On the Physics at the Highest Energies of Gamma-Ray Emitting Binaries (LS 5039)

Valenti Bosch-Ramon;

In collaboration with M. Barkov, E. Derishev, D. Khangulyan

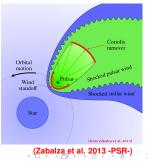
Universitat de Barcelona, ICCUB

Variable Galactic Gamma-Ray Sources VII Universitat de Barcelona-ICCUB, May 6-8, 2025

4 Conclusions

< 6 b

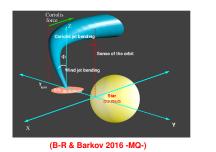
1 Introduction

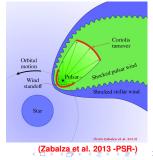

3 Variable UHE photons from LS 5039

4 Conclusions

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- High-mass, relativistic γ-ray emitting binaries are efficient complex accelerators and powerful high-energy sources.
- Important elements common to most of these sources:
 - Magnetized relativistic outflow: wind, jet. (BINARY SCALES)
 - Dense radiation field and radiation reprocessing.
 - Substantial and structured stellar wind (clumps, disk...).
 - Shocks, instabilities, turbulence, mixing...
 - Orbit, eccentricity, disruption. (BEYOND BINARY SCALES)
 - Interactions on large scales, medium, proper motion...

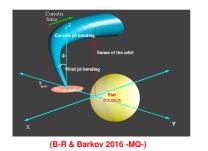


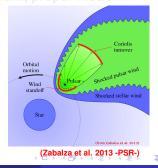


V. Bosch-Ramon (UB)

Highest Energies of Gamma-Ray Binaries

- High-mass, relativistic γ-ray emitting binaries are efficient complex accelerators and powerful high-energy sources.
- Important elements common to most of these sources:
 - Magnetized relativistic outflow: wind, jet. (BINARY SCALES)
 - Dense radiation field and radiation reprocessing.
 - Substantial and structured stellar wind (clumps, disk...).
 - Shocks, instabilities, turbulence, mixing..
 - Orbit, eccentricity, disruption. (BEYOND BINARY SCALES)
 - Interactions on large scales, medium, proper motion...

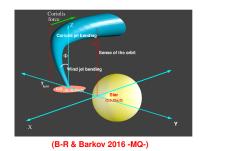


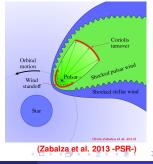


V. Bosch-Ramon (UB)

Highest Energies of Gamma-Ray Binaries

- High-mass, relativistic γ-ray emitting binaries are efficient complex accelerators and powerful high-energy sources.
- Important elements common to most of these sources:
 - Magnetized relativistic outflow: wind, jet. (BINARY SCALES)
 - Dense radiation field and radiation reprocessing.
 - Substantial and structured stellar wind (clumps, disk...).
 - Shocks, instabilities, turbulence, mixing...
 - Orbit, eccentricity, disruption. (BEYOND BINARY SCALES)
 Interactions on large scales, medium, proper motion...

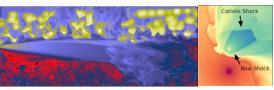




V. Bosch-Ramon (UB)

Highest Energies of Gamma-Ray Binaries

- High-mass, relativistic γ-ray emitting binaries are efficient complex accelerators and powerful high-energy sources.
- Important elements common to most of these sources:
 - Magnetized relativistic outflow: wind, jet. (BINARY SCALES)
 - Dense radiation field and radiation reprocessing.
 - Substantial and structured stellar wind (clumps, disk...).
 - Shocks, instabilities, turbulence, mixing...
 - Orbit, eccentricity, disruption. (BEYOND BINARY SCALES)
 - Interactions on large scales, medium, proper motion...



V. Bosch-Ramon (UB)

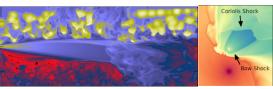
Highest Energies of Gamma-Ray Binaries


Outflows in high-mass relativistic binaries

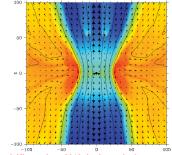
- Relativistic jets form, collimate, accelerate by rotation of B + P_{ex} accretion/spin fueled.
- Jet likely structured (spine+sheath); *B*-role, content, velocity are unclear.
- Jet gets recollimation shock, mixing, non ballistic helical motion due to wind+orbit.
- Ultrarelativistic pulsar winds form from a rotating magnetosphere at light cylinder.
- Pulsar wind expected to be magnetized and striped, anisotropic, ultrarelativistic...
- A pulsar wind ends in a 4π shock against stellar wind; mixing; orbit; non-bal. spiral.

(Perucho & B-R 2012; Huber et al. 2021)

(Barkov & Khangulyan 2012; jet formation)


(Cerutti et al. 2020; unshocked wind)

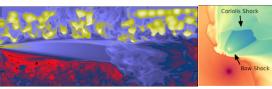
V. Bosch-Ramon (UB)


Highest Energies of Gamma-Ray Binaries

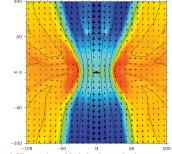

Outflows in high-mass relativistic binaries

- Relativistic jets form, collimate, accelerate by rotation of $B + P_{ex}$ accretion/spin fueled.
- Jet likely structured (spine+sheath); *B*-role, content, velocity are unclear.
- Ultrarelativistic pulsar winds form from a rotating magnetosphere at light cylinder.
- Pulsar wind expected to be magnetized and striped, anisotropic, ultrarelativistic... (Barkov & Khangulyan 2012; jet formation)
- A pulsar wind ends in a 4π shock against

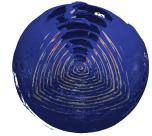
(Perucho & B-R 2012; Huber et al. 2021)


(Cerutti et al. 2020; unshocked wind)

V. Bosch-Ramon (UB)


Highest Energies of Gamma-Ray Binaries

Outflows in high-mass relativistic binaries


- Relativistic jets form, collimate, accelerate by rotation of B + P_{ex} accretion/spin fueled.
- Jet likely structured (spine+sheath); *B*-role, content, velocity are unclear.
- Jet gets recollimation shock, mixing, non ballistic helical motion due to wind+orbit.
- Ultrarelativistic pulsar winds form from a rotating magnetosphere at light cylinder.
- Pulsar wind expected to be magnetized and striped, anisotropic, ultrarelativistic...
- A pulsar wind ends in a 4π shock against stellar wind; mixing; orbit; non-bal. spiral.

(Perucho & B-R 2012; Huber et al. 2021)

(Barkov & Khangulyan 2012; jet formation)

(Cerutti et al. 2020; unshocked wind)

V. Bosch-Ramon (UB)

Highest Energies of Gamma-Ray Binaries

• LS 5039 is a binary system with an O6.5V star and a compact object of unknown nature. (e.g. Casares et al. 2005)

- More compact and less eccentric than other (likely) non-accreting gamma-ray binaries, it is well studied and useful to understand.
- LS 5039 presents extended jet-like radio, and orbitally modulated X-ray, GeV, TeV and UHE emission, likely synchrotron and IC.
 (e.g. Paredes et al. 00; Bosch-Ramon et al. 05; Aharonian et al. 06; Paredes, B-R & Romero 06; Khangulyan et al 08; Dubus et al. 08; Takahashi et al. 09; Hadasch et al. 12; Moldón et al. 12; Alfaro et al. 25)
- It shares much of its NT physics with other gamma-ray emitting binaries, including accreting ones. (for a recent list: e.g. Bordas 2024)
- Here I will focus on some recent developments regarding LS 5039.

< ロ > < 同 > < 回 > < 回 >

- LS 5039 is a binary system with an O6.5V star and a compact object of unknown nature. (e.g. Casares et al. 2005)
- More compact and less eccentric than other (likely) non-accreting gamma-ray binaries, it is well studied and useful to understand.
- LS 5039 presents extended jet-like radio, and orbitally modulated X-ray, GeV, TeV and UHE emission, likely synchrotron and IC.
 (e.g. Paredes et al. 00; Bosch-Ramon et al. 05; Aharonian et al. 06; Paredes, B-R & Romero 06; Khangulyan et al. 08; Dubus et al. 08; Takahashi et al. 09; Hadasch et al. 12; Moldón et al. 12; Alfaro et al. 25)
- It shares much of its NT physics with other gamma-ray emitting binaries, including accreting ones. (for a recent list: e.g. Bordas 2024)
- Here I will focus on some recent developments regarding LS 5039.

- LS 5039 is a binary system with an O6.5V star and a compact object of unknown nature. (e.g. Casares et al. 2005)
- More compact and less eccentric than other (likely) non-accreting gamma-ray binaries, it is well studied and useful to understand.
- LS 5039 presents extended jet-like radio, and orbitally modulated X-ray, GeV, TeV and UHE emission, likely synchrotron and IC.
 (e.g. Paredes et al. 00; Bosch-Ramon et al. 05; Aharonian et al. 06; Paredes, B-R & Romero 06; Khangulyan et al.

08; Dubus et al. 08; Takahashi et al. 09; Hadasch et al. 12; Moldón et al. 12; Alfaro et al. 25)

- It shares much of its NT physics with other gamma-ray emitting binaries, including accreting ones. (for a recent list: e.g. Bordas 2024)
- Here I will focus on some recent developments regarding LS 5039.

- LS 5039 is a binary system with an O6.5V star and a compact object of unknown nature. (e.g. Casares et al. 2005)
- More compact and less eccentric than other (likely) non-accreting gamma-ray binaries, it is well studied and useful to understand.
- LS 5039 presents extended jet-like radio, and orbitally modulated X-ray, GeV, TeV and UHE emission, likely synchrotron and IC.

(e.g. Paredes et al. 00; Bosch-Ramon et al. 05; Aharonian et al. 06; Paredes, B-R & Romero 06; Khangulyan et al.

08; Dubus et al. 08; Takahashi et al. 09; Hadasch et al. 12; Moldón et al. 12; Alfaro et al. 25)

• It shares much of its NT physics with other gamma-ray emitting binaries, including accreting ones. (for a recent list: e.g. Bordas 2024)

Here I will focus on some recent developments regarding LS 5039.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- LS 5039 is a binary system with an O6.5V star and a compact object of unknown nature. (e.g. Casares et al. 2005)
- More compact and less eccentric than other (likely) non-accreting gamma-ray binaries, it is well studied and useful to understand.
- LS 5039 presents extended jet-like radio, and orbitally modulated X-ray, GeV, TeV and UHE emission, likely synchrotron and IC.

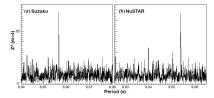
(e.g. Paredes et al. 00; Bosch-Ramon et al. 05; Aharonian et al. 06; Paredes, B-R & Romero 06; Khangulyan et al.

08; Dubus et al. 08; Takahashi et al. 09; Hadasch et al. 12; Moldón et al. 12; Alfaro et al. 25)

 It shares much of its NT physics with other gamma-ray emitting binaries, including accreting ones. (for a recent list: e.g. Bordas 2024)

• Here I will focus on some recent developments regarding LS 5039.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

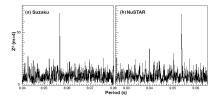


3 Variable UHE photons from LS 5039

4 Conclusions

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• Evidence of \approx 9 s X-ray pulsations may have been detected, $P/\dot{P} \sim 500$ yr; under debate. (Yoneda et al. 2020; Kargaltsev et al. 2023; Makishima et al. 2023)

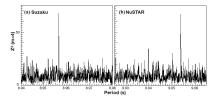


(Yoneda et al. 2020)

- This pulse evidence, if true, could indicate that a young highly magnetized NS is powering the non-thermal activity.
- The energy transfer mechanism from magnetosphere to NT emitter unclear, perhaps due to magnetosphere perturbation. (Yoneda et al. 2020)
- A magnetar may imply a very young source (~ 500 yr), but there is no evidence of a nearby young SNR. (Ribó et al. 2002; Moldón et al. 2012)
- LS I +61 303, showing sporadic 269 ms radio pulses and similar to LS 5039, has also been proposed to host a magnetar-like NS.

(e.g. Dubus & Giebels 2008; Torres et al. 2012; Weng et al. 2022)

• Evidence of \approx 9 s X-ray pulsations may have been detected, $P/\dot{P} \sim 500$ yr; under debate. (Yoneda et al. 2020; Kargaltsev et al. 2023; Makishima et al. 2023)

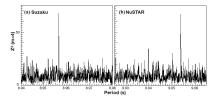


(Yoneda et al. 2020)

- This pulse evidence, if true, could indicate that a young highly magnetized NS is powering the non-thermal activity.
- The energy transfer mechanism from magnetosphere to NT emitter unclear, perhaps due to magnetosphere perturbation. (Yoneda et al. 2020)
- A magnetar may imply a very young source (~ 500 yr), but there is no evidence of a nearby young SNR. (Ribó et al. 2002; Moldón et al. 2012)
- LS I +61 303, showing sporadic 269 ms radio pulses and similar to LS 5039, has also been proposed to host a magnetar-like NS.

(e.g. Dubus & Giebels 2008; Torres et al. 2012; Weng et al. 2022)

• Evidence of \approx 9 s X-ray pulsations may have been detected, $P/\dot{P} \sim 500$ yr; under debate. (Yoneda et al. 2020; Kargaltsev et al. 2023; Makishima et al. 2023)

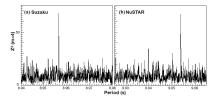


(Yoneda et al. 2020)

- This pulse evidence, if true, could indicate that a young highly magnetized NS is powering the non-thermal activity.
- The energy transfer mechanism from magnetosphere to NT emitter unclear, perhaps due to magnetosphere perturbation. (Yoneda et al. 2020)
- A magnetar may imply a very young source (~ 500 yr), but there is no evidence of a nearby young SNR. (Ribó et al. 2002; Moldón et al. 2012)
- LS I +61 303, showing sporadic 269 ms radio pulses and similar to LS 5039, has also been proposed to host a magnetar-like NS.

(e.g. Dubus & Giebels 2008; Torres et al. 2012; Weng et al. 2022)

• Evidence of \approx 9 s X-ray pulsations may have been detected, $P/\dot{P} \sim 500$ yr; under debate. (Yoneda et al. 2020; Kargaltsev et al. 2023; Makishima et al. 2023)


```
(Yoneda et al. 2020)
```

- This pulse evidence, if true, could indicate that a young highly magnetized NS is powering the non-thermal activity.
- The energy transfer mechanism from magnetosphere to NT emitter unclear, perhaps due to magnetosphere perturbation. (Yoneda et al. 2020)
- A magnetar may imply a very young source (~ 500 yr), but there is no evidence of a nearby young SNR. (Ribó et al. 2002; Moldón et al. 2012)

 LS I +61 303, showing sporadic 269 ms radio pulses and similar to LS 5039, has also been proposed to host a magnetar-like NS.

(e.g. Dubus & Giebels 2008; Torres et al. 2012; Weng et al. 2022)

• Evidence of \approx 9 s X-ray pulsations may have been detected, $P/\dot{P} \sim 500$ yr; under debate. (Yoneda et al. 2020; Kargaltsev et al. 2023; Makishima et al. 2023)

(Yoneda et al. 2020)

- This pulse evidence, if true, could indicate that a young highly magnetized NS is powering the non-thermal activity.
- The energy transfer mechanism from magnetosphere to NT emitter unclear, perhaps due to magnetosphere perturbation. (Yoneda et al. 2020)
- A magnetar may imply a very young source (~ 500 yr), but there is no evidence of a nearby young SNR. (Ribó et al. 2002; Moldón et al. 2012)
- LS I +61 303, showing sporadic 269 ms radio pulses and similar to LS 5039, has also been proposed to host a magnetar-like NS.

(e.g. Dubus & Giebels 2008; Torres et al. 2012; Weng et al. 2022)

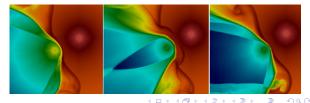
• For a weak wind: $r_{\rm cd} \sim \eta^{1/2} R_{\rm orb} / (1 + \eta^{1/2}) \sim 2 \times 10^{10} \eta_{-4}^{1/2}$ cm.

- If $r_{cd} \lesssim r_{lc} \approx 4 \times 10^{10}$ cm for P = 9 s, the stellar wind can potentially interact and tap energy from the magnetosphere. (Yoneda et al. 2020)
- This can last while the wind touches the magnetosphere: $r_{\rm cd} \lesssim r_{\rm lc}$.
- However, $r_{\rm sh} \rightarrow r_{\rm lc}$ if $L_{\rm mag} \gg \dot{E}_{\rm sd,low}$, as shocked pulsar wind fills the PWZ, lasting until $r_{\rm cd}$ stabilizes far from the NS; the cycle restarts.
- A large multipolar $B_{\rm mpl} \gtrsim 10^{15}$ G is required for reconnection and could sustain NT emission potentially for $\gtrsim 10^4$ yr. (Yoneda et al. 2020)
- A moderate $B_{dp} \sim 3 \times 10^{13}$ G would allow for a previous ejector phase lasting $10^4 10^5$ yr, explaining the lack of a young SNR.
- Georotator-induced ejector-georotator cycle:

(B-R & Barkov)

- For a weak wind: $r_{\rm cd} \sim \eta^{1/2} R_{\rm orb} / (1 + \eta^{1/2}) \sim 2 \times 10^{10} \, \eta_{-4}^{1/2}$ cm.
- If $r_{\rm cd} \lesssim r_{\rm lc} \approx 4 \times 10^{10}$ cm for P = 9 s, the stellar wind can potentially interact and tap energy from the magnetosphere. (Yoneda et al. 2020)
- This can last while the wind touches the magnetosphere: $r_{\rm cd} \lesssim r_{\rm lc}$.
- However, $r_{\rm sh} \rightarrow r_{\rm lc}$ if $L_{\rm mag} \gg \dot{E}_{\rm sd,low}$, as shocked pulsar wind fills the PWZ, lasting until $r_{\rm cd}$ stabilizes far from the NS; the cycle restarts.
- A large multipolar $B_{\rm mpl} \gtrsim 10^{15}$ G is required for reconnection and could sustain NT emission potentially for $\gtrsim 10^4$ yr. (Yoneda et al. 2020)
- A moderate $B_{dp} \sim 3 \times 10^{13}$ G would allow for a previous ejector phase lasting $10^4 10^5$ yr, explaining the lack of a young SNR.
- Georotator-induced ejector-georotator cycle:

(B-R & Barkov)


- For a weak wind: $r_{\rm cd} \sim \eta^{1/2} R_{\rm orb} / (1 + \eta^{1/2}) \sim 2 \times 10^{10} \, \eta_{-4}^{1/2}$ cm.
- If $r_{\rm cd} \lesssim r_{\rm lc} \approx 4 \times 10^{10}$ cm for P = 9 s, the stellar wind can potentially interact and tap energy from the magnetosphere. (Yoneda et al. 2020)
- This can last while the wind touches the magnetosphere: $r_{\rm cd} \lesssim r_{\rm lc}$.
- However, $r_{sh} \rightarrow r_{lc}$ if $L_{mag} \gg \dot{E}_{sd,low}$, as shocked pulsar wind fills the PWZ, lasting until r_{cd} stabilizes far from the NS; the cycle restarts.
- A large multipolar $B_{\rm mpl} \gtrsim 10^{15}$ G is required for reconnection and could sustain NT emission potentially for $\gtrsim 10^4$ yr. (Yoneda et al. 2020)
- A moderate $B_{dp} \sim 3 \times 10^{13}$ G would allow for a previous ejector phase lasting $10^4 10^5$ yr, explaining the lack of a young SNR.
- Georotator-induced ejector-georotator cycle:

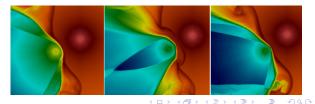
(B-R & Barkov)


- For a weak wind: $r_{\rm cd} \sim \eta^{1/2} R_{\rm orb} / (1 + \eta^{1/2}) \sim 2 \times 10^{10} \, \eta_{-4}^{1/2}$ cm.
- If $r_{cd} \lesssim r_{lc} \approx 4 \times 10^{10}$ cm for P = 9 s, the stellar wind can potentially interact and tap energy from the magnetosphere. (Yoneda et al. 2020)
- This can last while the wind touches the magnetosphere: $r_{\rm cd} \lesssim r_{\rm lc}$.
- However, $r_{\rm sh} \rightarrow r_{\rm lc}$ if $L_{\rm mag} \gg \dot{E}_{\rm sd,low}$, as shocked pulsar wind fills the PWZ, lasting until $r_{\rm cd}$ stabilizes far from the NS; the cycle restarts.
- A large multipolar $B_{\rm mpl}\gtrsim 10^{15}$ G is required for reconnection and could sustain NT emission potentially for $\gtrsim 10^4$ yr. (Yoneda et al. 2020)
- A moderate $B_{dp} \sim 3 \times 10^{13}$ G would allow for a previous ejector phase lasting $10^4 10^5$ yr, explaining the lack of a young SNR.
- Georotator-induced ejector-georotator cycle:

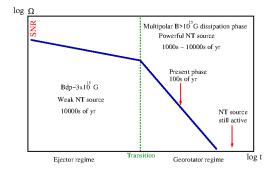
(B-R & Barkov)

- For a weak wind: $r_{\rm cd} \sim \eta^{1/2} R_{\rm orb} / (1 + \eta^{1/2}) \sim 2 \times 10^{10} \, \eta_{-4}^{1/2}$ cm.
- If $r_{cd} \lesssim r_{lc} \approx 4 \times 10^{10}$ cm for P = 9 s, the stellar wind can potentially interact and tap energy from the magnetosphere. (Yoneda et al. 2020)
- This can last while the wind touches the magnetosphere: $r_{\rm cd} \lesssim r_{\rm lc}$.
- However, $r_{\rm sh} \rightarrow r_{\rm lc}$ if $L_{\rm mag} \gg \dot{E}_{\rm sd,low}$, as shocked pulsar wind fills the PWZ, lasting until $r_{\rm cd}$ stabilizes far from the NS; the cycle restarts.
- A large multipolar $B_{\rm mpl} \gtrsim 10^{15}$ G is required for reconnection and could sustain NT emission potentially for $\gtrsim 10^4$ yr. (Yoneda et al. 2020)
- A moderate $B_{dp} \sim 3 \times 10^{13}$ G would allow for a previous ejector phase lasting $10^4 10^5$ yr, explaining the lack of a young SNR.
- Georotator-induced ejector-georotator cycle:

(B-R & Barkov)


- For a weak wind: $r_{\rm cd} \sim \eta^{1/2} R_{\rm orb} / (1 + \eta^{1/2}) \sim 2 \times 10^{10} \, \eta_{-4}^{1/2}$ cm.
- If $r_{cd} \lesssim r_{lc} \approx 4 \times 10^{10}$ cm for P = 9 s, the stellar wind can potentially interact and tap energy from the magnetosphere. (Yoneda et al. 2020)
- This can last while the wind touches the magnetosphere: $r_{\rm cd} \lesssim r_{\rm lc}$.
- However, $r_{\rm sh} \rightarrow r_{\rm lc}$ if $L_{\rm mag} \gg \dot{E}_{\rm sd,low}$, as shocked pulsar wind fills the PWZ, lasting until $r_{\rm cd}$ stabilizes far from the NS; the cycle restarts.
- A large multipolar $B_{\rm mpl}\gtrsim 10^{15}$ G is required for reconnection and could sustain NT emission potentially for $\gtrsim 10^4$ yr. (Yoneda et al. 2020)
- A moderate $B_{dp} \sim 3 \times 10^{13}$ G would allow for a previous ejector phase lasting $10^4 10^5$ yr, explaining the lack of a young SNR.
- Georotator-induced ejector-georotator cycle:

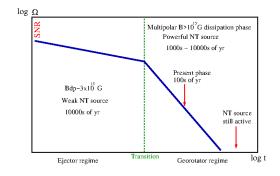
(B-R & Barkov)



- For a weak wind: $r_{\rm cd} \sim \eta^{1/2} R_{\rm orb} / (1 + \eta^{1/2}) \sim 2 \times 10^{10} \, \eta_{-4}^{1/2}$ cm.
- If $r_{cd} \lesssim r_{lc} \approx 4 \times 10^{10}$ cm for P = 9 s, the stellar wind can potentially interact and tap energy from the magnetosphere. (Yoneda et al. 2020)
- This can last while the wind touches the magnetosphere: $r_{\rm cd} \lesssim r_{\rm lc}$.
- However, $r_{\rm sh} \rightarrow r_{\rm lc}$ if $L_{\rm mag} \gg \dot{E}_{\rm sd,low}$, as shocked pulsar wind fills the PWZ, lasting until $r_{\rm cd}$ stabilizes far from the NS; the cycle restarts.
- A large multipolar $B_{\rm mpl}\gtrsim 10^{15}$ G is required for reconnection and could sustain NT emission potentially for $\gtrsim 10^4$ yr. (Yoneda et al. 2020)
- A moderate $B_{dp} \sim 3 \times 10^{13}$ G would allow for a previous ejector phase lasting $10^4 10^5$ yr, explaining the lack of a young SNR.
- Georotator-induced ejector-georotator cycle:

(B-R & Barkov)

 After weak ejector phase lasting > 10⁴ yr, LS 5039 becomes strong NT source when tapping magnetospheric energy is possible.

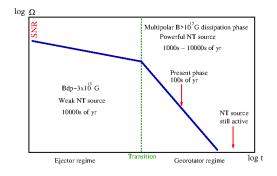


(B-R & Barkov)

- Short-term variability <a>51000s seconds (stellar wind). (Yoneda et al. 2023)
- Similar to standard ejector but more chaotic 2-wind interaction.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 After weak ejector phase lasting > 10⁴ yr, LS 5039 becomes strong NT source when tapping magnetospheric energy is possible.


(B-R & Barkov)

• Short-term variability \$1000s seconds (stellar wind). (Yoneda et al. 2023)

Similar to standard ejector but more chaotic 2-wind interaction.

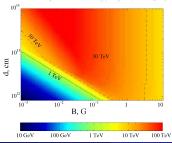
< ロ > < 同 > < 回 > < 回 >

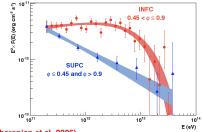
 After weak ejector phase lasting > 10⁴ yr, LS 5039 becomes strong NT source when tapping magnetospheric energy is possible.

(B-R & Barkov)

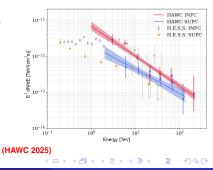
- Short-term variability \lesssim 1000s seconds (stellar wind). (Yoneda et al. 2023)
- Similar to standard ejector but more chaotic 2-wind interaction.

< ロ > < 同 > < 回 > < 回 >


4 Conclusions

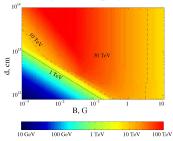

A (10) > A (10) > A (10)

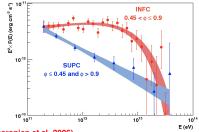
• HESS detected $\lesssim 30$ TeV photons, orbitally modulated $\lesssim 10$ TeV, of likely stellar photon IC origin with small absorption.


(Aharonian et al. 2006; Khangulyan et al. 2008)

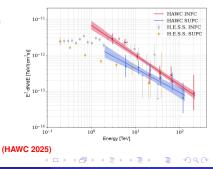
- HAWC has seen photons up to ~ 200 TeV consistent with HESS SED and lightcurve.
- Variability 40 118 TeV signal is 2.7 σ but different E_{max} in INFC and SUPC. (HAWC2025)
- The involved electron energies are huge, $\approx 50-250~\text{TeV.}$ (Khangulyan et al. 2014)
- Constraints ($t_{
 m acc}=10r_{
 m g}/c$): (Khangulyan et al. 2008)

(Aharonian et al. 2006)


V. Bosch-Ramon (UB)

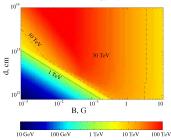

Highest Energies of Gamma-Ray Binaries

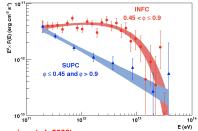
• HESS detected $\lesssim 30$ TeV photons, orbitally modulated $\lesssim 10$ TeV, of likely stellar photon IC origin with small absorption.


(Aharonian et al. 2006; Khangulyan et al. 2008)

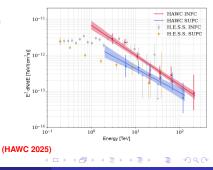
- HAWC has seen photons up to $\sim 200~\text{TeV}$ consistent with HESS SED and lightcurve.
- Variability 40 118 TeV signal is 2.7 σ but different E_{max} in INFC and SUPC. (HAWC2025)
- The involved electron energies are huge, $\approx 50-250~\text{TeV.}$ (Khangulyan et al. 2014)
- Constraints ($t_{
 m acc}=10r_{
 m g}/c$): (Khangulyan et al. 2008)

(Aharonian et al. 2006)


V. Bosch-Ramon (UB)

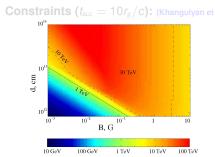

Highest Energies of Gamma-Ray Binaries

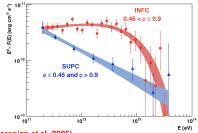
• HESS detected $\lesssim 30$ TeV photons, orbitally modulated $\lesssim 10$ TeV, of likely stellar photon IC origin with small absorption.


(Aharonian et al. 2006; Khangulyan et al. 2008)

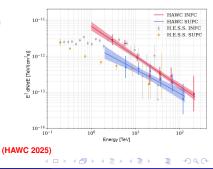
- HAWC has seen photons up to $\sim 200~\text{TeV}$ consistent with HESS SED and lightcurve.
- Variability 40 118 TeV signal is 2.7 σ but different E_{max} in INFC and SUPC. (HAWC2025)
- The involved electron energies are huge, $\approx 50-250$ TeV. (Khangulyan et al. 2014)
- Constraints ($t_{acc} = 10r_g/c$): (Khangulyan et al. 2008)

(Aharonian et al. 2006)


V. Bosch-Ramon (UB)


Highest Energies of Gamma-Ray Binaries

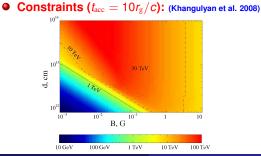
• HESS detected $\lesssim 30$ TeV photons, orbitally modulated $\lesssim 10$ TeV, of likely stellar photon IC origin with small absorption.

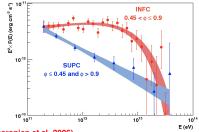

(Aharonian et al. 2006; Khangulyan et al. 2008)

- HAWC has seen photons up to $\sim 200~\text{TeV}$ consistent with HESS SED and lightcurve.
- Variability 40 118 TeV signal is 2.7 σ but different E_{max} in INFC and SUPC. (HAWC2025)
- The involved electron energies are huge, $\approx 50-250$ TeV. (Khangulyan et al. 2014)

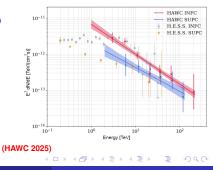
(Aharonian et al. 2006)

V. Bosch-Ramon (UB)


Highest Energies of Gamma-Ray Binaries


VHE/UHE detection of LS 5039

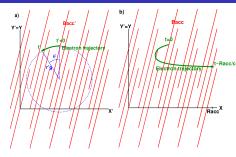
• HESS detected $\lesssim 30$ TeV photons, orbitally modulated $\lesssim 10$ TeV, of likely stellar photon IC origin with small absorption.


(Aharonian et al. 2006; Khangulyan et al. 2008)

- HAWC has seen photons up to $\sim 200~\text{TeV}$ consistent with HESS SED and lightcurve.
- Variability 40 118 TeV signal is 2.7 σ but different E_{max} in INFC and SUPC. (HAWC2025)
- The involved electron energies are huge, $\approx 50-250~\text{TeV.}$ (Khangulyan et al. 2014)

(Aharonian et al. 2006)

V. Bosch-Ramon (UB)


Highest Energies of Gamma-Ray Binaries

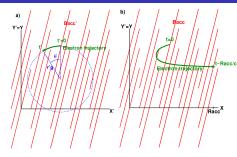
May 6-8, 2025 12/15

- For an acceleration/emission affected by orbit, mean free path λ = η_{diff}r_a ≤ a.
- For $t_{acc} = \eta_{acc} r_g/c$, $E_{max} \approx 50 (250)$ TeV, and $\eta_{diff} r_a \lesssim a$, $t_{acc} < t_{sy}$ one obtains

 $\eta_{
m diff}, \eta_{
m acc} \lesssim 4$ (D.4 as \gtrsim 1)

- Synchrotron losses impose severe conditions on the acceleration region.
- A mechanism reaching $E \gtrsim 100$ TeV on scales $\lesssim a$ is required:
 - Diffusive processes barely match constraints.
 - Magnetic reconnection needs very idealized conditions.
- From SED $N_E \propto E^{-2}$: $Q_E \propto E^{-2}$ (low sync) or $\propto E^{-1}$ or harder (high sync)

(B-R & Khangulyan)

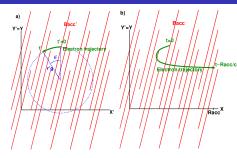

- High Γ wind+B_⊥ reduces synch. & yield hard Q_E from γγ → e[±] seeds:
- $E \sim \Gamma(1 \beta \cos \theta')(\Gamma E_{\pm})$
- $R_{\rm acc} \approx \Gamma(r'_{\rm g}\cos(\theta' + \pi/2) + vt')$
- $\theta' \approx tc/r'_{\rm g} \approx (6R_{\rm acc}/r'_{\rm g}\Gamma)^{1/3} \, (\theta' \ll 1)$
- Thus $E \sim 160(\eta_{\rm B}L_{36.5}E_{0,100{\rm GeV}})^{1/3}$ TeV. (For $\theta' \gtrsim 1$, $E \approx 1 \Gamma_3^2 E_{0,{\rm MeV}}$ TeV.)

イロト 不得 トイヨト イヨト

- For an acceleration/emission affected by orbit, mean free path λ = η_{diff}r_a ≲ a.
- For $t_{acc} = \eta_{acc} r_g / c$, $E_{max} \approx 50 (250)$ TeV, and $\eta_{diff} r_a \lesssim a$, $t_{acc} < t_{sy}$ one obtains

 $\eta_{
m diff}, \eta_{
m acc} \lesssim 4$ (0:4 as \gtrsim 1)

- Synchrotron losses impose severe conditions on the acceleration region.
- A mechanism reaching E ≥ 100 TeV on scales ≤ a is required:
 - Diffusive processes barely match constraints.
 - Magnetic reconnection needs very idealized conditions.
- From SED $N_E \propto E^{-2}$: $Q_E \propto E^{-2}$ (low sync) or $\propto E^{-1}$ or harder (high sync)


(B-R & Khangulyan)

- High Γ wind+B_⊥ reduces synch. & yield hard Q_E from γγ → e[±] seeds:
- $E \sim \Gamma(1 \beta \cos \theta')(\Gamma E_{\pm})$
- $R_{\rm acc} \approx \Gamma(r'_{\rm g}\cos(\theta' + \pi/2) + vt')$
- $\theta' \approx tc/r'_{\rm g} \approx (6R_{\rm acc}/r'_{\rm g}\Gamma)^{1/3} \, (\theta' \ll 1)$
- Thus $E \sim 160(\eta_{\rm B}L_{36.5}E_{0,100{\rm GeV}})^{1/3}$ TeV. (For $\theta' \gtrsim 1$, $E \approx 1 \Gamma_3^2 E_{0,{\rm MeV}}$ TeV.)

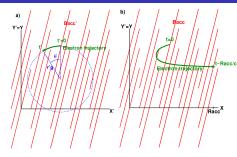
- For an acceleration/emission affected by orbit, mean free path λ = η_{diff}r_a ≤ a.
- For $t_{acc} = \eta_{acc} r_g / c$, $E_{max} \approx 50 (250)$ TeV, and $\eta_{diff} r_a \lesssim a$, $t_{acc} < t_{sy}$ one obtains

 $\eta_{
m diff}, \eta_{
m acc} \lesssim 4$ (0:4 as \gtrsim 1)

- Synchrotron losses impose severe conditions on the acceleration region.
- A mechanism reaching $E \gtrsim 100$ TeV on scales $\leq a$ is required:
 - Diffusive processes barely match constraints.
 - Magnetic reconnection needs very idealized conditions.
- From SED $N_E \propto E^{-2}$: $Q_E \propto E^{-2}$ (low sync) or $\propto E^{-1}$ or harder (high sync)

(B-R & Khangulyan)

- High Γ wind+B_⊥ reduces synch. & yield hard Q_E from γγ → e[±] seeds:
- $E \sim \Gamma(1 \beta \cos \theta')(\Gamma E_{\pm})$
- $R_{\rm acc} \approx \Gamma(r'_{\rm g}\cos(\theta' + \pi/2) + vt')$
- $\theta' \approx tc/r'_{\rm g} \approx (6R_{\rm acc}/r'_{\rm g}\Gamma)^{1/3} \, (\theta' \ll 1)$
- Thus $E \sim 160(\eta_{\rm B}L_{36.5}E_{0,100{\rm GeV}})^{1/3}$ TeV. (For $\theta' \gtrsim 1$, $E \approx 1 \Gamma_3^2 E_{0,{\rm MeV}}$ TeV.)


イロト 不得 トイヨト イヨト

- For an acceleration/emission affected by orbit, mean free path λ = η_{diff}r_a ≤ a.
- For $t_{acc} = \eta_{acc} r_g / c$, $E_{max} \approx 50 (250)$ TeV, and $\eta_{diff} r_a \lesssim a$, $t_{acc} < t_{sy}$ one obtains

 $\eta_{
m diff}, \eta_{
m acc} \lesssim 4$ (0.4 as $\gtrsim 1$)

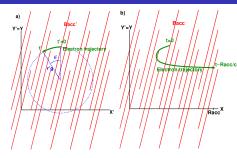
- Synchrotron losses impose severe conditions on the acceleration region.
- A mechanism reaching $E \gtrsim 100$ TeV on scales $\lesssim a$ is required:
 - Diffusive processes barely match constraints.
 - Magnetic reconnection needs very idealized conditions.

• From SED $N_E \propto E^{-2}$: $Q_E \propto E^{-2}$ (low sync) or $\propto E^{-1}$ or harder (high sync)

(B-R & Khangulyan)

High Γ wind+B_⊥ reduces synch. & yield hard Q_E from γγ → e[±] seeds:

•
$$E \sim \Gamma(1 - \beta \cos \theta')(\Gamma E_{\pm})$$


- $R_{\rm acc} \approx \Gamma(r'_{\rm g}\cos(\theta' + \pi/2) + vt')$
- $\theta' \approx tc/r'_{\rm g} \approx (6R_{\rm acc}/r'_{\rm g}\Gamma)^{1/3} \, (\theta' \ll 1)$
- Thus $E \sim 160(\eta_{\rm B}L_{36.5}E_{0,100{\rm GeV}})^{1/3}$ TeV. (For $\theta' \gtrsim 1$, $E \approx 1 \Gamma_3^2 E_{0,{\rm MeV}}$ TeV.)

< 日 > < 同 > < 回 > < 回 > < □ > <

- For an acceleration/emission affected by orbit, mean free path λ = η_{diff}r_a ≤ a.
- For $t_{acc} = \eta_{acc} r_g/c$, $E_{max} \approx 50 (250)$ TeV, and $\eta_{diff} r_a \lesssim a$, $t_{acc} < t_{sy}$ one obtains

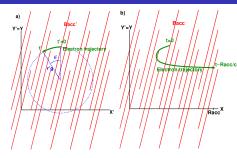
 $\eta_{
m diff}, \eta_{
m acc} \lesssim 4$ (DA as \gtrsim 1)

- Synchrotron losses impose severe conditions on the acceleration region.
- A mechanism reaching E ≥ 100 TeV on scales ≤ a is required:
 - Diffusive processes barely match constraints.
 - Magnetic reconnection needs very idealized conditions.
- From SED $N_E \propto E^{-2}$: $Q_E \propto E^{-2}$ (low sync) or $\propto E^{-1}$ or harder (high sync)

(B-R & Khangulyan)

High Γ wind+B_⊥ reduces synch. & yield hard Q_E from γγ → e[±] seeds:

•
$$E \sim \Gamma(1 - \beta \cos \theta')(\Gamma E_{\pm})$$


- $R_{\rm acc} \approx \Gamma(r'_{\rm g}\cos(\theta' + \pi/2) + vt')$
- $\theta' \approx tc/r'_{\rm g} \approx (6R_{\rm acc}/r'_{\rm g}\Gamma)^{1/3} \, (\theta' \ll 1)$
- Thus $E \sim 160(\eta_{\rm B}L_{36.5}E_{0,100{\rm GeV}})^{1/3}$ TeV. (For $\theta' \gtrsim 1$, $E \approx 1 \Gamma_3^2 E_{0,{\rm MeV}}$ TeV.)

< 日 > < 同 > < 回 > < 回 > < □ > <

- For an acceleration/emission affected by orbit, mean free path λ = η_{diff}r_a ≤ a.
- For $t_{acc} = \eta_{acc} r_g / c$, $E_{max} \approx 50 (250)$ TeV, and $\eta_{diff} r_a \lesssim a$, $t_{acc} < t_{sy}$ one obtains

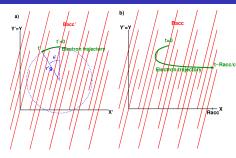
 $\eta_{
m diff}, \eta_{
m acc} \lesssim 4$ (0.4 as $\gtrsim 1$)

- Synchrotron losses impose severe conditions on the acceleration region.
- A mechanism reaching E ≥ 100 TeV on scales ≤ a is required:
 - Diffusive processes barely match constraints.
 - Magnetic reconnection needs very idealized conditions.
- From SED $N_E \propto E^{-2}$: $Q_E \propto E^{-2}$ (low sync) or $\propto E^{-1}$ or harder (high sync)

(B-R & Khangulyan)

High Γ wind+B_⊥ reduces synch. & yield hard Q_E from γγ → e[±] seeds:

•
$$E \sim \Gamma(1 - \beta \cos \theta')(\Gamma E_{\pm})$$


- $R_{\rm acc} \approx \Gamma(r'_{\rm g}\cos(\theta' + \pi/2) + vt')$
- $\theta' \approx tc/r'_{\rm g} \approx (6R_{\rm acc}/r'_{\rm g}\Gamma)^{1/3} \, (\theta' \ll 1)$
- Thus $E \sim 160(\eta_{\rm B}L_{36.5}E_{0,100{\rm GeV}})^{1/3}$ TeV. (For $\theta' \gtrsim 1, E \approx 1 \, \Gamma_3^2 E_{0,{\rm MeV}}$ TeV.)

ヘロト ヘ回ト ヘヨト ヘヨト

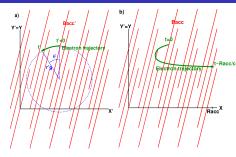
- For an acceleration/emission affected by orbit, mean free path λ = η_{diff}r_a ≤ a.
- For $t_{acc} = \eta_{acc} r_g/c$, $E_{max} \approx 50 (250)$ TeV, and $\eta_{diff} r_a \lesssim a$, $t_{acc} < t_{sy}$ one obtains

 $\eta_{
m diff}, \eta_{
m acc} \lesssim 4$ (0.4 as $\gtrsim 1$)

- Synchrotron losses impose severe conditions on the acceleration region.
- A mechanism reaching E ≥ 100 TeV on scales ≤ a is required:
 - Diffusive processes barely match constraints.
 - Magnetic reconnection needs very idealized conditions.
- From SED $N_E \propto E^{-2}$: $Q_E \propto E^{-2}$ (low sync) or $\propto E^{-1}$ or harder (high sync)

(B-R & Khangulyan)

High Γ wind+B_⊥ reduces synch. & yield hard Q_E from γγ → e[±] seeds:

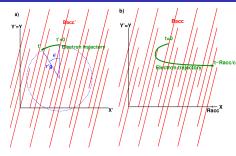

•
$$E \sim \Gamma(1 - \beta \cos \theta')(\Gamma E_{\pm})$$

- $R_{\rm acc} \approx \Gamma(r'_{\rm g}\cos(\theta' + \pi/2) + vt')$
- $\theta' \approx tc/r'_{\rm g} \approx (6R_{\rm acc}/r'_{\rm g}\Gamma)^{1/3} \, (\theta' \ll 1)$
- Thus $E \sim 160(\eta_{\rm B}L_{36.5}E_{0,100{\rm GeV}})^{1/3}$ TeV. (For $\theta' \gtrsim 1, E \approx 1 \Gamma_3^2 E_{0,{\rm MeV}}$ TeV.)

- For an acceleration/emission affected by orbit, mean free path λ = η_{diff}r_a ≤ a.
- For $t_{acc} = \eta_{acc} r_g/c$, $E_{max} \approx 50 (250)$ TeV, and $\eta_{diff} r_a \lesssim a$, $t_{acc} < t_{sy}$ one obtains

 $\eta_{
m diff}, \eta_{
m acc} \lesssim 4$ (0.4 as $\gtrsim 1$)

- Synchrotron losses impose severe conditions on the acceleration region.
- A mechanism reaching E ≥ 100 TeV on scales ≤ a is required:
 - Diffusive processes barely match constraints.
 - Magnetic reconnection needs very idealized conditions.
- From SED N_E ∝ E⁻²: Q_E ∝ E⁻²(low sync) or ∝ E⁻¹ or harder (high sync)

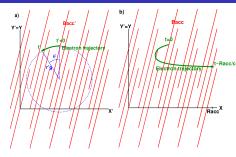

(B-R & Khangulyan)

- High Γ wind+B_⊥ reduces synch. & yield hard Q_E from γγ → e[±] seeds:
- $E \sim \Gamma(1 \beta \cos \theta')(\Gamma E_{\pm})$
- $R_{\rm acc} \approx \Gamma(r'_{\rm g}\cos(\theta' + \pi/2) + vt')$
- $\theta' \approx tc/r'_{\rm g} \approx (6R_{\rm acc}/r'_{\rm g}\Gamma)^{1/3} \, (\theta' \ll 1)$
- Thus $E \sim 160(\eta_{\rm B}L_{36.5}E_{0,100{\rm GeV}})^{1/3}$ TeV. (For $\theta' \gtrsim 1$, $E \approx 1 \Gamma_3^2 E_{0,{\rm MeV}}$ TeV.)

- For an acceleration/emission affected by orbit, mean free path λ = η_{diff}r_a ≤ a.
- For $t_{acc} = \eta_{acc} r_g/c$, $E_{max} \approx 50 (250)$ TeV, and $\eta_{diff} r_a \lesssim a$, $t_{acc} < t_{sy}$ one obtains

 $\eta_{
m diff}, \eta_{
m acc} \lesssim 4$ (0.4 as $\gtrsim 1$)

- Synchrotron losses impose severe conditions on the acceleration region.
- A mechanism reaching E ≥ 100 TeV on scales ≤ a is required:
 - Diffusive processes barely match constraints.
 - Magnetic reconnection needs very idealized conditions.
- From SED N_E ∝ E⁻²: Q_E ∝ E⁻²(low sync) or ∝ E⁻¹ or harder (high sync)

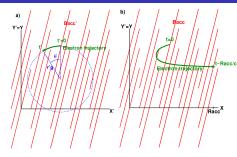

(B-R & Khangulyan)

- High Γ wind+B_⊥ reduces synch. & yield hard Q_E from γγ → e[±] seeds:
- $E \sim \Gamma(1 \beta \cos \theta')(\Gamma E_{\pm})$
- $R_{\rm acc} \approx \Gamma(r'_{\rm g}\cos(\theta' + \pi/2) + vt')$
- $\theta' \approx tc/r'_{\rm g} \approx (6R_{\rm acc}/r'_{\rm g}\Gamma)^{1/3} \, (\theta' \ll 1)$
- Thus $E \sim 160(\eta_{\rm B}L_{36.5}E_{0,100{\rm GeV}})^{1/3}$ TeV. (For $\theta' \gtrsim 1$, $E \approx 1 \Gamma_3^2 E_{0,{\rm MeV}}$ TeV.)

- For an acceleration/emission affected by orbit, mean free path λ = η_{diff}r_a ≤ a.
- For $t_{acc} = \eta_{acc} r_g/c$, $E_{max} \approx 50 (250)$ TeV, and $\eta_{diff} r_a \lesssim a$, $t_{acc} < t_{sy}$ one obtains

 $\eta_{
m diff}, \eta_{
m acc} \lesssim 4$ (0.4 as $\gtrsim 1$)

- Synchrotron losses impose severe conditions on the acceleration region.
- A mechanism reaching E ≥ 100 TeV on scales ≤ a is required:
 - Diffusive processes barely match constraints.
 - Magnetic reconnection needs very idealized conditions.
- From SED N_E ∝ E⁻²: Q_E ∝ E⁻²(low sync) or ∝ E⁻¹ or harder (high sync)

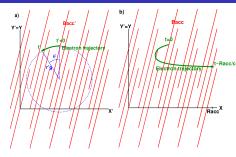

(B-R & Khangulyan)

- High Γ wind+B_⊥ reduces synch. & yield hard Q_E from γγ → e[±] seeds:
- $E \sim \Gamma(1 \beta \cos \theta')(\Gamma E_{\pm})$
- $R_{\rm acc} \approx \Gamma(r'_{\rm g}\cos(\theta' + \pi/2) + vt')$
- $\theta' \approx tc/r'_{\rm g} \approx (6R_{\rm acc}/r'_{\rm g}\Gamma)^{1/3} \, (\theta' \ll 1)$
- Thus $E \sim 160(\eta_{\rm B}L_{36.5}E_{0,100{\rm GeV}})^{1/3}$ TeV. (For $\theta' \gtrsim 1$, $E \approx 1 \Gamma_3^2 E_{0,{\rm MeV}}$ TeV.)

- For an acceleration/emission affected by orbit, mean free path λ = η_{diff}r_a ≤ a.
- For $t_{acc} = \eta_{acc} r_g/c$, $E_{max} \approx 50 (250)$ TeV, and $\eta_{diff} r_a \lesssim a$, $t_{acc} < t_{sy}$ one obtains

 $\eta_{
m diff}, \eta_{
m acc} \lesssim 4$ (0.4 as $\gtrsim 1$)

- Synchrotron losses impose severe conditions on the acceleration region.
- A mechanism reaching E ≥ 100 TeV on scales ≤ a is required:
 - Diffusive processes barely match constraints.
 - Magnetic reconnection needs very idealized conditions.
- From SED N_E ∝ E⁻²: Q_E ∝ E⁻²(low sync) or ∝ E⁻¹ or harder (high sync)


(B-R & Khangulyan)

- High Γ wind+B_⊥ reduces synch. & yield hard Q_E from γγ → e[±] seeds:
- $E \sim \Gamma(1 \beta \cos \theta')(\Gamma E_{\pm})$
- $R_{\rm acc} \approx \Gamma(r'_{\rm g}\cos(\theta' + \pi/2) + vt')$
- $\theta' \approx tc/r'_{g} \approx (6R_{\rm acc}/r'_{g}\Gamma)^{1/3} (\theta' \ll 1)$
- Thus $E \sim 160(\eta_{\rm B}L_{36.5}E_{0,100{\rm GeV}})^{1/3}$ TeV. (For $\theta' \gtrsim 1$, $E \approx 1 \Gamma_3^2 E_{0,{\rm MeV}}$ TeV.)

- For an acceleration/emission affected by orbit, mean free path λ = η_{diff}r_a ≤ a.
- For $t_{acc} = \eta_{acc} r_g/c$, $E_{max} \approx 50 (250)$ TeV, and $\eta_{diff} r_a \lesssim a$, $t_{acc} < t_{sy}$ one obtains

 $\eta_{
m diff}, \eta_{
m acc} \lesssim 4$ (0.4 as $\gtrsim 1$)

- Synchrotron losses impose severe conditions on the acceleration region.
- A mechanism reaching E ≥ 100 TeV on scales ≤ a is required:
 - Diffusive processes barely match constraints.
 - Magnetic reconnection needs very idealized conditions.
- From SED N_E ∝ E⁻²: Q_E ∝ E⁻²(low sync) or ∝ E⁻¹ or harder (high sync)

(B-R & Khangulyan)

High Γ wind+B_⊥ reduces synch. & yield hard Q_E from γγ → e[±] seeds:

•
$$E \sim \Gamma(1 - \beta \cos \theta')(\Gamma E_{\pm})$$

•
$$R_{\rm acc} \approx \Gamma(r'_{\rm g}\cos(\theta' + \pi/2) + vt')$$

- $\theta' \approx tc/r'_{g} \approx (6R_{\rm acc}/r'_{g}\Gamma)^{1/3} (\theta' \ll 1)$
- Thus $E \sim 160(\eta_{\rm B}L_{36.5}E_{0,100{\rm GeV}})^{1/3}$ TeV. (For $\theta' \gtrsim 1$, $E \approx 1 \Gamma_3^2 E_{0,{\rm MeV}}$ TeV.)

```
(Based on Derishev & Aharonian 2012)
```

1 Introduction

3 Variable UHE photons from LS 5039

4 Conclusions

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• If LS 5039 hosted a magnetar, alternating phases of georotator and flare-induced ejector regimes may fuel a powerful wind NT source.

- Observations indicate that the accelerator in this source may need extreme conditions for electron acceleration and confinement.
- Reduction of synch. losses in a magnetized ultrarelativistic outflow dragging seed particles (*e*[±]) strongly relaxes these constraints.
- The broadband NT emitter has multiple relevant components inside / outside the binary (shocked flow, Coriolis shock, larger scales...),
- although such an outflow (sync. uncooled) and its termination region (sync. cooled) can be behind most prominent NT features.

- If LS 5039 hosted a magnetar, alternating phases of georotator and flare-induced ejector regimes may fuel a powerful wind NT source.
- Observations indicate that the accelerator in this source may need extreme conditions for electron acceleration and confinement.
- Reduction of synch. losses in a magnetized ultrarelativistic outflow dragging seed particles (*e*[±]) strongly relaxes these constraints.
- The broadband NT emitter has multiple relevant components inside / outside the binary (shocked flow, Coriolis shock, larger scales...),
- although such an outflow (sync. uncooled) and its termination region (sync. cooled) can be behind most prominent NT features.

- If LS 5039 hosted a magnetar, alternating phases of georotator and flare-induced ejector regimes may fuel a powerful wind NT source.
- Observations indicate that the accelerator in this source may need extreme conditions for electron acceleration and confinement.
- Reduction of synch. losses in a magnetized ultrarelativistic outflow dragging seed particles (e[±]) strongly relaxes these constraints.
- The broadband NT emitter has multiple relevant components inside / outside the binary (shocked flow, Coriolis shock, larger scales...),
- although such an outflow (sync. uncooled) and its termination region (sync. cooled) can be behind most prominent NT features.

- If LS 5039 hosted a magnetar, alternating phases of georotator and flare-induced ejector regimes may fuel a powerful wind NT source.
- Observations indicate that the accelerator in this source may need extreme conditions for electron acceleration and confinement.
- Reduction of synch. losses in a magnetized ultrarelativistic outflow dragging seed particles (e[±]) strongly relaxes these constraints.
- The broadband NT emitter has multiple relevant components inside / outside the binary (shocked flow, Coriolis shock, larger scales...),
- although such an outflow (sync. uncooled) and its termination region (sync. cooled) can be behind most prominent NT features.

< 日 > < 同 > < 回 > < 回 > < □ > <

- If LS 5039 hosted a magnetar, alternating phases of georotator and flare-induced ejector regimes may fuel a powerful wind NT source.
- Observations indicate that the accelerator in this source may need extreme conditions for electron acceleration and confinement.
- Reduction of synch. losses in a magnetized ultrarelativistic outflow dragging seed particles (e[±]) strongly relaxes these constraints.
- The broadband NT emitter has multiple relevant components inside / outside the binary (shocked flow, Coriolis shock, larger scales...),
- although such an outflow (sync. uncooled) and its termination region (sync. cooled) can be behind most prominent NT features.