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1.-Introduction and phenomenology



Nuclear EoS  -  XRM

Where can we find neutrons and protons? And in which 
form? Free? In clusters? 

● Neutrons and protons in Earth are found  

in cluster systems: nuclei 

→ The interior of all nuclei has constant density (  times  
denser than water) named saturation density 
→ Saturation is originated from the short range nature  
    of the nuclear effective interaction 
→ Neutron in 15 minutes must find a proton or …  

● In heavens, neutrons and protons can be also found as an interacting sea of fermions 
(Fermi liquid): matter in the outer core of a neutron star 

→ Densities can reach several times  
nuclear saturation
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Nuclear EoS  -  XRM

Nuclear Equation of State (EoS)
Definition: the energy per nucleon (e=E/A where A=N+Z) of an uniform 
system of neutrons and protons as a function of the neutron (ρ  n= N/V) and 
proton (ρ  p= Z/V) densities, at zero temperature, unpolarized matter, 
assuming isospin symmetry and neglecting Coulomb effects among protons.

Why???

→ Zero temperature: room temperature K→  MeV while “cold” neutron stars are about  K→0.1 MeV. 
Separation energy in stable nuclei (equivalent to ionization energy in atoms) is of several MeV.  

→ Unpolarized: energy favours couples of neutrons and protons occupying the same state but with opposite spins 
(equivalent to electrons in atoms)  

→ Isospin symmetry: neutron-neutron, proton-proton and neutron-proton nuclear interaction are very similar among them. 
Masses of neutrons and protons are almost degenerate. Hence neutrons and protons can be thought as two states of the 
same particle with different isobaric spin or isospin (in analogy with spin): the nucleon. 

→ No Coulomb: idealized uniform system (focus on strong interaction). Real systems are finite and frequently 
electrically neutral so no problems (divergences) in adding Coulomb.  
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Nuclear EoS  -  XRM

Nuclear Equation of State (EoS)
It is convenient to write the energy per nucleon (e) as a function of the total density [ρ=ρₙ+ρ ]p and their relative difference [δ=(ρ  n— ρ )p/ρ].  

→ Due to isospin symmetry only even powers of δ will appear 

→ Stable nuclei tend to show small values of δ  

Symmetry energy   

It is customary to also expand e(ρ,0) and S(ρ) around nuclear saturation 
density     ρ₀ ~ 0.16 fm⁻³  

       → how compressible is symmetric matter at ρ₀  
 ( )  → penalty energy for converting protons into neutrons for δ = 0 at ρ₀ 
 ( ) → neutron pressure in neutron matter at ρ₀ 

K0

J aA

L aS

Taylor expansion for δ→ 0:

5



Nuclear EoS  -  XRM

Saturation density ρ₀ ≈ 0.16 fm⁻³
→ Range of the nuclear interaction (1/ 1-2 fm) typically shorter than the 
size of the nucleus. Hence, neutrons and protons just “see” their closest neighbours.  
→ Experimental charge (Z) density in the interior of very different nuclei is 
rather constant at around 0.06-0.08 fm⁻³.  
→ Saturation mechanism (equilibrium) that originates from the short-range 
nature of the nuclear force, much stronger than the Coulomb repulsion at the 
nuclear scale. 

mπ ∼
ρ₀

Nucelus 
Sharp 
sphere 

R

≈0.9 fm

A
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Nuclear EoS  -  XRM

Energy at saturation density:  
energy of a nucleon “far from the surface” → aV ≈ 16 MeV

Stability of M(A,Z) with respect to Z 

→ Nucleus seen as an incompressible liquid (ideal) drop: sharp sphere R ≈ r₀ A¹/³  

Arch structure in the 
residuals ↔ shell 

structure not accounted 
by the model, effects 
about few % on B

1-2% accuracy !!!!

Competition between 
Coulomb (Z→0) and 
asymmetry (N→Z) and 
surface term 
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Nuclear EoS  -  XRM

Important!! 
→ A small change in the saturation density will impact the size of the nucleus. Charge radii are determined to an 
average accuracy of 0.02 fm (Angeli 2013).  
For example, if one aims at determining  the Rch = 5.5012±0.0013 fm in ²⁰⁸Pb one must be very precise in 
the determination of ρ₀:    

→ In a similar way, a small change in the saturation energy (about e₀ ≈ -16 MeV) will impact on the nuclear mass.  
For example, if one aims at determining  the B = 1636.4296±0.0012 MeV in ²⁰⁸Pb one must be very precise in the 
determination of e₀ (changed notation!):   

Note: typical average theoretical deviation of accurate nuclear models ~ 0.02 fm → δρ₀/ρ₀ is determined up to about a 1% accuracy (That is, third digit in ρ₀ ≈ 0.16 fm⁻³!!).    

Note: typical average theoretical deviation of accurate nuclear models ~ 1-2 MeV → δe₀/ρe₀ is determined up to about a 0.1% accuracy (That is, second decimal digit in e₀ ≈ -16.0 MeV!!).    
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Nuclear EoS  -  XRM

Neutron and proton radii difference 
essentially due to the difference between N and Z

● Elastic electron scattering → electromagnetic size of the nucleus ↔ ρ  p
● We have mostly indirect measurements on ρ  n(weakly interacting probes difficult) 
● In nuclei with different number of neutrons and protons, we expect R  ncould be different from R :p  

Figure by 
C. J. Horowitz
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Neutron skin thickness (Δrₙₚ:=rₙ-rₚ) 
and neutron pressure

For a fixed (N-Z)/A, one must expect that the larger the pressure felt by nucleons, the larger the skin 

Neutron Skin of 208Pb, Nuclear Symmetry Energy, and the Parity Radius Experiment

X. Roca-Maza, M. Centelles, X. Viñas, and M. Warda Phys. Rev. Lett. 106, 252501 (2011)

→ From the Droplet Model: 

²⁰⁸Pb
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What happens if we now perturb the ground state 
densities? 

Produce a small displacement (dl) between 
neutron and proton densities (drops)

(Linear response theory)

Under different types of perturbations, nuclei use to show resonant behaviors where all 
nucleons oscillate coherently and the nucleus as a whole vibrate at an specific resonant energy → 
known as Giant Resonances
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Giant resonances: the IVGDR
→ The Isovector Giant Dipole Resonance was the first resonance measured (photo-absorption exp.) 

→ The cross section for the excitation of the nucleus to a final state  with energy  from the ground 
state  with energy  by a photon at a given energy  can be written as

|ν⟩ Eν
|0⟩ E0 E

→ The total cross-section will be

The strength function S(E) is used to characterize 
the nuclear response (experimentally, it is commonly 
parametrized as a Lorentzian function with energy E  xand 
width Γ) 

Convenient operator [~ r Y₁₀(Ω)] 
produces dipole transitions and 
subtract CM motion 
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Giant Resonances 

13



Giant Resonances: Harmonic oscillator
Assuming nucleons as non-interacting fermions confined in an Harmonic Oscillator (HO) 
trap with suitable hω₀ that preserves the main features of the g.s. energy spectra

Shell gaps 
equal in HO 
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Giant Resonances: Harmonic oscillator
The HO Hamiltonian, in terms of the conjugate variables α (or r) and dα/dt (or v) and the (C₀↔mω²) 
and (B₀↔ m) parameters, could be written as (Bohr&Mottelson):  

Restoring force

Depending on 
the type of 
perturbation   
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Sum rules:  
Ground state gives access to excited state properties!!

→ Sum Rules or moments of the strength function S(E) 

k-moment of S(E):

→ [F,V]=0, if the excitation operator commutes with the interaction the sum rule  will be model independent!! 
  
  
→ [F,V] different form 0, if the excitation operator does not commute with the interaction the sum rule will be model 
dependent but still can be used to better understand nuclear phenomenology

Example: Energy Weighted Sum Rule (EWSR) Written in terms of a 
commutator with the 
Hamiltonian evaluated in the 
G.S. !!

Model dependent term
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Dielectric theorem: 
Inverse Energy Weighted Sum Rule m₋₁ 

Ground state |0> perturbed by an external field λF (λ → 0) so that perturbation theory holds 
→ The expectation value of the Hamiltonian <H> and of the operator <F> can be written: 

17



The operator leading to monopole transitions (isotropic changes in the volume if we think 
about a liquid drop) cannot depend on the orbital angular momentum or spin (  will 
produce a translation, so ):   

r
r2

Isotropic harmonic perturbation!

Therefore,    

(*) other definitions could differ by a factor 4π depending if 
Y₀₀ = 1/sqrt(4π) included or not  

We have now defined the incompressibilty of a finite nucleus and connected it to an experimentally measurable 
quantity. Can we say something about the EoS?    

The m₁ and m₋₁ moments are:    

(*)

Use of sum rules:  
Giant Monopole Resonance
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Assuming a Liquid Drop Model like expansion for  one can connect it to the bulk 
incompressibility  (also named “leptodermus” expansion) of the nuclear EoS    

KA
K0

Fitting to the excitation energy of the ISGMR one would obtain the coefficients of this formula. Among them  (recent 
estimated accuracy over 10%) 

This formula is qualitative since misses shell effects and pairing as well as terms in the expansion that goes as powers 
of A and (N-Z)/A. Very much like the LDM. Hence the estimation of K₀ would have large systematic (theoretical) errors    

K0

For the description of  ²⁰⁸Pb (Eₓ=13.6±0.5 MeV),  must be 
determined at about 7% accuracy or better   

K0

Use of sum rules:  
Giant Monopole Resonance
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As in Electromagnetism course in the Physics degree, the electric polarizability 
measures the tendency of the nuclear charge distribution to be distorted      

Use of sum rules:  
Dipole polarizability (Giant Dipole Resonance)

How easy is to separate neutrons from protons? Symmetry energy will 
tell. Remember the HO model?  

Polarizability is proportional to the inverse energy 
weighted sum rule m₋₁ = Σ S(E)/E    (response function theory)  
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Polarizability must increase with the mass (for the dipole A⁵/³, for the quadrupole A⁷/³ 
and so on) and surface symmetry energy and decrease with the bulk symmetry energy

→ Calculate the polarizability (α), proportional to  from the dielectric 
theorem and assuming the Droplet Model ( )    

m−1
J ∼ aA

Use of sum rules:  
Dipole polarizability (Giant Dipole Resonance)
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Use of sum rules:  
Fermi or Isobaric Analog Resonance

→ non-energy weighted sum rule:

Isospin algebra analogous to spin algebra 
s→ t and τ → σ (Pauli matrices with t=τ/2)

→ energy weighted sum rule:

 different from zero only if 
H contains terms that breaks 
isospin symmetry

[H, T−]
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Use of sum rules:  
Fermi or Isobaric Analog Resonance

→ Hence, the centroid energy m₁/m₀:     

→ Assuming a simple model: indepenent particle 
model with only Coulomb breaking isospin 
symmetry (neglect exchange effects)

→ Assuming sharp sphere to describe ρ  nand ρ  pand ρch = ρ  p
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Use of sum rules:  
Gamow-Teller Resonance
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Use of sum rules:  
Gamow-Teller Resonance

→ Non-energy weighted sum-rule (model independent):

→ Centroid energy m₁/m₀ (model dependent):

spin

spin-isospin

spin-orbit isospin
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Use of sum rules:  
Spin Dipole Resonance

→ Non-energy 
weighted sum-rule 
(model independent):

→ Rewritting it in terms of the neutron skin thickness: Δrₙₚ=<rn ²>¹/²-<rp ²>¹/²

A model independent 
sum rule  that gives 
information on the 
skin!!
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