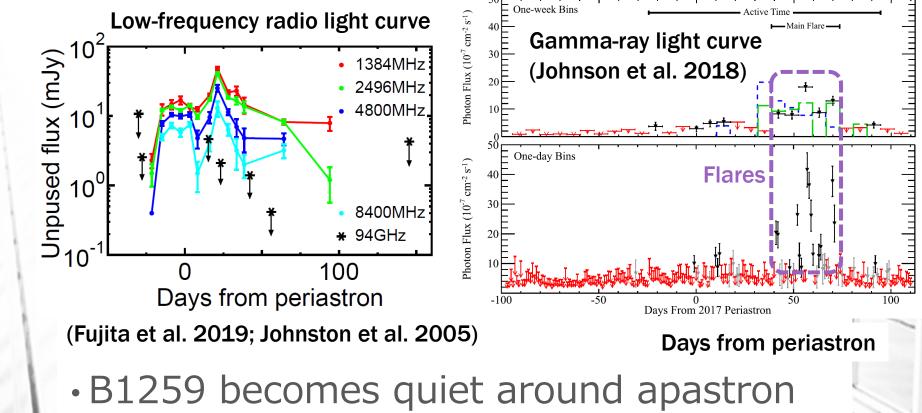
Contents

- Introduction
 - PSR B1259-63/LS 2883
- Our previous ALMA observations
 - Far from periastron passage
- Our new ALMA observations around periastron
- Summary


PSR B1259-63/LS 2883

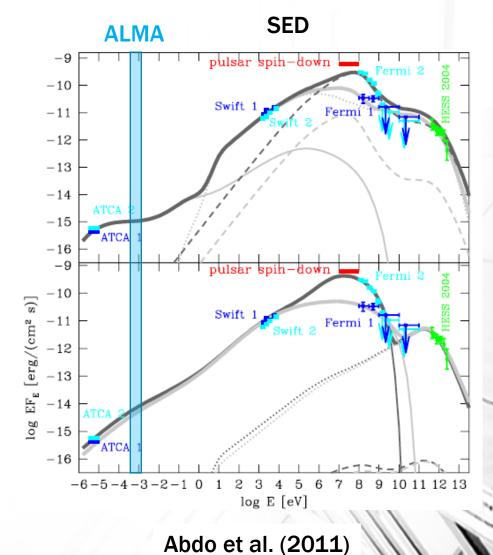
Gamma-ray binaries

- Gamma-ray objects first identified in 2004
- ~9 binaries have been identified
 - Compact object (neutron star or black hole) + normal star
 - Nature of the compact object is generally unknown (neutron star or black hole?)
- PSR B1259-63/LS 2883 (B1259 hereafter) is a rare object
 - The compact star is undoubtedly a neutron star
 - Pulses have been clearly detected


PSR B1259-63/LS 2883 (B1259)

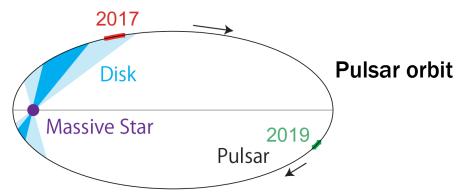
- Pulsar + Massive Oe star ($\gtrsim 10 M_{\odot})$
 - Orbital period \sim 3.4 yr
 - The pulsar passes the circumstellar disk twice around periastron

Activities of B1259


B1259 becomes active around the periastron passage

Pulsed radio emission (pulsar) is observed

Previous observations around periastron


- Unpulsed emissions
 - Interaction between the pulsar and the circumstellar disk
 - Radio (≲10 GHz)
 - Synchrotron
 - Obscure pulsed emission
 - X-ray
 - Synchrotron or inverse Compton?
 - Gamma-ray flares
 Unknown origin
- Radio observations at ≥10 GHz are limited
 - ALMA covers $\gtrsim 100$ GHz!

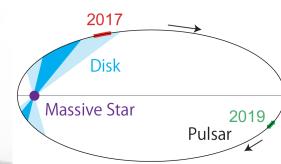
Our previous ALMA observations

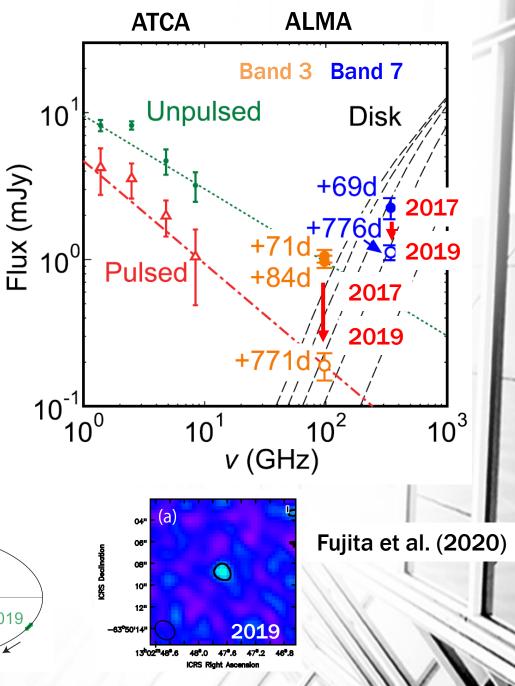
Previous our ALMA observations

• We observed B1259 in 2017 and 2019

- 2017 observations (Fujita et al. 2019)
 - Just after the 2017 periastron passage
 - We detected B1259 in the submm/mm band for the first time
- 2019 observations (Fujita et al. 2020)
 - Quiet period (around apastron)
 - Compared the results with those for our 2017 observations

Our 2017/2019 observations


Band	Date Fro	Day m perias	Beam shape tron	Image rms $(\mu Jy \text{ beam}^{-1})$	Observed flux (mJy)
3 (97 GHz)	2017 December 2	+71	$0.''35 \times 0.''21$ at 78°	41	1.1 ± 0.1
3 (97 GHz)	2017 December 15	+84	$0.''42 \times 0.''36 \text{ at } -52^{\circ}$	36	0.97 ± 0.09
7 (343 GHz)	2017 November 30	+69	0.056×0.043 at -8°	87	2.3 ± 0.4
3 (97 GHz)	2019 November 2	+771	$1\rlap.''98 \times 1\rlap.''58$ at 49°	40	0.19 ± 0.04
7 (343 GHz)	2019 November 7	+776	$0\rlap.''88 \times 0\rlap.''77$ at 18°	90	1.12 ± 0.13
7 (343 GHz)	2019 November 27	+796	$0.^{\prime\prime}91 \times 0.^{\prime\prime}81$ at -7°	179	>0.8


• Exposure time is ~ 5 min for each observation!

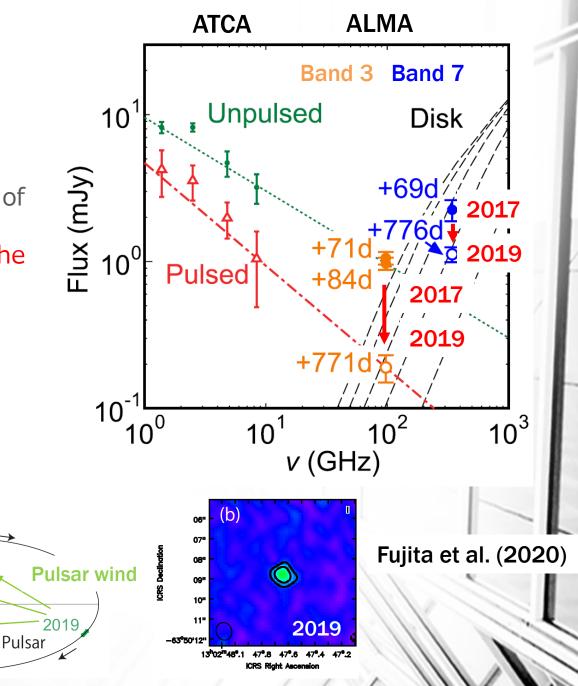
Results

• Band 3 (97 GHz)

- 2017 observations
 - On the extrapolation of unpulsed emission
 - Synchrotron emission through pulsar-disk interaction
- 2019 observations
 - Flux decreases
 - Consistent with pulsed emission
 - No pulsar-disk interaction

Results

• Band 7 (343 GHz)


- 2017 observations
 - Not on the extrapolation of unpulsed emission
 - Thermal radiation from the circumstellar disk

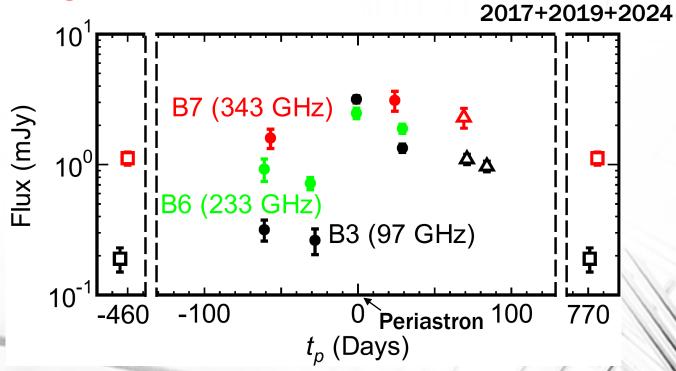
2017

Disk

Massive Star

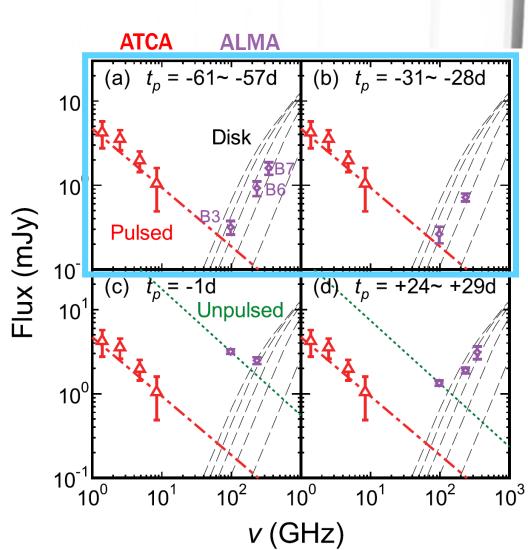
- 2019 observations
 - Flux decreases
 - Disk evolution?

Our new ALMA observations around periastron

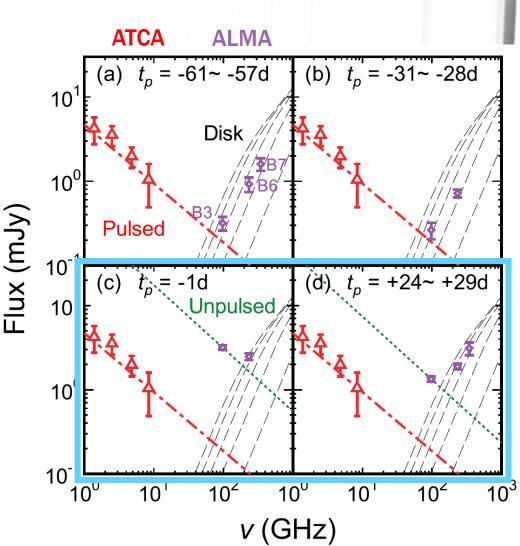

ALMA observations

- The 2021 periastron passage could not be observed due to the Covid-19 pandemic
- We observed B1259 around the 2024 periastron passage (June 30; $t_p=0$)
 - Bands 3, 6, and 7

Date	Day (from t_p)	Band	Freq. ^a (GHz)	$N_{\rm ant}^{\rm b}$	$T_{\rm on}^{\ \rm c}$ (minutes)	Bandpass/Flux ^d	Gain ^e	Beam Shape (arcsec)	PA ^f (deg)	Image rms $(\mu Jy bm^{-1})$	Observed Flux (mJy)
Apr 30	-61	3	97	44	6	J1427-4206	J1308-6707	2.0×1.7	61	29	$0.32~\pm~0.06$
Apr 30	-61	6	233	44	5	J1427-4206	J1254-6111	0.86×0.81	42	68	$0.93~\pm~0.18$
May 4	-57	7	343	42	5	J1617-5848	J1308-6707	0.57 imes 0.50	46	122	$1.60~\pm~0.27$
May 30	-31	6	233	45	5	J1427-4206	J1308-6707	0.41×0.30	-16	38	0.72 imes0.08
Jun 2	-28	3	97	41	5	J1617-5848	J1308-6707	0.92×0.54	43	32	$0.26~\pm~0.06$
Jun 29	-1	3	97	45	6	J1617-5848	J1308-6707	0.48×0.39	-31	39	$3.17~\pm~0.20$
Jun 29	-1	6	233	45	5	J1617-5848	J1308-6707	0.18×0.16	-19	48	$2.48~\pm~0.23$
Jul 24	+24	7	343	41	5	J1617-5848	J1308-6707	0.16×0.11	-11	130	$3.11~\pm~0.54$
Jul 29	+29	3	97	42	6	J1427-4206	J1308-6707	0.78 imes 0.59	-23	31	$1.34~\pm~0.10$
Jul 29	+29	6	233	42	5	J1427-4206	J1308-6707	0.35×0.27	-31	44	$1.89~\pm~0.15$


Light curves

- Flux ratio around/before the periastron
 - Band 3 > Band 6 > Band 7
- Band 7 flux did not disappear
 - Disk was not completely destroyed by pulsar passage

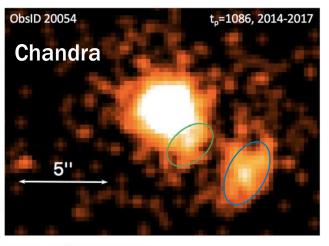

Spectral Energy Distributions

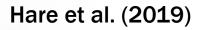
- Before periastron passage (a,b)
 - Band 3
 - Pulsed synchrotron emission
 - Pulsar
 - Band 6, 7
 - Thermal radiation from the disk
 - Unperturbed disk

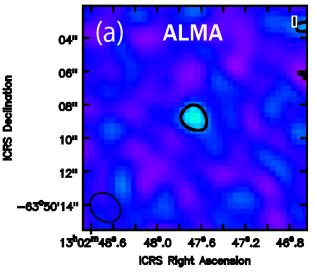
Spectral Energy Distributions

- Around and after periastron passage (c,d)
 - Band 3
 - Consistent with unpulsed synchrotron emission
 - Pulsar-disk interaction
 - Band 6, 7
 - Increased thermal radiation from the disk

Increased disk luminosity

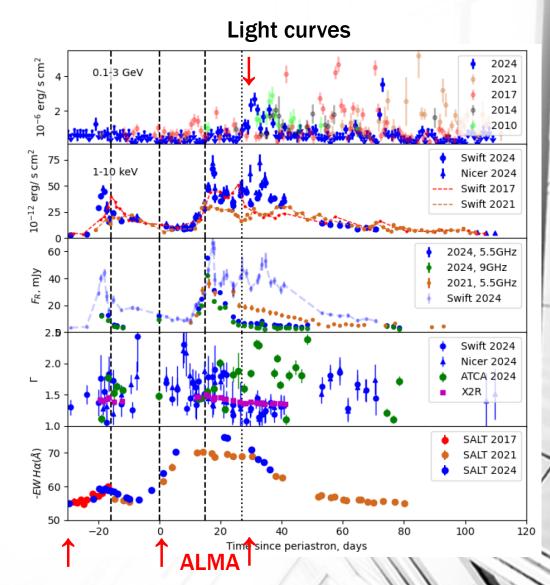

- Disk expansion through the pulsar-disk interaction around periastron?
 - Partial destruction \rightarrow Gamma-ray flares?




Tanaka et al. (2012)

X-ray ejecta

- Chandra discovered ejecta from the binary ≥ 1 yr after periastron passage (Pavlov et al. 2011, 2015; Kargaltsev et al. 2014)
 - We did not find the radio counterpart
 - The radio image is consistent with a point source



Fujita et al. (2020)

Other wave lengths

- 2024 periastron passage
 - Our last ALMA observations were made at the onset of gammaray flares (~+30d)
 - Are the flares related to the disk expansion?

Chernyakova et al. (2024)

Summary

- We observed the gamma-ray binary B1259 around 2024 periastron
- The Band 3 flux significantly increased
 - Synchrotron
 - Pulsar-disk interaction
- The Band 6 and 7 fluxes mildly increased
 - Thermal radiation
 - Disk expansion?
 - Origin of gamma-ray flares?
- Detailed comparison with multi-band observations and numerical simulations is useful