

Nuclei in the Cosmos School 2025

EXPERIMENTAL NUCLEAR PHYSICS

Richard Longland North Carolina State U, USA

NASA/Space Telescope Science Institute

Outline

Introduction What's happening in the star? Nuclear reaction cross sections

Determining cross sections experimentally Experimental yields A brief primer on stopping powers Extract cross sections from yields Experimental yield Absolute cross sections Count rates

Outline

Introduction What's happening in the star? Nuclear reaction cross sections

 Determining cross sections experimentally Experimental yields

 A brief primer on stopping powers
 Extract cross sections from yields
 Experimental yield
 Absolute cross sections
 Count rates

Happening in our sun right now

- Mass of burning region M = 0.1 M_{\odot}
- Temperature $T_9 = 15 \text{ MK}$
- Density $\rho = 150 \text{ g/cm}^3$
- Assume
 - mass fraction of hydrogen ~ 99%
 - $\blacktriangleright\,$ mass fraction of oxygen \sim 1%

Happening in our sun right now

- Mass of burning region M = 0.1 M_{\odot}
- Temperature $T_9 = 15 \text{ MK}$
- Density $\rho = 150 \text{ g/cm}^3$
- Assume
 - mass fraction of hydrogen \sim 99%
 - mass fraction of oxygen \sim 1%
- Number of atoms in burning region
 - ► hydrogen: 1 × 10⁵⁶ atoms
 - oxygen: 8 × 10⁵² atoms

Happening in our sun right now

- Mass of burning region M = 0.1 M_{\odot}
- Temperature $T_9 = 15 \text{ MK}$
- Density $\rho = 150 \text{ g/cm}^3$
- Assume
 - mass fraction of hydrogen $\sim 99\%$
 - mass fraction of oxygen \sim 1%
- Number of atoms in burning region
 - ► hydrogen: 1 × 10⁵⁶ atoms
 - ► oxygen: 8 × 10⁵² atoms

- Rate per mole of ¹⁶O(p,γ)¹⁷F is r = 9.6× 10⁻²¹ cm³ mol⁻¹ s⁻¹
- Rate of reactions per ${}^{16}\text{O}$ $\lambda \approx
 ho \frac{X_H}{M_H} r \sim 1.4 \times 10^{-18} \text{ s}^{-1}$
- Total reaction rate $R = N_O \lambda$

Happening in our sun right now

- Mass of burning region M = 0.1 M_{\odot}
- Temperature $T_9 = 15 \text{ MK}$
- Density $\rho = 150 \text{ g/cm}^3$
- Assume
 - mass fraction of hydrogen \sim 99%
 - $\blacktriangleright\,$ mass fraction of oxygen \sim 1%
- Number of atoms in burning region
 - ► hydrogen: 1 × 10⁵⁶ atoms
 - ► oxygen: 8 × 10⁵² atoms

Total reaction rate

- Rate per mole of ¹⁶O(p,γ)¹⁷F is r = 9.6× 10⁻²¹ cm³ mol⁻¹ s⁻¹
- Rate of reactions per ^{16}O $\lambda \approx
 ho \frac{X_H}{M_H} r \sim 1.4 \times 10^{-18} \text{ s}^{-1}$
- Total reaction rate $R = N_O \lambda$

$R=1 imes 10^{35}~{ m s}^{-1}$

 What if we make a small plasma (of the same temperature and chemical make-up) in the lab?

 What if we make a small plasma (of the same temperature and chemical make-up) in the lab?

1cm³

- Typical plasma density on earth: $\rho N_A/M_H = 1 \times 10^{16} \text{ atoms/cm}^3$
- Rate of reactions per ¹⁶O: $\lambda \approx \rho \frac{X_H}{M_H} r \sim 9 \times 10^{-28} \text{ s}^{-1}$
- So in our "mini plasma", $R = 6 \times 10^{-15} \text{ s}^{-1}$

 What if we make a small plasma (of the same temperature and chemical make-up) in the lab?

- Typical plasma density on earth: $\rho N_A/M_H = 1 \times 10^{16}$ atoms/cm³
- Rate of reactions per ¹⁶O: $\lambda \approx \rho \frac{X_H}{M_H} r \sim 9 \times 10^{-28} \text{ s}^{-1}$
- So in our "mini plasma", $R = 6 \times 10^{-15} \text{ s}^{-1}$

- Let's make a big plasma!
- Model reactor as a sphere with r = 6 m: $V = 9 \times 10^8$ cm³

 What if we make a small plasma (of the same temperature and chemical make-up) in the lab?

- Typical plasma density on earth: $\rho N_A/M_H = 1 \times 10^{16}$ atoms/cm³
- Rate of reactions per ¹⁶O: $\lambda \approx \rho \frac{X_H}{M_H} r \sim 9 \times 10^{-28} \text{ s}^{-1}$
- So in our "mini plasma", $R = 6 \times 10^{-15} \text{ s}^{-1}$

- Let's make a big plasma!
- Model reactor as a sphere with r = 6 m: $V = 9 \times 10^8$ cm³
- 150 reactions per year

Time to get smart

Time to get smart

• Particle velocities distributed according to a Maxwell-Boltzmann distribution

$$N_{A} \langle \sigma \mathbf{v} \rangle_{01} = \left(\frac{8}{\pi \mu_{01}}\right) \frac{N_{A}}{(kT)^{3/2}} \times \int_{0}^{\infty} E \,\sigma(E) \, e^{-E/kT} \, dE$$

(cm³ mol⁻¹ s⁻¹)

Time to get smart

• Particle velocities distributed according to a Maxwell-Boltzmann distribution

$$N_{A} \langle \sigma \mathbf{v} \rangle_{01} = \left(\frac{8}{\pi \mu_{01}}\right) \frac{N_{A}}{(kT)^{3/2}} \times \int_{0}^{\infty} E \,\sigma(E) \, e^{-E/kT} \, dE$$

(cm³ mol⁻¹ s⁻¹)

- For a known temperature, we only need to know *σ*(*E*) to calculate reaction rate
- For the rest of my lectures, we will concern ourselves with *how*, exactly, to measure σ(E)

Cross section

number of reactions per time

 $\sigma(E) \equiv \frac{1}{(\text{number of incident particles per area per time)(number of target nuclei in the beam)}$

Richard Longland (NCSU/TUNL)

Experimental Nuclear Physics I

Cross section

number of reactions per time

 $\sigma(E) \equiv \frac{1}{(\text{number of incident particles per area per time)(number of target nuclei in the beam)}$

- Number of reactions
 - We need a detector that can count outgoing radiation from our experiment (Faïrouz Hammache will cover details)
- Number of incident particles
 - Need a beam of particles (Faïrouz again!)
- Number of target nuclei
 - Need to create a target (yes, Faïrouz will cover this too!)

Planning

- Stay with ${}^{16}O(p,\gamma){}^{17}F$ reaction
- First question: where (i.e. what energy) should I measure cross section?

$$\langle \sigma \mathbf{v} \rangle = \sqrt{\frac{8}{\pi \mu}} \frac{1}{(kT)^{3/2}} \int_0^\infty \sigma(E) E e^{-E/kT} dE$$

Planning

- Stay with ${}^{16}O(p,\gamma){}^{17}F$ reaction
- First question: where (i.e. what energy) should I measure cross section?

$$\langle \sigma \mathbf{v} \rangle = \sqrt{\frac{8}{\pi \mu}} \frac{1}{(kT)^{3/2}} \int_0^\infty \sigma(\mathbf{E}) \mathbf{E} e^{-\mathbf{E}/kT} d\mathbf{E}$$

Planning

- Stay with ${}^{16}O(p,\gamma){}^{17}F$ reaction
- First question: where (i.e. what energy) should I measure cross section?

$$\langle \sigma v \rangle = \sqrt{\frac{8}{\pi \mu}} \frac{1}{(kT)^{3/2}} \int_0^\infty \sigma(E) E e^{-E/kT} dE$$

Gamow Peak

- Useful in planning where to measure a cross section, but comes with some caveats
- Assumption 1: cross section dominated by s-wave Coulomb barrier penetration
- Assumption 2: it can be approximated by a Gaussian

For ¹⁶O(p, γ)¹⁷F at 15 MK, $E_0 = 30$ keV and $\Delta E = 15$ keV

Outline

Introduction What's happening in the star? Nuclear reaction cross sections

Determining cross sections experimentally Experimental yields A brief primer on stopping powers Extract cross sections from yields Experimental yield Absolute cross sections Count rates

Get these books

Krane: Introductory Nuclear Physics Knoll: Radiation Detection and Measurement Leo: Techniques for Nuclear and Particle Physics Experiments

Preparing for a cross section measurement

Preparing for a cross section measurement

Cross section

$$\sigma(E) = \frac{N_R/t}{(N_b/tA)(N_t)}$$

- Complication
 - Assumes that beam particles interact with target nuclei at one energy, E
 - ► (they don't)
 - Particles slow down as they traverse the target - we need to account for this
- In the laboratory we measure Yield: $Y \equiv N_R/N_b$
- Conversion of yield to cross section depends on nature of experiment

- Experimental yield vs. beam energy is a yield curve
- Yield includes effects of the beam slowing down in the target

- No way of knowing (for now) where the interaction took place
- Since the energy changes as the beam slows down in the target, so will the cross section

- Experimental yield vs. beam energy is a yield curve
- Yield includes effects of the beam slowing down in the target

- No way of knowing (for now) where the interaction took place
- Since the energy changes as the beam slows down in the target, so will the cross section

- Experimental yield vs. beam energy is a yield curve
- Yield includes effects of the beam slowing down in the target

- No way of knowing (for now) where the interaction took place
- Since the energy changes as the beam slows down in the target, so will the cross section

• In slice i

$$Y_{i} = \frac{N_{R,i}}{N_{b}} = \sigma_{i} \frac{N_{t,i}}{A} = \sigma_{i} \frac{N_{i}}{V_{i}} \Delta x_{i}$$

• In slice i

$$Y_i = rac{N_{R,i}}{N_b} = \sigma_i rac{N_{t,i}}{A} = \sigma_i rac{N_i}{V_i} \Delta x_i$$

• Turn this into an integral and change variables

$$Y(E_0) = \int \sigma(x) \frac{N(x)}{V} dx = \int \sigma(x) \frac{N(x)}{V} dx \frac{dE}{dx} \frac{dx}{dE}$$

• Use a new definition: Stopping power (ev cm²/atom)

$$\epsilon(E) = -\frac{V}{N}\frac{dE}{dx}$$

• In slice i

$$Y_{i} = \frac{N_{R,i}}{N_{b}} = \sigma_{i} \frac{N_{t,i}}{A} = \sigma_{i} \frac{N_{i}}{V_{i}} \Delta x_{i}$$

• Turn this into an integral and change variables

$$Y(E_0) = \int \sigma(x) \frac{N(x)}{V} dx = \int \sigma(x) \frac{N(x)}{V} dx \frac{dE}{dx} \frac{dx}{dE}$$

• Use a new definition: Stopping power (ev cm²/atom)

$$\epsilon(E) = -\frac{V}{N}\frac{dE}{dx}$$

• Experimental Yield

$$Y(E_0) = \int_{E_0 - \Delta E}^{E_0} \frac{\sigma(E)}{\epsilon(E)} \, dE$$

Richard Longland (NCSU/TUNL)

Experimental Nuclear Physics I

Interactions of radiation with matter

- Short story: as radiation interacts with matter, it deposits energy into the material.
- Charged Particles
 - Ion (usually positive) interacts simultaneously with many electrons
 - Energy deposit, ion slows down, electrons gain energy
 - Electrons undergo excitation or ionization

Interactions of radiation with matter

- Short story: as radiation interacts with matter, it deposits energy into the material.
- Charged Particles
 - Ion (usually positive) interacts simultaneously with many electrons
 - Energy deposit, ion slows down, electrons gain energy
 - Electrons undergo excitation or ionization

- Ionization maximum energy: $4Em_e/m$
- proton: 0.2% of total energy
- Expect many interactions
- Expect ~straight lines

Charged particle interactions with matter

• Stopping power, S

$$S = -rac{dE}{dx}$$

- Integrate this to get range
- For charged particles, a useful approximation:

$$S \propto -1/E_k$$

- Conversions (assume Δx in cm and ρ in g/cm³)
 - ► Thickness in *g*/cm²:

$\rho \Delta x$

- ► Thickness in keV: ∆x dE/dx
- Angstroms from μg/cm²: 100 t / ρ

e.g. 1.5 μ g/cm² carbon foil (ρ =2.26 g/cm³) = 66 Å

• Most people use SRIM for this: srim.org

Richard Longland (NCSU/TUNL)

Experimental Nuclear Physics I

Cases to consider

We need to determine $\sigma(E)$ from Y(E₀)

$$Y(E_0) = \int_{E_0 - \Delta E}^{E_0} \frac{\sigma(E)}{\epsilon(E)} \, dE$$

Cases to consider

We need to determine $\sigma(E)$ from Y(E₀)

$$Y(E_0) = \int_{E_0 - \Delta E}^{E_0} rac{\sigma(E)}{\epsilon(E)} dE$$

 Constant σ and ε over target thickness

Cases to consider

We need to determine $\sigma(E)$ from Y(E₀)

$$Y(E_0) = \int_{E_0 - \Delta E}^{E_0} rac{\sigma(E)}{\epsilon(E)} dE$$

 Constant *σ* and *ε* over target thickness Moderately varying σ and constant ε over target thickness

Cases to consider

We need to determine $\sigma(E)$ from $Y(E_0)$

$$Y(E_0) = \int_{E_0 - \Delta E}^{E_0} \frac{\sigma(E)}{\epsilon(E)} \, dE$$

 Constant σ and ε over target thickness Moderately varying σ and constant ε over target thickness Strongly varying σ and constant ε over target thickness

Experimental Nuclear Physics I

Constant σ and ϵ (very thin targets)

$$Y(E_0) = \int_{E_0 - \Delta E}^{E_0} \frac{\sigma(E)}{\epsilon(E)} \, dE$$

• Simplify to:

$$Y(E_0) = \frac{\sigma(E_0)}{\epsilon(E_0)}$$

Constant σ and ϵ (very thin targets)

$$Y(E_0) = \int_{E_0 - \Delta E}^{E_0} \frac{\sigma(E)}{\epsilon(E)} \, dE$$

• Simplify to:

$$Y(E_0) = \frac{\sigma(E_0)}{\epsilon(E_0)}$$

- Nope! Let's be more careful
- σ and ϵ are constant

$$Y(E_0) = rac{\sigma}{\epsilon(E_0)} \int_{E_0 - \Delta E}^{E_0} dE = rac{\sigma}{\epsilon(E_0)} \Delta E$$

What energy was this cross section measured at?

Constant σ and ϵ (very thin targets)

$$Y(E_0) = \int_{E_0 - \Delta E}^{E_0} \frac{\sigma(E)}{\epsilon(E)} \, dE$$

• Simplify to:

$$Y(E_0) = \frac{\sigma(E_0)}{\epsilon(E_0)}$$

- Nope! Let's be more careful
- σ and ϵ are constant

$$Y(E_0) = rac{\sigma}{\epsilon(E_0)} \int_{E_0 - \Delta E}^{E_0} dE = rac{\sigma(E_{ ext{eff}})}{\epsilon(E_0)} \Delta E$$

- What energy was this cross section measured at?
- The "effective energy" i.e. the average energy in this case

Richard Longland (NCSU/TUNL)

Moderately varying σ and constant ϵ (thin targets) ${}^{16}O(p,\gamma){}^{17}F$

$$Y(E_0) = \int_{E_0 - \Delta E}^{E_0} rac{\sigma(E)}{\epsilon(E)} \, dE$$

• Result from before:

$$Y(E_0) = rac{\Delta E(E_0) \, \sigma(E_{ ext{eff}})}{\epsilon(E_0)}$$

- But now the effective energy has to be carefully calculated - energy where 50% of the total yield is obtained
- Calculate numerically (maybe by approximating linear cross section)

$$Y(E_0) = \int_{E_0 - \Delta E}^{E_0} \frac{\sigma(E)}{\epsilon(E)} \, dE$$

Resonant cross section

- Cannot resolve the full shape of the resonance
- E_{eff} is the resonance energy

Richard Longland (NCSU/TUNL)

Experimental Nuclear Physics I

$$Y(E_0) = \int_{E_0 - \Delta E}^{E_0} \frac{\sigma(E)}{\epsilon(E)} \, dE$$

Narrow resonance

$$\sigma(E) = \omega \frac{\Gamma_a \Gamma_b}{(E - E_r)^2 + (\Gamma_a + \Gamma_b)^2/4}$$

Integrate

$$Y_{\max} = \frac{\lambda_r^2}{2} \frac{\omega \gamma}{\epsilon_r}$$

• $\omega\gamma$ is the resonance strength

Thick target yield curve details

 Thick target yield curve has some shape coming from width of resonance

Thick target yield curve details

- Thick target yield curve has some shape coming from width of resonance
- Careful! Beam resolution also affects shape of resonance
- Beam and resonance width are roughly degenerate

Thick target yield curve details

- Thick target yield curve has some shape coming from width of resonance
- Careful! Beam resolution also affects shape of resonance
- Beam and resonance width are roughly degenerate
- Beam and target straggling make yield curve asymmetric Richard Longland (NCSU/TUNL)

In the star

$$N_A \langle \sigma v \rangle_{01} \propto \int_0^\infty E \, \sigma(E) \, e^{-E/kT} \, dE$$

If beam energy is just above resonance
 → integrate resonance

Richard Longland (NCSU/TUNL)

$$Y_{\max} = rac{\lambda_r^2}{2} rac{\omega \gamma}{\epsilon_r}$$

Experimental Nuclear Physics I

$$N_A \langle \sigma v \rangle_{01} \propto \int_0^\infty E \, \sigma(E) \, e^{-E/kT} \, dE$$

If resonance is in the Gamow window
 → integrate resonance

$$N_A \langle \sigma v \rangle_{01} = N_A \left(\frac{2\pi}{\mu_{01} kT} \right)^{3/2} \hbar^2 \omega \gamma e^{-E_r/kT}$$

June 10-13, 2025

24/35

Impact of using narrow resonance assumption on reaction rates

- On the previous slide I used a key word: if
- When is the resonance strength no longer accurate?

$$N_A \langle \sigma v \rangle_{01} \propto \int_0^\infty E \, \sigma(E) \, e^{-E/kT} \, dE \qquad \propto T_9^{-3/2} e^{cE_r/T_9}$$

Impact of using narrow resonance assumption on reaction rates

- On the previous slide I used a key word: if
- When is the resonance strength no longer accurate?

$$N_A \langle \sigma v \rangle_{01} \propto \int_0^\infty E \, \sigma(E) \, e^{-E/kT} \, dE \qquad \propto T_9^{-3/2} e^{cE_r/T_9}$$

• Taking into account the tails of the resonance

25/35

Experimental yield

Experimental yield

$$Y = \frac{N_R}{N_b}$$

- Detector doesn't measure all reaction products
- Reaction products aren't always emitted isotropically

$$Y = \frac{I}{N_b B \eta W}$$

- *I*: intensity of measured reaction product
- *B*: branching ratio if reaction product only carries part of strength

- η : detector efficiency
- W: Angular distribution correction

$$\omega \gamma = \frac{2}{\lambda_r^2} \epsilon_r \frac{I_{\max}}{N_b B \eta W}$$

There are several quantities in this equation that are hard to determine

$$\omega \gamma = \frac{2}{\lambda_r^2} \epsilon_r \frac{I_{\max}}{N_b B \eta W}$$

There are several quantities in this equation that are hard to determine

- ϵ_r : depends on
 - stopping powers
 - assumptions about target composition
 - target stability
- Stopping powers
 - SRIM.org
 - Be careful to check where measurements are available

$$\omega \gamma = \frac{2}{\lambda_r^2} \epsilon_r \frac{I_{\max}}{N_b B \eta W}$$

There are several quantities in this equation that are hard to determine

- ϵ_r : depends on
 - stopping powers
 - assumptions about target composition
 - target stability
- Stopping powers
 - SRIM.org
 - Be careful to check where measurements are available
 - ► e.g. 1 MeV protons in magnesium

$$\omega \gamma = \frac{2}{\lambda_r^2} \epsilon_r \frac{I_{\max}}{N_b B \eta W}$$

There are several quantities in this equation that are hard to determine

- ϵ_r : depends on
 - stopping powers
 - assumptions about target composition
 - target stability
- Stopping powers
 - SRIM.org
 - Be careful to check where measurements are available
 - ► e.g. 1 MeV protons in magnesium
- e.g. what is the molecular model you're using?

WARNING - Target Layer Density

You have accepted a calculated density value for a compound.

These densities are not very accurate.

Would you like to Continue or Re-enter the target density?

$$\omega \gamma = \frac{2}{\lambda_r^2} \epsilon_r \frac{I_{\max}}{N_b B \eta W}$$

There are several quantities in this equation that are hard to determine

$$\omega \gamma = \frac{2}{\lambda_r^2} \epsilon_r \frac{I_{\max}}{N_b B \eta W}$$

There are several quantities in this equation that are hard to determine

$$\omega \gamma = \frac{2}{\lambda_r^2} \epsilon_r \frac{I_{\max}}{N_b B \eta W}$$

There are several quantities in this equation that are hard to determine

$$\omega \gamma = \frac{2}{\lambda_r^2} \epsilon_r \frac{I_{\max}}{N_b B \eta W}$$

There are several quantities in this equation that are hard to determine

$$\omega \gamma = \frac{2}{\lambda_r^2} \epsilon_r \frac{I_{\max}}{N_b B \eta W}$$

There are several quantities in this equation that are hard to determine

 Low-energy: beam scatters according to Rutherford

• Resonance strength from integrated yield

$$\omega \gamma = \frac{2}{\lambda_r^2} \frac{A}{n_t}$$

Richard Longland (NCSU/TUNL)

• Low-energy: beam scatters according to Rutherford

• Resonance strength from integrated yield

$$\omega \gamma = \frac{2}{\lambda_r^2} \frac{A}{n_t}$$

Richard Longland (NCSU/TUNL)

• Yield from Rutherford scattering

$$Y_{\text{Ruth}} = \frac{N_{p'}}{N_p \Omega_{\text{mon}}} = \int_{E_0 - \Delta E}^{E_0} \frac{\sigma(E)}{\epsilon(E)} dE \approx \sigma n_t$$

• Yield from reaction

$$A = rac{1}{B_{\gamma}\eta_{\gamma}W_{\gamma(heta)}}\intrac{N_{\gamma}(E)}{N_{p}(E)}dE$$

June 10-13, 2025 30 / 35

• Low-energy: beam scatters according to Rutherford

• Resonance strength from integrated yield

$$\omega \gamma = \frac{2}{\lambda_r^2} \frac{A}{n_t}$$

• Yield from Rutherford scattering

$$Y_{\mathsf{Ruth}} = \frac{N_{\rho'}}{N_{\rho}\Omega_{\mathsf{mon}}} = \int_{E_0 - \Delta E}^{E_0} \frac{\sigma(E)}{\epsilon(E)} dE \approx \sigma n_t$$

• Yield from reaction

$$m{A} = rac{1}{m{B}_{\gamma}\eta_{\gamma}m{W}_{\gamma(heta)}}\intrac{m{N}_{\gamma}(E)}{m{N}_{p}(E)}m{d}E$$

Combining everything above

$$\omega \gamma = rac{2}{\lambda_r^2} rac{1}{B_\gamma \eta_\gamma W_{\gamma(heta)}} \Omega_{
m mon} \int rac{N_\gamma(E)}{N_{
m p'}} \sigma_{
m Ruth} dE$$

Richard Longland (NCSU/TUNL)

$$\omega \gamma = rac{2}{\lambda_r^2} rac{1}{B_\gamma \eta_\gamma W_{\gamma(heta)}} \Omega_{\mathsf{mon}} \int rac{N_\gamma(E)}{N_{
ho'}} \sigma_{\mathsf{Ruth}} dE$$

Powell et al., Nucl. Phys. A 644 (1998) 263

Absolute resonance strengths

Reaction	Er ^{lab}	$\omega\gamma$ (eV)	Uncertainty
23 Na(p, γ) 24 Mg (a)	512	8.75 (120) × 10 ⁻²	14%
²³ Na(p, α) ²⁰ Ne (d)	338	7.16 (29) × 10 ⁻²	4.1%
30 Si(p, γ) 31 S (a)	620	1.89 (10)	5.3%
$^{18}{ m O}({ m p},\gamma)^{19}{ m F}$ (b)	151	9.77 (35) × 10 ⁻⁴	3.6%
$^{27}Al(p,\gamma)^{28}Si(c)$	406	8.63 (52) × 10 ⁻³	6.0%

a) Paine and Sargood Nucl. Phys. A 331 (1979) 389
b) Panteleo et al., Phys. Rev. C 104 (2021) 025802
c) Powell et al., Nucl. Phys. A 644 (1998) 263
d) Rowland et al., Phys. Rev. C 65 (2002) 064609
And many more

Count rates (for narrow resonance)

· Recall our two expressions for yield: experimental and theoretical

$$Y = rac{I}{N_b B \eta W}$$
 and $Y_{\max} = rac{\lambda_r^2}{2} rac{\omega \gamma}{\epsilon_r}$

· Combine and find an expression for intensity of reaction products at top of yield curve

$$I = \frac{\lambda_r^2}{2} \frac{\omega \gamma}{\epsilon_r} N_b B \eta W$$
Count rates (for narrow resonance)

· Recall our two expressions for yield: experimental and theoretical

$$Y = rac{I}{N_b B \eta W}$$
 and $Y_{\max} = rac{\lambda_r^2}{2} rac{\omega \gamma}{\epsilon_r}$

· Combine and find an expression for intensity of reaction products at top of yield curve

$$I = rac{\lambda_r^2}{2} rac{\omega \gamma}{\epsilon_r} N_b B \eta W$$

- For convenience, convert N_b to $I_b/q_b t$
 - I_b is beam current
 - q_b is beam charge in Coulombs
 - Δ t is length of experiment

$$\frac{l}{t} = \frac{\lambda_r^2}{2} \frac{\omega \gamma}{\epsilon_r} \frac{l_b}{q_b} B \eta W$$

Richard Longland (NCSU/TUNL)

Example: 23 Na(p, γ) 24 Mg reaction

$$\frac{l}{t} = \frac{\lambda_r^2}{2} \frac{\omega \gamma}{\epsilon_r} \frac{l_b}{q_b} B \eta W$$

Narrow resonance at 138 keV

- $\omega \gamma < 5 \times 10^{-9} \text{ eV}$
- Beam current: 200 µA
- Target effective stopping power: $\epsilon_r = 1.9 \times 10^{-14} \text{ eV cm}^2/\text{atom}$
- Detector efficiency: $\eta = 1\%$
- Isotropic γ-ray emission: W=1

Example: 23 Na(p, γ) 24 Mg reaction

$$\frac{l}{t} = \frac{\lambda_r^2}{2} \frac{\omega \gamma}{\epsilon_r} \frac{l_b}{q_b} B \eta W$$

Narrow resonance at 138 keV

- $\omega \gamma < 5 \times 10^{-9} \text{ eV}$
- Beam current: 200 µA
- Target effective stopping power: $\epsilon_r = 1.9 \times 10^{-14} \text{ eV cm}^2/\text{atom}$
- Detector efficiency: $\eta = 1\%$
- Isotropic γ-ray emission: W=1

Count rate: I/t = 0.2 counts per hour!

Example: 23 Na(p, γ) 24 Mg reaction

$$\frac{l}{t} = \frac{\lambda_r^2}{2} \frac{\omega \gamma}{\epsilon_r} \frac{l_b}{q_b} B \eta W$$

Narrow resonance at 138 keV

- $\omega \gamma < 5 \times 10^{-9} \text{ eV}$
- Beam current: 200 µA
- Target effective stopping power: $\epsilon_r = 1.9 \times 10^{-14} \text{ eV cm}^2/\text{atom}$
- Detector efficiency: $\eta = 1\%$
- Isotropic γ-ray emission: W=1

Count rate: I/t = 0.2 counts per hour!

Going forward

• By digging into the theory of cross sections a little more, we can use other techniques to learn the same information... next time!