

A revised orbital solution for HESS J0632+057 (=MWC 148)

J. Casares (IAC)

MINISTERIO DE CIENCIA E INNOVACIÓN

A fruitful collaboration on γ -ray Binaries

Josep Maria Paredes Josep Martí Marc Ribó Ignacio Negueruela

LS 5039 LSI + 61 303 MWC 656

WHT control room, sometime around year ≈2000

2010: 3 γ-ray binaries known: PSR B1259-63, LS I +61 303, LS 5039. Other HE/VHE sources proposed but required confirmation: 1FGL J1018.6–5856, AGL J2241+4454, HESS J0632+057 ...

Optical spectroscopic campaigns, mostly with robotic telescopes, to prove binarity and determine orbital parameters

2010: 3 γ-ray binaries known: PSR B1259-63, LS I +61 303, LS 5039. Other HE/VHE sources proposed but required confirmation: 1FGL J1018.6–5856, AGL J2241+4454, HESS J0632+057 ...

Optical spectroscopic campaigns, mostly with robotic telescopes, to prove binarity and determine orbital parameters

 $P=317.3 \pm 0.7 d$

Bongiorno+ 2011; Aliu+ 2014; Malyshev+ 2019; Adam+ 2021

On the binary nature of the γ -ray sources AGL J2241+4454 (= MWC 656) and HESS J0632+057 (= MWC 148)

J. Casares,^{1,2*} M. Ribó,^{3*} I. Ribas,^{4*} J. M. Paredes,^{3*} F. Vilardell^{5*} and I. Negueruela^{5*}

1) INT/WHT: Oct/Dec 2008 at ~100 km/s res.
 2) Mercator: Nov 2009 at 7 km/s res.
 3) ST: Jan-Apr 2010 , , ,
 4) LT: Sept 2010-May 2011 at 55 km/s res.

(=C12)

B0pe star with broad HeI absorptions (V sin i=370 km/s)

X-correlation of HeI regions with average spectrum

Parameter	MWC 148
$P_{\rm orb}$ (d)	321 (fixed)
T_0 (HJD -2450000)	4857.5 (fixed)
е	0.83 ± 0.08
ω (°)	129 ± 17
γ (km s ⁻¹)	48.3 ± 8.9
$\phi_{ m peri}$	0.967 ± 0.008
$K_{\rm opt} ({\rm km} {\rm s}^{-1})$	22.0 ± 5.7
$a_1 \sin i (R_{\odot})$	77.6 ± 25.9
$f(M)$ (M _{\odot})	$0.06^{+0.15}_{-0.05}$
$\sigma (\text{km s}^{-1})$	12.8

X-ray & VHE emisión at phases $\simeq 0.35$ & $\approx 0.6-0.8$ close to apastron

We warned "data is limited and orbital solution requires confirmation"

1) Moritani et al. 2018 PASJ 70 61 (=M18) High-res spectra in Oct 2013-Apr 2017 Radial velocities from wings of H α emission \implies trace the Be star

 $e = 0.64 \pm 0.29$

 $\phi_{\text{peri}} = 0.66$

Sharp X-ray/VHE peak after apastron **Broad** X-ray/VHE max. after periastron

2) Matchet & van Soelen 2025 MNRAS 536 168 (=M25)

High-res spectra in **Dec 2020-March 2023** Radial velocities from wings of H α emisión (Voigt profile fit)

(a) M25+M18 $\begin{cases} e = 0.75 \pm 0.24 \\ \phi_{peri} = 0.58 \pm 0.01 \end{cases}$ (b) M25+C12 $\begin{cases} e = 0.40 \pm 0.08 \\ \phi_{peri} = 0.42 \pm 0.03 \end{cases}$

 $H\alpha$ centroid, but blue-shifted

2) Matchet & van Soelen 2025 MNRAS 536 168 (=M25)

High-res spectra in **Dec 2020-March 2023** Radial velocities from wings of H α emisión (Voigt profile fit)

(a) M25+M18 $\begin{cases} e = 0.75 \pm 0.24 \\ \phi_{\text{peri}} = 0.58 \pm 0.01 \end{cases}$ (b) M25+C12 $\begin{cases} e = 0.40 \pm 0.08 \\ \phi_{\text{peri}} = 0.42 \pm 0.03 \end{cases}$

 $H\alpha$ centroid, but blue-shifted

(b) M25+C12

Sharp X-ray/VHE peak at ≃ periastron
Broad X-ray/VHE max before apastron

NEW NOT+FIES DATA SET

35 high-res (R~25000) spectra in Dec 2014-March 2017

EW stable at ~52 Å, except for the MT & ST campaigns

NEW NOT+FIES DATA SET

35 high-res (R~25000) spectra in Dec 2014-March 2017

H α narrower in MT & ST campaigns (\approx Nov-2009-Apr 2010) **disruption of the inner Be disc ??**

REVISED WAV. CALIBRATION WITH IS LINES

LT spectra systematically shifted by +19.4 km/s

REVISED H α (CENTROID) VELOCITIES

All spectra corrected for IS shifts

H α velocities measured from single Gaussian fit to whole profile LT velocities NOW show reduced dispersion compared to C12, particularly at phases ~0.3-0.6

$H\alpha$ CENTROID VELOCITIES

SALT (wing) velocities (+3.2 km/s) overlap with new NOT velocities $H\alpha$ centroid also traces the orbit of the Be star

ECCENTRIC ORBIT FIT (credit Marc Ribó)

 $e = 0.34 \pm 0.06$ $\phi_{peri} = 0.46 \pm 0.03$ $\omega = 255.8 \pm 13.3 \text{ deg}$ $K_1 = 7.3 \pm 0.6 \text{ km/s}$ $\gamma = 38.7 \pm 0.3 \text{ km/s}$ $a \sin i = 0.199 \pm 0.017 \text{ au}$ $f(M) = 0.010 \pm 0.003 \text{ M}_{\odot}$

Consistent with M25+C12 within errors

EW peak at periastron → NS passage triggers disc enlargement?
 FWHM mimics rad vel curve → disc ellongated and coupled to the orbit. A signature of tidal distorsion?

CONCLUSIONS

- H α centroid traces the motion of the Be star as well as the line wings
- Revised rad vel (plus new data) provides updated orbital solution: $e = 0.34 \pm 0.06$, $\phi_{peri} = 0.46 \pm 0.03$, consistent with M25+C12 solution
- X-ray/TeV peaks occur before & after periastron
 - Consistent with NS crossing of an inclined disc, similar to PSR B1259-63