

Nuclei in the Cosmos School • 2025

## STELLAR EVOLUTION

Alessandro Chieffi INAF, Italy



#### Solar chemical composition





## The temperature in the inner core of a star increases only as a consequence of the gravitational contraction

According to the Virial theorem, a fraction of the energy gained by the contraction leads to the increase of the temperature while the remaining part is lost outward (the Luminosity)

$$\mathbf{Log}(\mathbf{T}) \propto \mathbf{Log}(\mu^{\mathbf{3}}\mathbf{M^{2}}) + \frac{1}{\mathbf{3}}\mathbf{Log}(\rho)$$

Hydrostatic equilibrium + EOS (Perfect Gas + radiation)

$$\left[ {\rm L} \propto {\rm M}^3 \right]$$

+ radiative equilibrium (valid in self regulating conditions)















|               | 0 14             | 1 14             | 2 14             | 3 14             | 4 14              | 5 14             | 6 14             | 7 14             | 8 14             | 9 14              | 10 14            | 11 14            | 12 14            | 13 14            | 14 14            | 15 14            |
|---------------|------------------|------------------|------------------|------------------|-------------------|------------------|------------------|------------------|------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|               | <sup>14</sup> Si | <sup>15</sup> Si | <sup>16</sup> Si | <sup>17</sup> Si | <sup>18</sup> Si  | <sup>19</sup> Si | <sup>20</sup> Si | <sup>21</sup> Si | <sup>22</sup> Si | <sup>23</sup> Si  | <sup>24</sup> Si | <sup>25</sup> Si | <sup>26</sup> Si | <sup>27</sup> Si | <sup>28</sup> Si | <sup>29</sup> Si |
|               | 0 13             | 1 13             | 2 13             | 3 13             | 4 13              | 5 13             | 6 13             | 7 13             | 8 13             | 9 13              | 10 13            | 11 13            | 12 13            | 13 13            | 13               | 15 13            |
|               | <sup>13</sup> Al | <sup>14</sup> Al | <sup>15</sup> Al | ¹⁰Al             | <sup>1</sup> 'Al  | <sup>18</sup> Al | <sup>19</sup> Al | <sup>20</sup> Al | <sup>21</sup> Al | <sup>22</sup> Al  | <sup>23</sup> Al | <sup>24</sup> Al | <sup>25</sup> A1 | <sup>26</sup> A  | Ϋ́́ΑΙ            | <sup>28</sup> Al |
|               | 0 12             | 1 12             | 2 12             | 3 12             | 4 12              | 5 12             | 6 12             | 7 12             | 8 12             | 9 12              | 10 12            | 12               | 12 12            | 12               | 12               | 15 12            |
|               | '²Mg             | <sup>'°</sup> Mg | '"Mg             | <sup>1°</sup> Mg | '°Mg              | ''Mg             | '°Mg             | <sup>'®</sup> Mg | NeN              | laMgAl            | 55 MK            | 24Ng             |                  | ²⁰Mg             | ²⁰Mg             | ²′Mg             |
|               | 0 11             | 1 11             | 2 11             | 3 11             | 11 4 11 5         |                  | 6 11             | 7 11             | 8 11<br>10       | 9 11<br>20        | 10 11            | 11               | 12 11            | Ne               | NaMa             |                  |
|               | ''Na             | '²Na             | '°Na             | '"Na             | <sup>19</sup> Na  | '⁰Na             | ''Na             | '°Na             | <sup>'®</sup> Na | ²⁰Na              | ²'Na             | <sup>22</sup> Na | Na               |                  |                  | <mark>,</mark>   |
|               | 0 10             | 1 10             | 2 10             | 3 10             | 4 10              | 5 10             | 6 10             | 7 10             | 8 10             | 9 10              | 10 10            | 10               | 10               | 13 10            | 14 10            | 15 10            |
|               | "Ne              | ''Ne             | <sup>'2</sup> Ne | <sup>1°</sup> Ne | ' <sup>₄</sup> Ne | '°Ne             | '°Ne             | ''Ne             | '°Ne             | <sup>'®</sup> Ne  | <sup>20</sup> Ne | ²'Ne             | <sup>22</sup> Ne | <sup>23</sup> Ne | ²⁴Ne             | <sup>2°</sup> Ne |
|               | 0 9              | 1 9              | 2 9              | 3 9              | 4 9               | 5 9              | 6 9              | 7 9              | 8 9              | 9 9               | 10 9             | 11 9             | 12 9             | 13 9             | 14 9             | 15 9             |
|               | ۴F               | ۳F               | ''F              | '²F              | <sup>13</sup> F   | '⁴F              | '°F              | "F               | ''F              | '°F               | <sup>19</sup> F  | <sup>20</sup> F  | ²'F              | <sup>22</sup> F  | <sup>23</sup> F  | <sup>24</sup> F  |
|               | 0 8              | 1 8              | 2 8              | 3 8              | CN                | 0 25-3           | 30 MK            | 8                | 8 8              | 8                 | 10 8             | 11 8             | 12 8             | 13 8             | 14 8             | 15 8             |
|               | °0               | °٥               | 100              | 110              | U                 | 0                | U                |                  | 160              | .0                | <sup>18</sup> O  | <sup>19</sup> O  | 200              | <sup>21</sup> 0  | 220              | 230              |
|               | 0 7              | 1 7              | 2 7              | 3 7              | 4 7               | 5 7              | 6 7              | 7 7              | 7                | 97                | 10 7             | 11 7             | 12 7             | 13 7             | 14 7             | 15 7             |
|               | ΎΝ               | ۴N               | <sup>9</sup> N   |                  | 25 MK             |                  | <sup>13</sup> N  | I <sup>4</sup> N | Ň                |                   | N-ON             | cycle            |                  | <sup>20</sup> N  | <sup>21</sup> N  | <sup>22</sup> N  |
|               | 0 6              | 1 6              | 2                |                  |                   |                  | 6 6              | 6                | 8 6 9            |                   |                  |                  | 6                | 13 6             |                  | 15 6             |
|               | °C               | ′C               | °C               | °C               | °C                | °C               | <sup>12</sup> C  | ъС               | ¹⁴C              | ¹⁵C               | ™C               | 1′C              | <sup>18</sup> C  | <sup>19</sup> C  | <sup>20</sup> C  | <sup>21</sup> C  |
|               | 0 5              | 1 5              | 2 5              | 3 5              | 4 5               | 5 5              | 6 5              | 7 5              | 8 5              | 9 5               | 10 5             | 11 5             | 12 5             | 13 5             | 14 5             | 15 5             |
|               | °В               | °В               | ′В               | °В               | °В                | ™B               | "B               | <sup>12</sup> B  | <sup>13</sup> B  | <sup>14</sup> B   | ™B               | ™B               | <sup>1</sup> ′B  | ı®В              | <sup>19</sup> В  | <sup>20</sup> B  |
|               | 0 4              | 1 4              | 2 4              | 3 4              | 4 4               | 5 4              | 6 4              | 7 4              | 8 4              | 9 4               | 10 4             | 11 4             | 12 4             | 13 4             | 14 4             | 15 4             |
|               | ⁴Be              | °Be              | °Be              | /je              | °Ве               | *Be              | <sup>™</sup> Be  | ''Be             | <sup>12</sup> Be | ' <sup>®</sup> Be | l⁴Be             | '°Be             | "Be              | ''Be             | '°Be             | <sup>19</sup> Be |
| nn 10 20 M/   | 3                | 1 3              | 2                | 3 3              | 3                 | 5 3              | 6 3              | 7 3              | 8 3              | 9 3               | 10 3             | 11 3             | 12 3             | 13 3             | 14 3             | 15 3             |
| pp 10-20 IVIK |                  | ⁴Li              | °Ľi              | _ °Li            | Li                | °Li              | <sup>°</sup> Li  | "Li              | ''Li             | '²Li              | <sup>13</sup> Li | <sup>14</sup> Li | "Li              | "Li              | ''Li             | '°Li             |
|               | <b>7</b> 2       |                  | 2 2              | 3 2              | 4 2               | 52               | 6 2              | 7 2              | 8 2              | 9 2               | 10 2             | 11 2             | 12 2             | 13 2             | 14 2             | 15 2             |
|               | <sup>2</sup> He  | <sup>3</sup> He  | fHe              | °Не              | P-P               | chain            |                  | °Не              | '⁰He             | ''He              | <sup>12</sup> He | <sup>13</sup> He | '⁴He             | "He              | '⁰He             | ''He             |
|               | 0 1              | 1 1              | 2 1              | 3 1              |                   |                  | 1                | 7 1              | 8 1              | 9 1               | 10 1             | 11 1             | 12 1             | 13 1             | 14 1             | 15 1             |
|               | 'H               | <sup>2</sup> H   | ЗН               | l⁴H              | ۶H                | ۴H               | ′Η               | в                | °Н               | ¹⁰H               | "H               | <sup>12</sup> H  | <sup>13</sup> H  | ¹⁴H              | ¹⁵H              | ¹⁰H              |



$$R_{ij} = \frac{y_i y_j}{1 + \delta_{ij}} N_A^2 \rho^2 < \sigma v >_{ij}$$



$$R_{ij} = \frac{y_i y_j}{1 + \delta_{ij}} N_A^2 \rho^2 < \sigma v >_{ij}$$



#### **The P-P chain**

$$4p \rightarrow^{4} He \ [26.73 MeV] \qquad E_{H \rightarrow He} = 6.44 \times 10^{18} \ erg \ g^{-1}$$

Energy released by an Earthquake of magnitudo 5 on the Richter scale







# $\begin{array}{c} \mathsf{CNO} \ \mathsf{cycle} \\ T\sim 3-5\cdot 10^7 \ \mathrm{K} \quad \rho\sim 1-10 \ \mathrm{gcm}^{-3} \end{array}$





## CNO cycle

T > 20 MK  $\rho \sim 1 - 10 \text{ [gr cm}^{-3}\text{]}$ 

 $m ^{14}N(p,\gamma)^{15}O$  slowest reaction (measured by LUNA/LENA)

CNO processed material:  ${
m ^{12}C}\downarrow {
m ^{14}N}\uparrow {
m ^{16}O}\downarrow$ 

Typical equilibrium ratios:



## NeNa & MgAI (chains or cycles?)

T > 55 MK



NeNa

 $\frac{23}{1}$ Na $(p, \gamma)^{24}$ Mg

 $^{25}\mathrm{Mg}(p,\gamma)^{26}\mathrm{Al}$ MgAl  $^{26}\mathrm{Mg}(p,\gamma)^{27}\mathrm{Al}$  $^{27}\mathrm{Al}(p,oldsymbol{lpha})^{24}\mathrm{Mg}$ 

## NeNa & MgAI (chains or cycles?)







## NeNa & MgAI (chains or cycles?)

T > 55 MK



Fig. 2 Run of abundance ratios for light elements in RGB stars in NGC 2808. O, Na, Si, and Mg are from Carretta (2015), Al and CN abundances from Carretta et al. (2018). The figure is adapted from the invited review by Carretta (2016)

|          | 0 14             | 1 14             | 2 14             | 3 14             | 4 14                                            | 5 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 14             | 7 14             | 8 14             | 9 14             | 10 14            | 11 14            | 12 14            | 13 14            | 14 14            | 15 14            |
|----------|------------------|------------------|------------------|------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|          | <sup>14</sup> Si | ¹⁵Si             | <sup>16</sup> Si | <sup>1</sup> ′Si | <sup>18</sup> Si                                | <sup>19</sup> Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>20</sup> Si | <sup>21</sup> Si | <sup>22</sup> Si | <sup>23</sup> Si | <sup>24</sup> Si | <sup>25</sup> Si | <sup>26</sup> Si | 27 <b>S</b> i    | <sup>28</sup> Si | <sup>29</sup> Si |
|          | 0 13             | 1 13             | 2 13             | 3 13             | 4 13                                            | 5 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 13             | 7 13             | 8 13             | 9 13             | 10 13            | 11 13            | 12 13            | 13 13            | 13               | 15 13            |
|          | <sup>13</sup> Al | <sup>14</sup> Al | <sup>15</sup> Al | <sup>16</sup> Al | <sup>17</sup> Al                                | <sup>18</sup> Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>19</sup> Al | <sup>20</sup> Al | <sup>21</sup> Al | <sup>22</sup> AI | <sup>23</sup> Al | <sup>24</sup> Al | <sup>25</sup> A1 | <sup>26</sup> A  | <sup>2</sup> Al  | <sup>28</sup> Al |
|          | 0 12             | 1 12             | 2 12             | 3 12             | 4 12                                            | 5 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 12             | 7 12             | 8 12             | 9 12             | 10 12            | 12               | 12 12            | 12               | 12               | 15 12            |
|          | <sup>12</sup> Mg | <sup>13</sup> Mg | <sup>14</sup> Mg | <sup>15</sup> Mg | <sup>™</sup> Mg <sup>™</sup> Mg <sup>™</sup> Mg |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | <sup>19</sup> Mg | NeN              | laMgAl           | 55 MK            |                  | <sup>24</sup> Ng | <sup>25</sup> Mg | <sup>26</sup> Mg | <sup>27</sup> Mg |
|          | 0 11             | 1 11             | 2 11             | 3 11             | 4 11                                            | 5 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 11             | 7 11             | 8 11             | 9 11             | 10 11            | 11               | 12 11            | 13 11            | 14 11            | 15 11            |
|          | <sup>11</sup> Na | <sup>12</sup> Na | <sup>13</sup> Na | ¹⁴Na             | ¹⁵Na                                            | <sup>16</sup> Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>17</sup> Na | <sup>18</sup> Na | <sup>19</sup> Na | <sup>20</sup> Na | <sup>21</sup> Na | <sup>22</sup> Na | <sup>22</sup> Na | <sup>24</sup> Na | <sup>25</sup> Na | <sup>26</sup> Na |
|          | 0 10             | 1 10             | 2 10             | 3 10             | 4 10                                            | 5 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 10             | 7 10             | 8 10             | 9 10             | 10 10            | 10               | 10               | 13 10            | 14 10            | 15 10            |
|          | <sup>10</sup> Ne | <sup>11</sup> Ne | <sup>12</sup> Ne | <sup>13</sup> Ne | <sup>14</sup> Ne                                | <sup>15</sup> Ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>16</sup> Ne | <sup>17</sup> Ne | <sup>18</sup> Ne | <sup>19</sup> Ne | <sup>20</sup> Ne | <sup>21</sup> Ne | <sup>22</sup> Ne | <sup>23</sup> Ne | <sup>24</sup> Ne | <sup>25</sup> Ne |
|          | 0 9              | 1 9              | 2 9              | 3 9              | 4 9                                             | 5 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 9              | 7 9              | 8 9              | 9 9              | 10 9             | 11 9             | 12 9             | 13 9             | 14 9             | 15 9             |
|          | ۶F               | <sup>10</sup> F  | <sup>11</sup> F  | <sup>12</sup> F  | <sup>13</sup> F                                 | <sup>14</sup> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>15</sup> F  | <sup>16</sup> F  | <sup>17</sup> F  | <sup>18</sup> F  | <sup>19</sup> F  | <sup>20</sup> F  | <sup>21</sup> F  | <sup>22</sup> F  | <sup>23</sup> F  | <sup>24</sup> F  |
|          | 0 8              | 1 8              | 2 8              | 3 8              | CN                                              | 0 25-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 MK            | 8                | 8 8              | 8                |                  | 11 8             | 12 8             | 13 8             | 14 8             | 15 8             |
|          | °0               | °0               | <sup>10</sup> O  | <sup>11</sup> 0  |                                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U                |                  | <sup>16</sup> C  | .0               | <sup>18</sup> O  | <sup>19</sup> O  | <sup>20</sup> O  | <sup>21</sup> 0  | <sup>22</sup> 0  | <sup>23</sup> 0  |
|          | 0 7              | 1 7              | 2 7              | 37               | 4 7                                             | 5 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 7              | 7 7              | 7                | 9 7              | 10 7             | 11 7             | 12 7             | 13 7             | 14 7             | 15 7             |
|          | <sup>7</sup> N   | <sup>8</sup> N   | <sup>9</sup> N   |                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>13</sup> N  | <sup>14</sup> N  | <sup>1</sup> N   | <sup>16</sup> N  | <sup>17</sup> N  | <sup>18</sup> N  | <sup>19</sup> N  | <sup>20</sup> N  | <sup>21</sup> N  | <sup>22</sup> N  |
|          | 0 6              | 1 6              | 2                |                  |                                                 | e la constante de la constante | 6 6              | 6                | 8 6              | 9 6              | 10 6             | 11 6             | 12 6             | 13 6             | 14 6             | 15 6             |
|          | °C               | <sup>7</sup> C   | °C               | °C               | <sup>10</sup> C                                 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>12</sup> C  | <sup>13</sup> C  | <sup>14</sup> C  | <sup>15</sup> C  | <sup>16</sup> C  | <sup>17</sup> C  | <sup>18</sup> C  | <sup>19</sup> C  | <sup>20</sup> C  | <sup>21</sup> C  |
|          | 0 5              | 1 5              | 2 5              | 3 5              | 4 5                                             | 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | 7 5              | 8 5              | 9 5              | 10 5             | 11 5             | 12 5             | 13 5             | 14 5             | 15 5             |
|          | ⁵B               | <sup>6</sup> B   | <sup>7</sup> B   | <sup>8</sup> B   | °B                                              | <sup>10</sup> B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>11</sup> B  | <sup>12</sup> B  | <sup>13</sup> B  | <sup>14</sup> B  | <sup>15</sup> B  | <sup>16</sup> B  | <sup>17</sup> B  | <sup>18</sup> B  | <sup>19</sup> B  | <sup>20</sup> B  |
|          | 0 4              | 1 4              | 2 4              | 3 4              | 4 4                                             | 5 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 4              | 7 4              | 8 4              | 9 4              | 10 4             | 11 4             | 12 4             | 13 4             | 14 4             | 15 4             |
|          | ⁴Be              | ⁵Be              | <sup>6</sup> Ве  | be               | <sup>8</sup> Be                                 | °Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>10</sup> Be | <sup>11</sup> Be | <sup>12</sup> Be | <sup>13</sup> Be | <sup>14</sup> Be | <sup>15</sup> Be | <sup>16</sup> Be | <sup>17</sup> Be | <sup>18</sup> Be | <sup>19</sup> Be |
| 10.20    |                  | 3                | 2                | 3 3              | 3                                               | 5 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 3              | 7 3              | 8 3              | 9 3              | 10 3             | 11 3             | 12 3             | 13 3             | 14 3             | 15 3             |
| op 10-20 |                  | 4                | ۶Ľi              | <sup>6</sup> Li  | Li                                              | <sup>8</sup> Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | °Li              | <sup>10</sup> Li | "Li              | <sup>12</sup> Li | <sup>13</sup> Li | <sup>14</sup> Li | <sup>15</sup> Li | <sup>16</sup> Li | <sup>17</sup> Li | <sup>18</sup> Li |
|          | 0 2              |                  | 2 2              | 3 2              | 4 2                                             | 5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 2              | 7 2              | 8 2              | 9 2              | 10 2             | 11 2             | 12 2             | 13 2             | 14 2             | 15 2             |
|          | <sup>2</sup> He  | <sup>3</sup> He  | ⁴Ĥe              | ⁵He              | <sup>6</sup> Не                                 | <sup>7</sup> He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>8</sup> He  | °Не              | <sup>10</sup> He | <sup>11</sup> He | <sup>12</sup> He | <sup>13</sup> He | <sup>14</sup> He | <sup>15</sup> He | <sup>16</sup> He | <sup>17</sup> He |
|          |                  | 1 1              | 2 1              | 3 1              | 4 1                                             | 5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 1              | 7 1              | 8 1              | 9 1              | 10 1             | 11 1             | 12 1             | 13 1             | 14 1             | 15 1             |
|          | <sup>1</sup> H   | <sup>2</sup> H   | <sup>3</sup> H   | ⁴H               | ⁵H                                              | <sup>6</sup> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>7</sup> H   | ₿H               | <sup>®</sup> H   | 1ºH              | ''H              | <sup>12</sup> H  | <sup>13</sup> H  | <sup>14</sup> H  | <sup>15</sup> H  | <sup>16</sup> H  |



### Central H exhaustion

### monotonic family of stars



















#### He burning

The key parameter that drives the evolution in He burning is the He core mass and NOT the total mass

Central He burning always occurs in a convective environment

 $3\alpha \rightarrow^{12} C$   $^{12}C(\alpha,\gamma)^{16}O$ 



mantle

H burning shell

#### He core

α, <sup>14</sup>Ν convective core
The key parameter that drives the evolution in He burning is the He core mass and NOT the total mass

Central He burning always occurs in a convective environment

 $3\alpha \rightarrow^{12} C$   $^{12}C(\alpha,\gamma)^{16}O$ 



mantle

H burning shell

#### He core

The key parameter that drives the evolution in He burning is the He core mass and NOT the total mass

Central He burning always occurs in a convective environment

 $T \sim 1.5 - 3.5 \cdot 10^8 \text{ K} \quad \rho \sim 0.2 - 4 \cdot 10^3 \text{ gcm}^{-3}$   $4 \alpha \rightarrow {}^{16}\text{O} \qquad \Delta M = 4 \times 4.0026 - 15.9949 = 0.015 \text{ MeV} \qquad E_{nuc} = 8.70 \cdot 10^{17} \text{ erg/g}$ 





H burning shell

#### He core





The key parameter that drives the evolution in He burning is the He core mass and NOT the total mass

Central He burning always occurs in a convective environment

# $T \sim 1.5 - 3.5 \cdot 10^8 \text{ K} \quad \rho \sim 0.2 - 4 \cdot 10^3 \text{ gcm}^{-3}$ $4 \alpha \rightarrow {}^{16}\text{O} \qquad \Delta M = 4 \times 4.0026 - \underline{15.9949} = 0.015 \text{ MeV} \qquad E_{nuc} = 8.70 \cdot 10^{17} \text{ erg/g}$

| 0 14                     | 1 14                     | 2 14                  | 3 14                             | 4 14                     | 5 14                     | 6 14<br>20               | 7 14                       | 8 14                                | 9 14                     | 10 14                 | 11 14<br>25 - 1                   | 12 14                                | 13 14               | 14 14                                | 15 14                                |
|--------------------------|--------------------------|-----------------------|----------------------------------|--------------------------|--------------------------|--------------------------|----------------------------|-------------------------------------|--------------------------|-----------------------|-----------------------------------|--------------------------------------|---------------------|--------------------------------------|--------------------------------------|
| '*Si                     | "Si                      | "Si                   | ''Si                             | "Si                      | <sup>19</sup> Si         | <sup>20</sup> Si         | ²'Si                       | <sup>22</sup> Si                    | <sup>20</sup> Si         | ²*Si                  | <sup>23</sup> Si                  | <sup>20</sup> Si                     | ²'Si                | 2°Si                                 | <sup>2®</sup> Si                     |
| 0 13<br><sup>13</sup> Al | 1 13<br><sup>14</sup> Al | <sup>2</sup> 13       | з 13<br><sup>16</sup> АІ         | 4 13<br><sup>17</sup> Al | 5 13<br><sup>18</sup> Al | 6 13<br><sup>19</sup> Al | 7 13<br>20 <mark>Al</mark> | <sup>8</sup> 13<br><sup>21</sup> Al | 9 13<br><sup>22</sup> AI | <sup>10</sup> 13      | <sup>11</sup> <sup>13</sup>       | <sup>12</sup> 13                     | <sup>13</sup> 13    | <sup>14</sup> 13<br><sup>27</sup> Al | <sup>15</sup> 13                     |
| 0 12                     | 1 12                     | 2 12                  | 3 12                             | 4 12                     | 5 12                     | 6 12                     | 7 12                       | 8 12                                | 9 12                     | 10 12                 | 11 12                             | 12 12                                | 13 12               | 14 12                                | 15 12                                |
| <sup>12</sup> Mg         | <sup>13</sup> Mg         | <sup>14</sup> Mg      | <sup>15</sup> Mg                 | <sup>16</sup> Mg         | <sup>17</sup> Mg         | <sup>18</sup> Mg         | <sup>19</sup> Mg           | <sup>20</sup> Mg                    | <sup>21</sup> Mg         | <sup>22</sup> Mg      | <sup>23</sup> Mg                  | <sup>24</sup> Mg                     | 25 lg               | ٨g                                   | <sup>27</sup> Mg                     |
| <sup>4</sup> N(          | α,γ)                     | ) <sup>18</sup> F     | <sup>-</sup> (β <sup>+</sup>     | ) <sup>18</sup> (        | Ο(α                      | ,γ) <sup>2</sup>         | <sup>22</sup> N            | e(α,                                | n) <sup>25</sup>         | <sup>5</sup> Mg       | 11<br>Na                          | <sup>12</sup> 11<br><sup>23</sup> Na | 2 Ja                | <sup>14</sup> 11<br><sup>25</sup> Na | <sup>15</sup> 11<br><sup>26</sup> Na |
| <sup>10</sup> Ne         | <sup>11</sup> Ne         | <sup>12</sup> Ne      | <sup>13</sup> Ne                 | <sup>14</sup> Ne         | <sup>15</sup> Ne         | <sup>16</sup> Ne         | <sup>17</sup> Ne           | <sup>18</sup> Ne                    | <sup>19</sup> Ne         | <sup>20</sup> Ne      | <sup>10</sup><br><sup>21</sup> Ne | 12<br>22.Ne                          | <sup>13</sup> 10    | <sup>14</sup> 10                     | <sup>15</sup> 10                     |
| 0 9<br>9 <b>-</b> -      | 1 9<br>10 <b></b>        | 2 9<br>11 <b>0</b>    | 3 9<br>12 <del>-</del>           | 4 9<br>13 <b>-</b>       | 5 9<br>14 <b>m</b>       | 6 9<br>15 <b></b>        | 7 9<br>16 <b>m</b>         | 8 9<br>17 <b>-</b>                  | 9 9                      | 10 9<br>19 <b>-</b> - | 11                                | 20 9<br>21⊏                          | 13 9<br>22 <b>-</b> | 14 9<br>23 <b>m</b>                  | 15 9<br>24m                          |
|                          |                          |                       |                                  |                          |                          |                          |                            | I IF                                |                          |                       |                                   | -1                                   |                     |                                      |                                      |
| ° °                      | 90                       | <sup>2</sup> 8        | <sup>3</sup> <sup>8</sup>        | 4 8<br><sup>12</sup> 0   | <sup>5</sup> 8           | <sup>6 8</sup>           | 7 8<br><sup>15</sup> 0     | *<br>• 0                            | 9 8 4<br><sup>17</sup> 0 | <sup>18</sup> O       | <sup>11</sup> 8                   | <sup>12</sup> 8                      | <sup>13</sup> 8     | <sup>14</sup> 8                      | <sup>15</sup> 8                      |
| 0 7                      | 1 7                      | 2 7                   | 3 7                              | 4 7                      | 5 7                      | 6 7                      |                            | 8 7                                 | 9 7                      | 10 7                  | 11 7                              | 12 7                                 | 13 7                | 14 7                                 | 15 7                                 |
| <sup>7</sup> N           | <sup>8</sup> N           | <sup>9</sup> N        | <sup>10</sup> N                  | <sup>11</sup> N          | <sup>12</sup> N          | <sup>13</sup> N          | $\smile$                   | <sup>15</sup> N                     | <sup>16</sup> N          | <sup>17</sup> N       | <sup>18</sup> N                   | <sup>19</sup> N                      | <sup>20</sup> N     | <sup>21</sup> N                      | <sup>22</sup> N                      |
| о 6<br><sup>6</sup> С    | 1 6<br>7C                | 2 6<br><sup>8</sup> C | <sup>з 6</sup>                   | 4 6<br><sup>10</sup> C   | 5 6<br><sup>11</sup> C   | 6 6<br><sup>12</sup> C   | 7 6<br><sup>13</sup> C     | <sup>8</sup> 6                      | 9 6<br><sup>15</sup> C   | <sup>10</sup> 6       | <sup>11</sup> 6                   | <sup>12</sup> 6                      | <sup>13</sup> 6     | <sup>14</sup> 6<br>20C               | <sup>15 6</sup><br><sup>21</sup> C   |
| 0 5                      | 1 5                      | 2 5                   | 3 5                              | 4 5                      | 5 5                      | 6 5                      | 7 5                        | 8 5                                 | 9 5                      | 10 5                  | 11 5                              | 12 5                                 | 13 5                | 14 5                                 | 15 5                                 |
| ⁵B                       | <sup>6</sup> В           | <sup>7</sup> B        | <sup>8</sup> В                   | °В                       | <sup>10</sup> B          | <sup>11</sup> B          | <sup>12</sup> B            | <sup>13</sup> B                     | <sup>14</sup> B          | <sup>15</sup> B       | <sup>16</sup> B                   | <sup>17</sup> B                      | <sup>18</sup> B     | <sup>19</sup> B                      | <sup>20</sup> B                      |
| 0 4                      | 1 4                      | 2 4                   | 3 4                              | 4 4                      | 5 4                      | 6 4                      | 7 4                        | 8 4                                 | 9 4                      | 10 4                  | 11 4                              | 12 4                                 | 13 4                | 14 4                                 | 15 4                                 |
| ⁴Be                      | ⁵Be                      | <sup>6</sup> Be       | <sup>7</sup> Be                  | °Ве                      | °Be                      | <sup>10</sup> Be         | <sup>11</sup> Be           | <sup>12</sup> Be                    | <sup>13</sup> Be         | <sup>14</sup> Be      | <sup>15</sup> Be                  | <sup>16</sup> Be                     | <sup>17</sup> Be    | <sup>18</sup> Be                     | <sup>19</sup> Be                     |
| 0 3                      | 1 3                      | 2 3                   | 3 3                              | 4 3                      | 5 3                      | 6 3                      | 7 3                        | 8 3                                 | 9 3                      | 10 3                  | 11 3                              | 12 3                                 | 13 3                | 14 3                                 | 15 3                                 |
| °Li                      | "Li                      | °Li                   | °Li                              | 'Li                      | °Li                      | ۴Li                      | "Li                        | "Li                                 | <sup>12</sup> Li         | "Li                   | '*Li                              | "Li                                  | "Li                 | "Li                                  | "Li                                  |
| 0 2                      | 1 2                      | 2 2                   | 3 2                              | 4 2                      | 5 2                      | 6 2<br>8                 | 7 2                        | 8 2                                 | 9 2                      | 10 2                  | 11 2                              | 12 2                                 | 13 2                | 14 2                                 | 15 2                                 |
| °He                      | He                       | THe                   | тне                              | °Не                      | 'He                      | °Не                      | °He                        | ""He                                | "He                      | ""He                  | ""He                              | '"He                                 | ""He                | ""He                                 | "He                                  |
| ° 1<br><sup>1</sup> H    | ²H                       | 2 1<br><sup>3</sup> H | <sup>3</sup> 1<br><sup>4</sup> H | 4 1<br><sup>5</sup> H    | 5 1<br><sup>6</sup> H    | 6 1<br><sup>7</sup> H    | 7 1<br><sup>8</sup> H      | <sup>8</sup> 1<br><sup>9</sup> H    | <sup>9</sup> 1           | <sup>10</sup> 1       | <sup>11</sup> 1                   | <sup>12</sup> 1                      | <sup>13</sup> 1     | <sup>14</sup> 1                      | <sup>15</sup> 1                      |

mantle

H burning shell

He core

The key parameter that drives the evolution in He burning is the He core mass and NOT the total mass

Central He burning always occurs in a convective environment



mantle

H burning shell

He core



#### S-process nucleosynthesis (weak component)



At the central He exhaustion we do not have any more a monoparametric family of stars but a Bi-parametric family.

In fact from now on there are two leading parameters that drive the further evolution of each star:



the CO core mass and the amount of C left by the He burning.

At the central He exhaustion we do not have any more a monoparametric family of stars but a Bi-parametric family.

In fact from now on there are two leading parameters that drive the further evolution of each star:

the CO core mass and the amount of C left by the He burning.





### Let us discuss the advanced phases of massive stars first

#### EVOLUTION OF MASSIVE STARS

R. J. TAYLER\* Princeton University Observatory Received March 15, 1954

#### ABSTRACT

The evolution is considered of massive stars with opacity due to electron scattering. As the stars evolve, the convective core retreats, and a zone of continuously varying composition is set up between the core and the envelope. Ten models have been obtained with core hydrogen content changing from 100 to 6 per cent. The evolutionary tracks of the models have been plotted in the H-R diagram. It is found that, although the individual tracks are very different from those found by other authors, the H-R diagram for stars of different masses but of the same age exhibits the well-known "knee," which occurs at the point of 11 per cent over-all reduction of hydrogen content.

#### I. INTRODUCTION

The course of stellar evolution is largely determined by the existence or nonexistence of general mixing currents in stellar interiors. If there are efficient mixing currents, a star



Alice crosses the mirror

### neutrino energy losses



### Pair neutrinos





# C burning





Massive Stars: Carbon Burning



|                                                   | $L =>$ total luminosity: $L_{\gamma} + L_{\nu}$ |                       |                      |                            |                         |  |  |  |  |  |  |  |
|---------------------------------------------------|-------------------------------------------------|-----------------------|----------------------|----------------------------|-------------------------|--|--|--|--|--|--|--|
| M=80 M <sub>o</sub> t = E / L(10 <sup>6</sup> )   | Мсс                                             | Estimated<br>lifetime | Real<br>lifetime     | Revised<br>lifetime        | L <sub>TOT</sub>        |  |  |  |  |  |  |  |
| н=>не 6.44 10 <sup>18</sup> erg gr <sup>-1</sup>  | 60                                              | 6 10 <sup>6</sup>     | 3.2 10 <sup>6</sup>  |                            | 10 <sup>6</sup>         |  |  |  |  |  |  |  |
| He=>C                                             | 20                                              | 2 10 <sup>5</sup>     | 3.3 10 <sup>5</sup>  |                            | 10 <sup>6</sup>         |  |  |  |  |  |  |  |
| C=>Ne 1.85 10 <sup>17</sup> erg gr <sup>-1</sup>  | 1.5                                             | 4.5 10 <sup>3</sup>   | 4.7 10 <sup>2</sup>  | <b>4.5 10</b> <sup>2</sup> | 10 <sup>7</sup>         |  |  |  |  |  |  |  |
| o=>si                                             | 1                                               | 4.8 10 <sup>3</sup>   | <b>4.6 10</b> -2     | <b>4.8 10</b> -2           | <b>10</b> <sup>11</sup> |  |  |  |  |  |  |  |
| si=>Ni 1.88 10 <sup>17</sup> erg gr <sup>-1</sup> | 1                                               | 3.1 10 <sup>3</sup>   | 4.3 10 <sup>-3</sup> | 3.1 10 <sup>-3</sup>       | 10 <sup>12</sup>        |  |  |  |  |  |  |  |





## Ne burning



### Massive Stars: Oxygen Burning

The most abundant nuclei left by the Ne burning are: <sup>16</sup>O, <sup>24</sup>Mg, <sup>28</sup>Si



# O burning



Massive Stars: Carbon Burning



### The advanced burning



### The final compactness



|     |                                              |                                                |                                              |                                                |                                     |                                              |                                     |                                                |                                                |                                                 |                                                 | <sup>12 20</sup><br><sup>32</sup> Ca | <sup>13</sup> 20<br><sup>33</sup> Ca        | <sup>14</sup> 20<br><sup>34</sup> Ca            | <sup>15 20</sup><br><sup>35</sup> Ca | <sup>16 20</sup><br><sup>36</sup> Ca            | <sup>17</sup> 20<br><sup>37</sup> Ca            | <sup>18</sup> 20<br><sup>38</sup> Ca            | <sup>19 20</sup><br><sup>39</sup> Ca            | <sup>20</sup> 20<br><sup>40</sup> Ca           | <sup>21</sup> 20                                | <sup>22</sup> 20<br><sup>42</sup> Ca            | <sup>23</sup> 20                                |
|-----|----------------------------------------------|------------------------------------------------|----------------------------------------------|------------------------------------------------|-------------------------------------|----------------------------------------------|-------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------|---------------------------------------------|-------------------------------------------------|--------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
|     | O burning                                    |                                                |                                              |                                                |                                     |                                              |                                     |                                                |                                                | <sup>10</sup> <sup>19</sup>                     | <sup>11</sup> <sup>19</sup><br><sup>30</sup> K  | <sup>12</sup> 19                     | <sup>13</sup> 19<br><sup>32</sup> K         | <sup>14</sup> 19<br><sup>33</sup> K             | <sup>15</sup> 19<br><sup>34</sup> K  | <sup>16</sup> 19                                | <sup>17</sup> 19<br><sup>36</sup> K             | <sup>18</sup> 19<br><sup>37</sup> K             | К                                               | <sup>20 19</sup>                               | <sup>21</sup> <sup>19</sup>                     | <sup>22</sup> 19<br><sup>41</sup> K             | <sup>23</sup> 19<br><sup>42</sup> K             |
|     |                                              | lo n                                           | hote                                         | odici                                          | into                                | arat                                         | ion                                 | Ar                                             | 9 18<br>27Ar                                   | <sup>10</sup> 18<br><sup>28</sup> Ar            | <sup>11 18</sup><br><sup>29</sup> Ar            | <sup>12 18</sup><br><sup>30</sup> Ar | <sup>13 18</sup><br><sup>31</sup> Ar        | <sup>14</sup> 18<br><sup>32</sup> Ar            | <sup>15 18</sup><br><sup>33</sup> Ar | <sup>16</sup><br><sup>34</sup> Ar               | Ar                                              | <sup>18</sup> 18                                | <sup>19</sup> 18<br><sup>37</sup> Ar            | <sup>20 18</sup><br><sup>38</sup> Ar           | <sup>21</sup> 18<br><sup>39</sup> Ar            | <sup>22</sup> 18<br><sup>40</sup> Ar            | <sup>23</sup> 18<br><sup>41</sup> Ar            |
|     |                                              |                                                |                                              |                                                |                                     |                                              |                                     |                                                |                                                |                                                 | <sup>11</sup> <sup>17</sup> <sup>28</sup> Cl    | <sup>12</sup> 17<br><sup>29</sup> Cl | <sup>13</sup> 17<br><sup>30</sup> Cl        | <sup>14</sup> 17<br><sup>31</sup> CI            | <sup>15</sup> 17<br><sup>32</sup> Cl | <sup>16</sup><br><sup>33</sup> Cl               | CI                                              | <sup>18</sup> 17<br><sup>35</sup> Cl            | <sup>19</sup> 17<br><sup>36</sup> Cl            | <sup>20</sup> 17<br><sup>37</sup> Cl           | <sup>21</sup> <sup>17</sup><br><sup>38</sup> Cl | <sup>22</sup> 17<br><sup>39</sup> Cl            | <sup>23</sup> 17<br><sup>40</sup> Cl            |
|     |                                              |                                                |                                              | C bu                                           | Irn                                 |                                              |                                     | 6                                              | 9 16<br><sup>25</sup> S                        | <sup>10</sup> 16<br>26S                         | <sup>11</sup> <sup>16</sup><br><sup>27</sup> S  | <sup>12</sup> 16<br>28S              | <sup>13</sup> 16<br><sup>29</sup> S         | <sup>14</sup><br><sup>30</sup> S                | S                                    | <sup>16</sup> 16                                | <sup>17</sup> 16<br><sup>33</sup> S             | <sup>18</sup> 16                                | <sup>19</sup> 16<br><sup>35</sup> S             | <sup>20</sup> 16                               | <sup>21</sup> <sup>16</sup><br><sup>37</sup> S  | <sup>22</sup> 16<br><sup>38</sup> S             | <sup>23</sup> <sup>16</sup>                     |
|     |                                              |                                                | н                                            | le b                                           | urn                                 |                                              |                                     | 15                                             | 9 15<br><sup>24</sup> P                        | <sup>10</sup> <sup>15</sup>                     | <sup>11</sup> <sup>15</sup><br><sup>26</sup> P  | <sup>12</sup> 15                     | <sup>13</sup> <sup>15</sup> <sup>28</sup> P | <sup>14</sup> 1<br><sup>29</sup> P              | Ρ                                    | <sup>16</sup> 15                                | <sup>17</sup> <sup>15</sup><br><sup>32</sup> P  | <sup>18</sup> 15                                | <sup>19</sup> 15                                | <sup>20</sup> <sup>15</sup><br><sup>35</sup> P | <sup>21</sup> <sup>15</sup><br><sup>36</sup> P  | <sup>22</sup> 15<br><sup>37</sup> P             | <sup>23</sup> 15                                |
|     |                                              |                                                |                                              | <sup>18</sup> Si                               | <sup>19</sup> Si                    | <sup>20</sup> Si                             | <sup>21</sup> Si                    | <sup>22</sup> Si                               | 9 14<br><sup>23</sup> Si                       | <sup>10</sup> <sup>14</sup><br><sup>24</sup> Si | <sup>11</sup> <sup>14</sup> <sup>25</sup> Si    | <sup>12</sup> 1<br><sup>26</sup> Si  | Si                                          | Si                                              | <sup>5</sup> 14<br><sup>29</sup> Si  | <sup>16</sup> 14<br><sup>30</sup> Si            | <sup>17</sup> <sup>14</sup><br><sup>31</sup> Si | <sup>18</sup> <sup>14</sup><br><sup>32</sup> Si | <sup>19</sup> 14<br><sup>33</sup> Si            | <sup>20</sup> 14<br><sup>34</sup> Si           | <sup>21</sup> <sup>14</sup><br><sup>35</sup> Si | <sup>22</sup> 14<br><sup>36</sup> Si            | <sup>23</sup> 14<br><sup>37</sup> Si            |
|     |                                              |                                                |                                              | 4 13<br><sup>17</sup> Al                       | <sup>5</sup> 13                     | <sup>6</sup> <sup>13</sup>                   | <sup>7</sup> 13<br>20AI             | <sup>8</sup> <sup>13</sup><br><sup>21</sup> Al | <sup>9</sup> <sup>13</sup><br><sup>22</sup> Al | <sup>10</sup> 13<br><sup>23</sup> Al            | <sup>11</sup> <sup>13</sup><br><sup>24</sup> Al | <sup>12</sup><br><sup>25</sup> Al    | AI                                          | <sup>14</sup> <sup>13</sup><br><sup>27</sup> Al | <sup>15</sup> 13<br><sup>28</sup> Al | <sup>16</sup> <sup>13</sup><br><sup>29</sup> Al | <sup>17</sup> <sup>13</sup><br><sup>30</sup> Al | <sup>18</sup> <sup>13</sup><br><sup>31</sup> Al | <sup>19</sup> <sup>13</sup><br><sup>32</sup> AI | <sup>20</sup> 13<br><sup>33</sup> AI           | <sup>21</sup> <sup>13</sup><br><sup>34</sup> Al | <sup>22</sup> <sup>13</sup><br><sup>35</sup> Al | <sup>23</sup> <sup>13</sup><br><sup>36</sup> Al |
|     |                                              | <sup>2</sup> <sup>12</sup><br><sup>14</sup> Mg | <sup>3</sup> 12<br><sup>15</sup> Mg          | <sup>4</sup> 12<br><sup>16</sup> Mg            | <sup>5</sup> 12<br><sup>17</sup> Mg | <sup>6</sup> <sup>12</sup>                   | <sup>7</sup> 12<br><sup>19</sup> Mg | <sup>8</sup> 12<br><sup>20</sup> Mg            | 9 12<br><sup>21</sup> Mg                       | 10<br>22                                        | Иg                                              | M                                    | g g                                         | <sup>14</sup> 12<br><sup>26</sup> Mg            | <sup>15</sup> 12<br><sup>27</sup> Mg | <sup>16</sup> 12<br><sup>28</sup> Mg            | <sup>17</sup> 12<br><sup>29</sup> Mg            | <sup>18</sup> 12<br><sup>30</sup> Mg            | <sup>19</sup> 12<br><sup>31</sup> Mg            | <sup>20</sup> 12<br><sup>32</sup> Mg           | <sup>21</sup> 12<br><sup>33</sup> Mg            | <sup>22</sup> 12<br><sup>34</sup> Mg            | <sup>23</sup> 12<br><sup>35</sup> Mg            |
|     |                                              | <sup>2</sup> 11<br><sup>13</sup> Na            | <sup>3 11</sup><br><sup>14</sup> Na          | <sup>4</sup> 11<br><sup>15</sup> Na            | <sup>5</sup> 11<br><sup>16</sup> Na | <sup>6</sup> 11<br><sup>17</sup> Na          | <sup>7</sup> 11<br><sup>18</sup> Na | <sup>8</sup> 11<br><sup>19</sup> Na            | 9 11<br><sup>20</sup> Na                       | 10<br>21                                        | Na                                              | <sup>12</sup> 11<br><sup>23</sup> Na | <sup>13</sup> 11<br><sup>24</sup> Na        | <sup>14</sup> 11<br><sup>25</sup> Na            | <sup>15</sup> 11<br><sup>26</sup> Na | <sup>16</sup> 11<br><sup>27</sup> Na            | <sup>17</sup> 11<br><sup>28</sup> Na            | <sup>18</sup> 11<br><sup>29</sup> Na            | <sup>19</sup> Na                                | <sup>20</sup> 11<br><sup>31</sup> Na           | <sup>21</sup> 11<br><sup>32</sup> Na            | <sup>22</sup> 11<br><sup>33</sup> Na            |                                                 |
| °Ne | <sup>1</sup> <sup>10</sup> Ne                | <sup>2</sup> <sup>10</sup> <sup>12</sup> Ne    | <sup>3 10</sup><br><sup>13</sup> Ne          | <sup>4</sup> <sup>10</sup><br><sup>14</sup> Ne | <sup>5 10</sup><br><sup>15</sup> Ne | <sup>6 10</sup>                              | <sup>7 10</sup><br><sup>17</sup> Ne | <sup>8</sup> Ne                                | Ne                                             | <sup>%</sup> Ne                                 | <sup>21</sup> Ne                                | <sup>12</sup> 10                     | <sup>13</sup> 10<br><sup>23</sup> Ne        | <sup>14</sup> 10<br><sup>24</sup> Ne            | <sup>15</sup> 10<br><sup>25</sup> Ne | <sup>16</sup> 10<br><sup>26</sup> Ne            | <sup>17</sup> 10<br><sup>27</sup> Ne            | <sup>18</sup> Ne                                | <sup>19</sup> 10<br><sup>29</sup> Ne            | <sup>20</sup> 10<br><sup>30</sup> Ne           | <sup>21</sup> 10<br><sup>31</sup> Ne            | <sup>22</sup> 10<br><sup>32</sup> Ne            |                                                 |
| ۴   | <sup>1</sup> 9                               | 2 9<br><sup>11</sup> F                         | <sup>3</sup> 9                               | <sup>4</sup> 9<br><sup>13</sup> F              | <sup>5 9</sup>                      | <sup>6</sup> 9                               | <sup>79</sup>                       | 89<br>17F                                      | 9 9<br><sup>18</sup> F                         | <sup>10</sup> <sup>9</sup>                      | <sup>11</sup> 9                                 | <sup>12</sup> 9<br><sup>21</sup> F   | <sup>13</sup> 9<br><sup>22</sup> F          | <sup>14</sup> 9<br><sup>23</sup> F              | <sup>15</sup> 9<br><sup>24</sup> F   | <sup>16</sup> 9<br><sup>25</sup> F              | <sup>17</sup> 9<br><sup>26</sup> F              | <sup>18</sup> 9<br><sup>27</sup> F              | <sup>19 9</sup>                                 | <sup>20</sup> 9<br><sup>29</sup> F             |                                                 |                                                 |                                                 |
| 0   | 90                                           | <sup>2</sup> 8<br><sup>10</sup> O              | <sup>3</sup> 8<br><sup>11</sup> 0            | 4 8<br><sup>12</sup> O                         | <sup>5</sup> 8<br><sup>13</sup> O   | <sup>6</sup> 8<br><sup>14</sup> O            | 7<br>150                            | 0                                              | °°°<br>170                                     | <sup>10</sup> <sup>8</sup>                      | <sup>11</sup> 8<br><sup>19</sup> O              | <sup>12</sup> 8<br>20 <mark>0</mark> | <sup>13</sup> 8<br><sup>21</sup> O          | <sup>14</sup> 8<br><sup>22</sup> O              | <sup>15</sup> 8<br><sup>23</sup> O   | <sup>16</sup> 8<br><sup>24</sup> O              | <sup>17</sup> 8<br>25 <mark>0</mark>            | <sup>18</sup> 8<br><sup>26</sup> O              | <sup>19</sup> 8<br><sup>27</sup> O              | <sup>20</sup> 8<br><sup>28</sup> O             |                                                 |                                                 |                                                 |
| 'N  | 1 7<br><sup>8</sup> N                        | 2 7<br><sup>9</sup> N                          | <sup>37</sup> <sup>10</sup> N                | 4 7<br><sup>11</sup> N                         | <sup>57</sup>                       | <sup>67</sup>                                | 7 7<br><sup>14</sup> N              | <sup>87</sup>                                  | 9 7<br><sup>16</sup> N                         | <sup>10</sup> 7<br><sup>17</sup> N              | <sup>11</sup> 7 <sup>18</sup> N                 | <sup>12</sup> 7<br><sup>19</sup> N   | <sup>13</sup> 7 <sup>20</sup> N             | <sup>14</sup> 7<br><sup>21</sup> N              | <sup>15</sup> 7<br><sup>22</sup> N   | <sup>16</sup> 7<br><sup>23</sup> N              | <sup>17</sup> 7 <sup>24</sup> N                 | <sup>18</sup> 7<br><sup>25</sup> N              |                                                 |                                                |                                                 |                                                 |                                                 |
| Ċ   | <sup>1</sup> <sup>6</sup>                    | <sup>2</sup> 6<br><sup>8</sup> C               | <sup>9</sup> C                               | <sup>4</sup> 6<br><sup>10</sup> C              | 5 6<br><sup>11</sup> C              | <sup>6 6</sup>                               | 7 6<br><sup>13</sup> C              | <sup>86</sup>                                  | <sup>9 6</sup>                                 | <sup>10</sup> 6                                 | <sup>11</sup> 6<br><sup>17</sup> C              | <sup>12</sup> 6<br><sup>18</sup> C   | <sup>13</sup> 6<br><sup>19</sup> C          | <sup>14</sup> 6<br>20C                          | <sup>15</sup> 6<br>21C               | <sup>16</sup> 6<br>22C                          | <sup>17</sup> 6<br>23C                          |                                                 |                                                 |                                                |                                                 |                                                 |                                                 |
| B   | <sup>6</sup> B                               | 2 5<br><sup>7</sup> B                          | <sup>з 5</sup>                               | <sup>4</sup> <sup>5</sup><br><sup>9</sup> B    | 5 5<br><sup>10</sup> B              | <sup>6 5</sup>                               | 7 5<br><sup>12</sup> B              | 8 5<br><sup>13</sup> B                         | 9 5<br><sup>14</sup> B                         | <sup>10</sup> 5                                 | <sup>11</sup> 5                                 | <sup>12</sup> 5                      | <sup>13</sup> 5                             | <sup>14</sup> 5                                 | <sup>15</sup> 5<br><sup>20</sup> B   | <sup>16</sup> 5<br><sup>21</sup> B              |                                                 |                                                 |                                                 |                                                |                                                 |                                                 |                                                 |
| Be  | ¹ 4<br>⁵Be                                   | 2 4<br><sup>6</sup> Be                         | <sup>3 4</sup><br><sup>7</sup> Be            | * 4<br>*Be                                     | ⁵ ₄<br><sup>9</sup> Be              | <sup>6 4</sup><br><sup>10</sup> Be           | 7 4<br><sup>11</sup> Be             | <sup>84</sup><br><sup>12</sup> Be              | <sup>94</sup>                                  | <sup>10</sup> 4                                 | <sup>11</sup> 4<br><sup>15</sup> Be             | <sup>12</sup> 4<br><sup>16</sup> Be  | <sup>13</sup> 4<br><sup>17</sup> Be         | <sup>14</sup> 4<br><sup>18</sup> Be             | <sup>15</sup> 4                      |                                                 |                                                 |                                                 |                                                 |                                                |                                                 |                                                 |                                                 |
| ³Li | 1 3<br><sup>4</sup> Li                       | 2 3<br><sup>5</sup> Li                         | з з<br><sup>6</sup> Li                       | 4 3<br><sup>7</sup> Li                         | 5 3<br><sup>8</sup> Li              | <sup>63</sup>                                | 7 3<br><sup>10</sup> Li             | 8 3<br><sup>11</sup> Li                        | 9 3<br><sup>12</sup> Li                        | <sup>10</sup> 3                                 | <sup>11</sup> 3                                 | <sup>12</sup> 3                      | <sup>13</sup> 3<br><sup>16</sup> Li         | <sup>14</sup> 3<br><sup>17</sup> Li             |                                      |                                                 |                                                 |                                                 |                                                 |                                                |                                                 |                                                 |                                                 |
| He  | <sup>1</sup> <sup>2</sup><br><sup>3</sup> He | <sup>2</sup> <sup>2</sup><br><sup>4</sup> He   | <sup>3</sup> <sup>2</sup><br><sup>5</sup> He | <sup>4</sup> <sup>2</sup><br><sup>6</sup> He   | <sup>5</sup> 2 <sup>7</sup> He      | <sup>6</sup> <sup>2</sup><br><sup>8</sup> He | 7 2<br><sup>9</sup> He              | <sup>8</sup> 2<br><sup>10</sup> He             | <sup>9</sup> 2<br><sup>11</sup> He             | <sup>10</sup> 2 <sup>12</sup> He                | <sup>11</sup> <sup>2</sup> <sup>13</sup> He     | <sup>12</sup> 2 <sup>14</sup> He     |                                             |                                                 |                                      |                                                 |                                                 |                                                 |                                                 |                                                |                                                 |                                                 |                                                 |
| H   | 1 1<br><sup>2</sup> H                        | 2 1<br><sup>3</sup> H                          | <sup>3</sup> 1                               | 4 1<br><sup>5</sup> H                          | 5 1<br><sup>6</sup> H               | 6 1<br><sup>7</sup> H                        | 7 1<br><sup>8</sup> H               | 8 1<br><sup>9</sup> H                          | 9 1<br><sup>10</sup> H                         | <sup>10</sup> 1                                 | <sup>11</sup> 1                                 |                                      |                                             |                                                 |                                      |                                                 |                                                 |                                                 |                                                 |                                                |                                                 |                                                 |                                                 |





|   |                  |                         |                     |                             |                            |                            |                            |                             |                             |                                                                                        |                                                                                         | ep: 100.00%               | ф: 100.00%                 | € 100.00%                  | 4. 100.00A                  | 1.100.00.8                 | 4. 100.00/4                | 4. 100.0024                 |                      |              |
|---|------------------|-------------------------|---------------------|-----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------|----------------------------|----------------------------|-----------------------------|----------------------------|----------------------------|-----------------------------|----------------------|--------------|
|   |                  |                         |                     |                             |                            |                            |                            |                             |                             | 36Sc                                                                                   | 37\$c                                                                                   |                           | 395c<br><300 NS            | 40Sc<br>182.3 MS           | 41Sc<br>596.3 MS            | 42Sc<br>681.3 MS           | 43Sc<br>3.891 H            | 445c<br>3.97 H              | A                    | 46<br>83.3   |
|   |                  |                         | Ηbι                 | ırnin                       | g                          |                            |                            |                             |                             | р                                                                                      | р                                                                                       |                           | P: 100.00%                 | € 100.00%<br>«p: 0.44%     | € 100.00%                   | € 100.00%                  | €: 100.00%                 | € 100.00%                   |                      | β-:10        |
|   |                  |                         |                     |                             | 0                          |                            |                            |                             | 34Ca<br><35 NS              | 35Ca<br>25.7 MS                                                                        | 36Ca<br>102 MS                                                                          | 37Ca<br>181.1 MS          | 38Ca<br>440 MS             | 39 Ca<br>859.6 MS          | >7 40Ca                     | 41Ca<br>1.02E+5 Y          | 4204                       | 430                         | daCa .               | 45<br>162.   |
|   | 6                |                         |                     |                             |                            |                            |                            |                             | Р                           | € 100.00%<br>⊕ 95.70%                                                                  | € 100.00%<br>Φ:54.30%                                                                   | € 100.00%<br>⊕: 82.10%    | €:100.00%                  | € 100.00%                  | $\mathbf{\mathbf{U}}$       | € 100.00%                  |                            |                             |                      | β-: 1C       |
|   |                  | /                       | нек                 | burni                       | ng                         |                            |                            | 32K                         | 33K<br><25 NS               | 34K<br><25 NS                                                                          | 35K<br>178 MS                                                                           | 36K<br>342 MS             | 37K<br>1.226 S             | 38K<br>7.636 M             | 801                         | 1                          |                            | 42K<br>12.321 H             | 43K<br>22.3 H        | 44           |
|   |                  |                         |                     |                             |                            |                            |                            | Р                           | Р                           | Р                                                                                      | < 100.00%                                                                               | € 100.00%<br>(b) 0.05%    | €: 100.00%                 | € 100.00%                  |                             | P IN TON                   |                            | β-: 100.00%                 | β-: 100.00%          | β-: 1C       |
|   |                  |                         | He s                | hell                        | burn                       | ing                        | 30Ar<br><20 NS             | 31Ar<br>14.4 MS             | 32Ar<br>98 MS               | 33Ar<br>173.0 MS                                                                       | 34Ar<br>844 5 MS                                                                        | 35Ar<br>1.775 S           | 3647                       | 37Ar<br>34.95 D            |                             | 39Ar<br>269 Y              | 40.1-                      | 41Ar<br>109.61 M            | 42Ar<br>32.9 Y       | 43           |
|   |                  |                         |                     |                             |                            |                            | р                          | < 100.00%                   | < 100.00%                   | <: 100.00%                                                                             | € 100.00%                                                                               | e: 100.00%                |                            | € 100.00%                  |                             | β-: 100.00%                |                            | β-: 100.00%                 | β-: 100.00%          | β-: 1C       |
|   |                  |                         | C h.                |                             | _                          | 28 CI                      | 2901<br><20 NS             | 30 C1                       | 31Cl<br>150 MS              | 32C1<br>298 MS                                                                         | 33CI<br>2 511 S                                                                         | 34CI<br>1.5264.5          | 35/1                       | 36C1<br>3.01E+5.Y          |                             | 38CI<br>37.24 M            | 39C1                       | 40Cl<br>1.35 M              | 41Cl<br>38.4.5       | 42           |
|   |                  |                         | Cbu                 | Irnin                       | g                          | Р                          | P                          | P                           | c 100.00%                   | € 100.00%                                                                              | € 100.00%                                                                               | € 100.00%                 |                            | \$-:98.10%                 |                             | 8-: 100.00%                | β-: 100.00%                | β-: 100.00%                 | 8-: 100.00%          | β-:1C        |
|   | _                |                         |                     |                             | 265                        | 275                        | 285                        | 295                         | 0:0.70%<br>30S              | 31S                                                                                    | -                                                                                       | 395                       | -                          | 355<br>87.61.D             |                             | 375<br>5.05 M              | 385                        | 395                         | 405                  | 4            |
|   |                  |                         | O bi                | urnin                       | g 2P                       | € 100.00%                  | €: 100.00%                 | € 100.00%                   | € 100.00%                   | €: 100.00%                                                                             |                                                                                         |                           |                            | β-: 100.00%                |                             | 8-: 100.00%                | β-: 100.00%                | β-: 100.00%                 | β-: 100.00%          | β-: 10       |
|   |                  |                         |                     | 24P                         | 25P                        | ф: 2.30%<br>26P            | ер:20.70%<br>27Р           | ф: 47.00%<br>28Р            | 29P                         | 30P                                                                                    | 210                                                                                     | 32P                       | 33P                        | 34P                        | 35P                         | 36P                        | 37P                        | 38P                         | 39P                  | 40           |
|   |                  |                         |                     | р                           | <30 NS                     | 43.7 MS                    | € 100.00%                  | < 100.00%                   | 4.142 S                     | € 100.00%                                                                              |                                                                                         | 14.262 D<br>β-: 100.00%   | \$-: 100.00%               | 12.43 S<br>β-: 100.00%     | 47.35<br>β-: 100.00%        | \$-: 100.00%               | 2.31 S<br>β-: 100.00%      | β-: 100.00%                 | β-: 100.00%          | β-: 10       |
|   |                  |                         | 2251                | *<br>2301                   | 24.81                      | Ф<br>2551                  | q: 0.07%<br>2651           | (p: 1.3E-3%)<br>27%         | 29.0                        | 20.01                                                                                  | 200                                                                                     | 3151                      | 3251                       | 33%                        | 3451                        | 3551                       | 3651                       | β-в: 12.00%<br>37Si         | β-n: 26.00%<br>38.5i | β-n: 1<br>38 |
|   |                  |                         | 29 MS               | 42.3 MS                     | 140 MS                     | 220 MS                     | 2.234 S                    | 4.16 S                      |                             |                                                                                        |                                                                                         | 157.3 M                   | 153 Y                      | 6.11 S                     | 2.77 S                      | 0.78 \$                    | 0.45 S                     | 90 MS<br>8-: 100.00%        | >1 µS<br>8-n         | 47.          |
|   |                  |                         | (p: 32.00%)<br>21Al | ф: 71.00%<br>22A1           | 4p: 38.00%<br>23A1         | 49<br>24A1                 | 25A1                       | 26A1                        | 2241                        | 28A1                                                                                   | 29A1                                                                                    | 30A1                      | 31Al                       | 32A1                       | SBAI                        | 34A1                       | β-n < 10.00%<br>35A1       | β-n: 17.00%<br>36Å1         | β-<br>37A1           | 38           |
|   |                  |                         | <35 NS              | 59 MS                       | 470 MS                     | 2.053 \$                   | 7.183 \$                   | 7.17E+5 Y                   |                             | 2.2414 M                                                                               | 6.56 M                                                                                  | 3.60 S                    | 644 MS                     | 33 MS                      | 41.7 MS                     | 42 MS                      | 38.6 MS                    | 90 MS                       | 10.7 MS              | 7.6          |
|   |                  | 19Mg                    | 20Me                | 4p = 60.00%                 | (p: 0.46%                  | ed: 0.04%                  | 24144                      | 2514                        | 2004                        | 27Mg                                                                                   | 28Mg                                                                                    | 29Mz                      | 30Mz                       | 31Mg                       | β-h: 8.50%                  | 8-n:27.00%                 | β-h: 41.00%                | β-n < 31.00%                | 345Ma                | 37           |
|   |                  |                         | 90.8 MS             | 122 MS                      | 3.8755 \$                  | 11.317 \$                  |                            |                             |                             | 9.458 M                                                                                | 20 915 H                                                                                | 1.30 5                    | 335 MS                     | 230 MS                     | 86 MS                       | 90.5 MS                    | 20 MS                      | 70 MS                       | 3.9 MS               | >26          |
|   |                  | 28                      | фs 27.00%           | ф: 32.60%                   | <. 100.00%                 | 0.100.00%                  | -                          | 2000                        | 2524                        | p 100.00%                                                                              | p-: 100.0004                                                                            | p-: 100.00%               | p-: 100.00%                | β-n: 1.70%                 | β-h 5.50%                   | β-n: 17.00%                | β-1100.000%                | β-h: 52.00%                 | β-h                  | p-: 10       |
|   |                  | 1 3E-21 S               | <40 NS              | 447.9 MS                    | 22.49 S                    | 2.6027 Y                   |                            | 14.997 H                    | 59.1 S                      | 1.077 S                                                                                | 301 MS                                                                                  | 30.5 MS                   | 44.9 MS                    | 48 MS                      | 17.0 MS                     | 13.2 MS                    | 8.1 MS                     | 5.5 MS                      | 1.5 MS               |              |
|   |                  | P                       | Р                   | e: 100.00%<br>er: 20.05%    | € 100.00%                  | € 100.00%                  |                            | β-: 100.00%                 | β-: 100.00%                 | \$-:100.00%                                                                            | β-: 100.00%<br>β-n: 0.13%                                                               | β-: 100.00%<br>β-n: 0.58% | β-: 100.00%<br>β-n: 21.50% | β-: 100.00%<br>β-π: 30.00% | β-: 100.00%<br>β-a: 37.00%  | β-: 100.00%<br>β-π: 24.00% | β-: 100.00%<br>β-h: 47.00% | β-: 100.00%<br>β-πs 100.00% | β-: 100.00%<br>β-h   |              |
|   | 16Ne<br>122 KeV  | 17Ne<br>109.2 MS        | 18Ne<br>1672 MS     | 19Ne<br>17.22 S             | 24                         |                            |                            | 23Ne<br>37.24 S             | 24Ne<br>3.38 M              | 25Ne<br>602 MS                                                                         | 26Ne<br>192 MS                                                                          | 27Ne<br>32 MS             | 200Ne<br>19 MS             | 25Ne<br>15.6 MS            | 30Ne<br>7 MS                | 31Ne<br>3.4 MS             | 32Ne<br>3.5 MS             |                             | 34Ne<br>>60 NS       |              |
|   | P: 100.00%       | € 100.00%<br>Ф≈ 100.00% | e: 100.00%          | € 100.00%                   |                            |                            | $\overline{}$              | β-: 100.00%                 | β-: 100.00%                 | \$-:100.00%                                                                            | $\begin{array}{c} \beta \text{-:} \ 100.00\% \\ \beta \text{-tt} \ll 0.2\% \end{array}$ | β-: 100.00%<br>β-n: 2.00% | β-: 100.00%<br>β-n: 16.00% | β-: 100.00%<br>β-π: 17.00% | β-: 100.00%<br>β-h = 26.00% | β-: 100.00%<br>β-h         | β-: 100.00%                |                             | β-<br>β-m            |              |
|   | 15F<br>1.0 MeV   | 16F<br>40 KeV           | 17F<br>64.49 S      | 18F<br>1.8291 H             | 108                        | 20F<br>11.07 S             | 21F<br>4.158 S             | 22F<br>4.23 S               | 23F<br>2.23 S               | 24F<br>390 MS                                                                          | 25F<br>SO MS                                                                            | 26F<br>9.6 MS             | 27F<br>5.0 MS              | 28F<br><40 NS              | 29F<br>2.5 MS               | 30F<br><260 NS             | 31F<br>>250 NS             |                             |                      |              |
|   | P: 100.00%       | P. 100.00%              | € 100.00%           | c 100.00%                   |                            | β-: 100.00%                | β-:100.00%                 | β-: 100.00%<br>β-n < 11.00% | β-: 100.00%                 | $\begin{array}{l} \beta \! - \! :  100.00\% \\ \beta \! - \! h \ll 5.90\% \end{array}$ | β-: 100.00%<br>β-h: 14.00%                                                              | β-: 100.00%<br>β-κ 11.00% | β-:100.00%<br>β-h:77.00%   | N                          | β-: 100.00%<br>β-π: 100.00% | N                          | β-<br>β-n                  |                             |                      |              |
|   | 140<br>70.606 \$ | 150<br>122.24 S         | 150                 | 170                         | 180                        | 190<br>26.88 S             | 200<br>13.51 S             | 210<br>3.42 S               | 220<br>2.25 \$              | 230<br>82 MS                                                                           | 240<br>65 MS                                                                            | 250<br><50 NS             | 260<br><40 NS              | 270<br><260 NS             | 280<br><100 NS              |                            |                            |                             |                      |              |
| ٤ | € 100.00%        | €: 100.00%              |                     |                             |                            | β~: 100.00%                | β-:100.00%                 | β-: 100.00%                 | β-: 100.00%<br>β-n < 22.00% | β-: 100.00%<br>β-η: 31.00%                                                             | β-: 100.00%<br>β-h: 58.00%                                                              | N                         | N                          | N                          | N                           |                            |                            |                             |                      |              |
|   | 13N<br>9.965 M   | 1401                    | 1 EM                | 16N<br>7.13 S               | 17N<br>4.173 S             | 18N<br>624 MS              | 19N<br>271 MS              | 20N<br>130 MS               | 21N<br>85 MS                | 22N<br>24 MS                                                                           | 23N<br>14.5 MS                                                                          | 24N<br><52 NS             | 25N<br><260 NS             |                            |                             |                            |                            |                             |                      |              |
|   | € 100.00%        |                         |                     | β-: 100.00%<br>β-σ: 1.2E-3% | β-: 100.00%<br>β-π: 95.1%  | β-: 100.00%<br>β-π: 14.30% | β-: 100.00%<br>β-π: 54.60% | β-: 100 00%<br>β-π: 57 00%  | β-: 100 00%<br>β-π: 81 00%  | β-: 100.00%<br>β-π: 36.00%                                                             | β-: 100.00%<br>β-π                                                                      | N                         | N                          |                            |                             |                            |                            |                             |                      |              |
|   |                  | 120                     | 14C<br>5700 Y       | 15C<br>2.449 S              | 16C<br>0.747 S             | 17C<br>193 MS              | 18C<br>92 MS               | 19°C<br>49 MS               | 20C<br>14 MS                | 21C<br><30 NS                                                                          | 22C<br>6.1 MS                                                                           |                           |                            |                            |                             |                            |                            |                             |                      |              |
|   |                  |                         | β-: 100.00%         | β-: 100.00%                 | β-: 100.00%<br>β-h: 99.00% | β- 100.00%<br>β-1:32.00%   | β-: 100.00%<br>β-n: 31.50% | β-n: 61.00%<br>β-           | β-: 100.00%<br>β-b: 72.00%  | N                                                                                      | β-: 100.00%<br>β-h: 61.00%                                                              |                           |                            |                            |                             |                            |                            |                             |                      |              |
|   |                  |                         | 100                 |                             |                            | 1.00                       |                            | 100                         |                             |                                                                                        |                                                                                         |                           |                            |                            |                             |                            |                            |                             |                      |              |



Beyond the O burning matter approaches progressively the Nuclear Statistical Equilibrium

At the central O exhaustion =>  $T \sim 2.5 \cdot 10^9 \text{ K}$ direct reverse  $i + k \rightarrow j + l$   $j + l \rightarrow i + k$ 

 $R_{ik} \sim R_{jl}$ 

To quantify how close a pair of processes is to the equilibrium let us define a parameter  $\varphi$ :

 $arphi({f i},{f j})=rac{|{f r_{ij}}-{f r_{ji}}|}{\max({f r_{ij}},{f r_{ji}})}$ obviously  $arphi
ightarrow {f 0}$  full equilibrium  $arphi
ightarrow {f 1}$  no equilibrium

#### Beyond O burning...the path towards the Nuclear Startistical Equilibrium





N \_

# **Nuclear Statistical Equilibrium**

At T>5 GK full equilibrium between direct and reverse processes

 $(N,Z) \rightleftharpoons Zp + Nn$ 

$$\begin{split} \mathbf{y}_{i(\mathbf{Z},\mathbf{N})} &= \omega(\mathbf{z},\mathbf{n}) \left(\rho \mathbf{N}_{\mathbf{A}}\right)^{\mathbf{A}-1} \left(\frac{\mathbf{A}\mathbf{m}_{\mathbf{p}}\mathbf{k}\mathbf{T}}{2\pi\hbar^{2}}\right)^{3/2} \mathbf{y}_{\mathbf{p}}^{\mathbf{z}} \mathbf{y}_{\mathbf{n}}^{\mathbf{n}} 2^{-\mathbf{A}} \left(\frac{2\pi\hbar^{2}}{\mathbf{m}_{\mathbf{p}}\mathbf{k}\mathbf{T}}\right)^{\mathbf{A}\frac{3}{2}} \mathrm{e}^{-\frac{\mathbf{Q}(\mathbf{z},\mathbf{n})}{\mathbf{k}\mathbf{T}}} \\ \mathbf{y}_{i(\mathbf{Z},\mathbf{N})} &= f(\mathbf{A},\mathbf{T},\rho) \mathbf{y}_{\mathbf{p}}^{\mathbf{z}} \mathbf{y}_{\mathbf{n}}^{\mathbf{n}} \mathbf{e}^{-\frac{\mathbf{Q}(\mathbf{z},\mathbf{n})}{\mathbf{k}\mathbf{T}}} \end{split}$$

### Nuclear Statistical Equilibrium

|                   |                              |                          |                          |                           |                         |                            |                               | Р                       | р                          | р                       | р                | e: 100.00%                                                                 | e: 100.00%                | €: 100.00%                                | €: 100.00%                                                                 | e: 100.00%           | e: 100.00%       | e: 100.00%       | e: 100.00%      | elle de la constante de la cons |
|-------------------|------------------------------|--------------------------|--------------------------|---------------------------|-------------------------|----------------------------|-------------------------------|-------------------------|----------------------------|-------------------------|------------------|----------------------------------------------------------------------------|---------------------------|-------------------------------------------|----------------------------------------------------------------------------|----------------------|------------------|------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|
|                   |                              |                          |                          |                           |                         |                            | 58Ge                          | 59 Ge                   | 60 Ge<br>≈ 30 MS           | 61Ge<br>39 MS           | 62Ge<br>129 MS   | 63Ge<br>142 MS                                                             | 64Ge<br>63.7 S            | 65Ge<br>30.9 S                            | 66Ge<br>2.26 H                                                             | 67Ge<br>18.9 M       | 68Ge<br>270.95 D | 69 Ge<br>39.05 H | 70Ge<br>STABLE  | 7                                                                                                               |
|                   |                              |                          |                          |                           |                         |                            | 2P                            | 2P                      | 2P                         | e: 100.00%              | ÷                | e: 100.00%                                                                 | e: 100.00%                | € 100.00%                                 | e: 100.00%                                                                 | e: 100.00%           | e: 100.00%       | e: 100.00%       | 20.37%          | e <mark>n</mark>                                                                                                |
|                   |                              |                          |                          |                           |                         | 56Ga                       | 57Ga                          | 58Ga                    | 59 Ga                      | 60 Ga<br>70 MS          | 61Ga<br>168 MS   | 62Ga<br>116.10 M <sup>c</sup>                                              | 63Ga<br>32.4 S            | 64Ga<br>2.627 M                           | 65Ga<br>15.2 M                                                             | 66Ga<br>9.49 H       | 67Ga<br>3.2617 D | 68Ga<br>67.71 M  | 69 Ga<br>STABLE | 7<br>21                                                                                                         |
|                   |                              |                          |                          |                           |                         | р                          | Р                             | Р                       | Р                          | e: 98.40%<br>sb: 1.60%  | e: 100.00%       | 129,00%                                                                    | «: 100.00%                | < 10 10 ms                                | e: 100.00%                                                                 | e: 100.00%           | e: 100.00%       | e: 100.00%       | 60.108%         | Bog and a second se  |
|                   |                              |                          |                          |                           | 54Zn                    | 552n<br>>0.5 μS            | 562n<br>>0.5 μS               | 57Zn<br>38 MS           | 58Zn<br>84 MS              | 59Zn<br>182.0 MS        | 60Zn<br>2.38 M   | 61Zn<br>89.1 S                                                             | 62Zn<br>9.186 I           | 7.52n<br>29.47 M                          | 64Zn<br>STABLE                                                             | 65Zn<br>243.66 D     | 662n<br>STABLE   | 67Zn<br>STABLE   | 682n<br>STABLE  | 6<br>54                                                                                                         |
|                   |                              |                          |                          |                           | 2P                      | P<br>¢                     | P                             | € 100.00%<br>(p≥ 65.00% | «: 100.00%                 | e: 100.00%<br>sp: 0.10% | e: 100 x 7%      | e: 100.00%                                                                 | € 100 J0%                 | €: 100.00%                                | 48.63%                                                                     | e: 100.00%           | 27.90%           | 4.10%            | 18.75%          | β-:1                                                                                                            |
|                   |                              |                          |                          | 52Cu                      | 53Cu<br><300 NS         | 54Cu<br><75 NS             | 55Cu<br>>200 NS               | 56Cu<br>94 MS           | 57Cu<br>196.3 MS           | 58Cu<br>3.204           | 59Cu<br>81.5 S   | 60Cu<br>23.7 M                                                             | 61.0u<br>3.333 H          | 62Cu<br>9.67 M                            | STABLE                                                                     | 64Cu<br>12.7C H      | 65Cu<br>STABLE   | 66Cu<br>5.120 M  | 67Cu<br>61.83 H | 6<br>3                                                                                                          |
|                   |                              |                          |                          | Р                         | P<br>¢                  | Р                          | e: 100.00%                    |                         | e: 100.00%                 | e: .00%                 | e: 100.00%       | e: 10                                                                      | e: 100.00%                | €: 100.6.5%                               | • 69.17%                                                                   | 61.5.%<br>6-1.78.00% | 30.83%           | β-: 100.00%      | β-: 100.00%     | β-:1                                                                                                            |
|                   | 48Ni<br>>0.5 μS              | 49Ni<br>12 MS            | 50Ni<br>12 MS            | 51Ni<br>>200 NS           | 52Ni<br>38 MS           | 53Mi<br>45 MS              | 54Ni<br>104 MS                | 55Ni<br>202 MS          | 6.075                      | 57Ni<br>35.60 H         | STAR             | 59Ni<br>7.6E+4 Y                                                           | 60Ni<br>STABLE            | GANI<br>STABLE                            | 62Ni<br>STABLE                                                             | 03Ni<br>100.1 Y      | 64Ni<br>STABLE   | 65Ni<br>2.5172 H | 66Ni<br>54.6 H  |                                                                                                                 |
|                   | •                            | €: 100.00%<br>€₽         | ф: 70.00%<br>б           |                           | € 100.00%<br>«p: 17.00% | €: 100.00%<br>€p.:: 45.00% | e: 100.00%                    | e: 100.00%              | <b>V</b>                   | e: 100.00%              |                  | e: 100.00%                                                                 | 26.223%                   | 1.140%                                    | 3.80                                                                       | β-: 100.00%          | 0.926%           | β-: 100.00%      | β-: 100.00%     | β-:1                                                                                                            |
|                   |                              |                          | 49Co<br><35 NS           | 50Co<br>44 MS             | 51Co<br>>200 NS         | 52Co<br>115 MS             | 53Co<br>240 MS                | 54Co<br>193.27 _3       | 55Co<br>17.53 H            | 56Co<br>77.231          | 57Co<br>271.74 D | 58Co<br>70.86 P                                                            | 59Co<br>STABLE            | 60Co<br>1925.2F                           | 61Co<br>1.650 H                                                            | 62Co<br>1.50 M       | 63Co<br>27.4 S   | 64Co<br>0.30 S   | 65Co<br>1.20 S  |                                                                                                                 |
|                   |                              |                          | P<br>4                   | € 100.00%<br>(p > 54.00%) |                         | € 100.00%                  | e: 100.00%                    | J0.00%                  | e: 100.00%                 | J.00%                   | e: 100.00%       | e: 17                                                                      | 100%                      | β-1 .00%                                  | β~: 100.00%                                                                | β-: 100.00%          | β-: 100.00%      | β-: 100.00%      | β-: 100.00%     | p-:1                                                                                                            |
| ISFe<br>.8 MS     | 46Fe<br>12 MS                | 47Fe<br>21.8 MS          | 48Fe<br>44 MS            | 49Fe<br>70 MS             | SOFe<br>155 MS          | 51Fe<br>305 MS             | 52Fe<br>8.27 .1               | 53Fe<br>8.51 M          | 67                         | 55Fe<br>2.737 Y         | STAB             | 57Fe<br>STABLE                                                             | STAP                      | 59Fe<br>44.495 D                          | 60Fe<br>1.5E+6 Y                                                           | 61Fe<br>5.98 M       | 62Fe<br>68 S     | 63Fe<br>6.1 S    | 64Fe<br>2.0 S   |                                                                                                                 |
| 2P                |                              | €: 100.00%<br>¢p > 0.00% | € 100.00%<br>(p ≥ 3.60%  | €: 100.00%<br>«p ≥ 52.00% | €: 100.00%<br>«p≈ 0.00% | €: 100.00%                 | , JO.00%                      | e: 100.00%              |                            | e: 100.00%              |                  | 2.119%                                                                     |                           | β-: 100.00%                               | β-: 100.00%                                                                | β-: 100.00%          | β-: 100.00%      | β-: 100.00%      | β-: 100.00%     | <mark>β-:1</mark>                                                                                               |
| 4Mn<br>.05 NS     | 45Mn<br><70 NS               | 46Mn<br>34 MS            | 47Mn<br>100 MS           | 48Mn<br>158.1 MS          | 49Mn<br>382 MS          | 50M<br>283 / MS            | 51Mn<br>46.2 M                | 52M<br>5.5 0            | 53Mn<br>3.74E+6 Y          | 54Mn<br>312.17          | 55Mn<br>STABLE   | 56Mn<br>2.578                                                              | 57Mn<br>85.4 S            | 58Mn<br>3.0 S                             | 59Mn<br>4.59 S                                                             | 60Mn<br>51 S         | 61Mn<br>0.67 S   | 62Mn<br>671 MS   | 63Mn<br>0.29 S  | 6<br>9                                                                                                          |
| é<br>P            | Р                            | e: 100.00%<br>sp: 22.00% | €: 100.00%<br>«p ≥ 3.40% | e: 100.00%<br>sp: 0.28%   | e: 100.00%              | +00.00%                    | e: 100.00%                    | ,100.00%                | € 100.00%                  | * .00%<br>2.9E-4%       | 100%             | P .J0.00%                                                                  | β-: 100.00%               | β-: 100.00%                               | β-: 100.00%                                                                | β100.00%             | 8-: 100.00%      | 8-100.00%        | 8-100.00%       | 8-1                                                                                                             |
| IBCr<br>.6 MS     | 44Cr<br>53 MS                | 45Cr<br>50 MS            | 46Cr<br>0.26 S           | 47 Cr<br>500 MS           | 480<br>21 H             | 49Cr<br>42.3 M             | 50Cr<br>>1.3E+18 Y            | 51Cr<br>27.7025 D       | STAT                       | 53Cr<br>STABLE          | ST .             | 55Cr<br>3.497 M                                                            | 56Cr<br>5.94 M            | 57Cr<br>21.1 S                            | 58Cr<br>7.0 S                                                              |                      | 0                |                  |                 |                                                                                                                 |
| 00.00%<br>23.00%  | € 100.00%<br>¢p > 7.00%      | € 100.00%<br>¢p > 27.00% | € 100.00%                | € 100.00%                 | 100.00%                 | € 100.00%                  | 24                            | e: 100.00%              |                            | 9.501%                  |                  | β-: 100.00%                                                                | β-: 100.00%               | β-: 100.00%                               | β-: 100.00%                                                                | β                    | 0.5              | 1                |                 |                                                                                                                 |
| 42V<br>55 NS      | 43V<br>>800 MS               | 44V<br>111 MS            | 45V<br>547 MS            | 46"<br>42" MS             | 47V<br>32.6 M           | 48V<br>15.9735 D           | 49V<br>329 D                  | 50V<br>1.4E- f          | 51V<br>STABLE              | 52V<br>3.7 A            | 53V<br>1.60 M    | 54V<br>49.8 S                                                              | 55V<br>6.54 S             | 56V<br>216 MS                             | 57V<br>0.35 S                                                              |                      | -1               |                  |                 |                                                                                                                 |
| Р                 | € 100.00%                    | e: 100.00%<br>ed         | € 100.00%                | 100.00%                   | e: 100.00%              | e: 100.00%                 | e: 100.00%                    | .3.00%<br>-: 17.00%     | 88.1 55N                   | 400.00%                 | β-: 100.00%      | β-: 100.00%                                                                | β-: 100.00%               | β-: 100.00%                               | $\substack{\beta=:100.00\%\\\beta=h:0.04\%}$                               | β-                   | 15               |                  |                 |                                                                                                                 |
| 11Ti<br>0.4 MS    | 42Ti<br>199 MS               | 43Ti<br>509 MS           | 44Ti<br>60.0 Y           | 45Ti<br>184.8 M           | 46Ti<br>STABLE<br>8 25% | 47Ti<br>STABLE<br>7.44%    | 48D<br>ST                     | 49Ti<br>STABLE<br>5.41% | 507<br>ST LE               | 51Ti<br>5.76 M          | 52Ti<br>1.7 M    | 53Ti<br>32.7 S                                                             | 54Ti<br>1.5 S             | 55Ti<br>1.3 S                             | 56Ti<br>200 MS                                                             | X                    | 1.5              |                  |                 |                                                                                                                 |
| 100.00%<br>00.00% | € 100.00%                    | e: 100.00%               | € 100.00%                | «: 100.00%                | 0.2074                  |                            |                               |                         |                            | β-: 100.00%             | β-: 100.00%      | β-: 100.00%                                                                | β-: 100.00%               | β-: 100.00%                               | $\begin{array}{c} \beta \text{-:} 100.00\% \\ \beta \text{-n} \end{array}$ | OB10                 | -2               |                  |                 |                                                                                                                 |
| IOSe<br>2.3 MS    | 41Sc<br>596.3 MS             | 42Se<br>681.3 MS         | 43Sc<br>3.891 H          | 44Sc<br>3.97 H            | 45Sc<br>STABLE<br>100%  | 465c<br>83.79 D            | 475c<br>3.3492 D              | 485c<br>43.67 H         | 495c<br>57.2 M             | 50Sc<br>102.5 S         | 51Sc<br>12.4 S   | 52Sc<br>8.2 S                                                              | 53Sc<br>>3 S              | 54Sc<br>0.36 S                            | 55Sc<br>0.115 S                                                            |                      | 2.5              |                  |                 |                                                                                                                 |
| 00.00%            | € 100.00%                    | € 100.00%                | € 100.00%                | «: 100.00%                |                         | β-: 100.00%                | β-: 100.00%                   | β-: 100.00%             | β-: 100.00%                | β-: 100.00%             | β-: 100.00%      | β-: 100.00%                                                                | β-: 100.00%<br>β-n        | β-: 100.00%                               | $\begin{array}{c} \beta \text{-:} 100.00\% \\ \beta \text{-n} \end{array}$ |                      | -3               |                  |                 |                                                                                                                 |
| 9Ca<br>9.6 MS     | 40Ca<br>>3.0E+21 ¥<br>96.94% | 41Ca<br>1.02E+5 Y        | 42Ca<br>STABLE<br>0.647% | 43Ca<br>STABLE<br>0.135%  | 44Ca<br>STABLE<br>2 09% | 45Ca<br>162.61 D           | 46Ca<br>>0.28E+16 Y<br>0.004% | 47Ca<br>4.536 D         | 48Ca<br>2.3E19 Y<br>0.187% | 49Ca<br>8.718 M         | 50Ca<br>13.9 S   | 51Ca<br>10.0 S                                                             | 52Ca<br>4.6 S             | 53Ca<br>90 MS                             | 54Ca<br>>300 NS                                                            | >                    | -5               |                  |                 |                                                                                                                 |
| 00.00%            | 24                           | «: 100.00%               |                          |                           |                         | β-: 100.00%                | 2β-                           | β-: 100.00%             | 2β-:84.00%<br>β- <25.00%   | β-: 100.00%             | β-: 100.00%      | $\begin{array}{c} \beta \text{-:} 100.00\% \\ \beta \text{-n} \end{array}$ | β-: 100.00%<br>β-ns 2.00% | $\beta$ -: 100.00%<br>$\beta$ -n > 30.00% | β-: 100.00%                                                                | -                    | 3.5              |                  |                 |                                                                                                                 |
| 38K               | 39K                          | 40K                      | 41K                      | 42K                       | 43K                     | 44K                        | 45K                           | 46K                     | 47K                        | 48K                     | 49K              | 50K                                                                        | 51K                       | 52K                                       | 53K                                                                        |                      | -4               |                  |                 |                                                                                                                 |
|                   |                              |                          |                          |                           |                         |                            |                               |                         |                            |                         |                  |                                                                            |                           |                                           |                                                                            |                      | 0.44             |                  | 0.45            | 0.46 0.47 0.48 0.49 0.50<br>Ye                                                                                  |
|                   |                              |                          |                          |                           |                         |                            |                               |                         |                            |                         |                  |                                                                            |                           |                                           |                                                                            |                      |                  |                  | Ni58            | —Ni56 —Fe58 —Fe56 —Fe54 —Cr54 —Cr52                                                                             |

#### **Nuclear Statistical Equilibrium**






# Total amount of energy released by the gravitational collapse amounts to, roughly: ${ m E}=1.6~10^{53}~{ m erg}$



## Total amount of energy released by the gravitational collapse amounts to, roughly:

# ${ m E}=1.6\,\,10^{53}\,\,{ m erg}$

**Table 2.** For the runs presented in this paper, the mean shock radius (in units of 1000 kilometres) and mean shock speed (in units of  $1000 \text{ km s}^{-1}$ ) at the end of each simulation. Note that the shock is still stalled at the end of the simulation only for the 2D and 3D  $13-M_{\odot}$  models.

|          | t (final)<br>(s) | Mean shock radius (1000 km) | Mean shock speed $(1000 \text{ km s}^{-1})$ |
|----------|------------------|-----------------------------|---------------------------------------------|
| s9.0-2D  | 1.41             | 15.24                       | 14.19                                       |
| s9.0-3D  | 1.042            | 12.42                       | 16.29                                       |
| s10.0-2D | 1.41             | 7.70                        | 10.62                                       |
| s10.0-3D | 0.767            | 1.96                        | 6.65                                        |
| s11.0-2D | 1.41             | 9.18                        | 7.41                                        |
| s11.0-3D | 0.568            | 2.75                        | 8.00                                        |
| s12.0-2D | 1.41             | 8.72                        | 8.08                                        |
| s12.0-3D | 0.694            | 2.66                        | 6.85                                        |
| s13.0-2D | 1.311            | 0.06                        | 0.067                                       |
| s13.0-3D | 0.674            | 0.09                        | 0.048                                       |
|          |                  |                             |                                             |



Burrows+ (2019) MNRAS 485, 3168



















NSE: all nuclei are at the equilibrium Complete Explosive Silicon burning





QSE: <sup>28</sup>Si is not ad the equilibrium Incomplete Explosive Silicon burning

 $Y_i = f(T, \rho, Y_e)$ 

V Cr Mn Si S Ar Ca

 $4 \cdot 10^9 \ {\rm K} \ > \ T \ > \ 3.3 \cdot 10^9 \ {\rm K}$ 

2QSE: matter clustered in two groups, one peaked at <sup>28</sup>Si (99%) and the second one at Fe Explosive Oxygen burning

Si S Ar K Ca

 $3.3 \cdot 10^9 \mathrm{~K} > T > 1.9 \cdot 10^9 \mathrm{~K}$ 

Explosive Neon and Carbon + C shell burning

Ne Na Mg Al P Cl



NO Explosive burning

| Element                | produced                                                                          | destroyed                        |
|------------------------|-----------------------------------------------------------------------------------|----------------------------------|
| He (⁴He)               | H <sub>c,s</sub>                                                                  | He <sub>c,s</sub>                |
| C ( <sup>12</sup> C)   | He <sub>c,s</sub>                                                                 | C <sub>c,s</sub>                 |
| N ( <sup>14</sup> N)   | H <sub>c,s</sub>                                                                  | He <sub>c,s</sub>                |
| O( <sup>16</sup> O)    | He <sub>c</sub>                                                                   | C <sub>c,s</sub>                 |
| F ( <sup>19</sup> F)   | Hes                                                                               |                                  |
| Ne ( <sup>20</sup> Ne) | C <sub>s</sub>                                                                    | Ne <sub>x</sub>                  |
| Na ( <sup>23</sup> Na) | C <sub>s</sub>                                                                    | Ne <sub>x</sub>                  |
| Mg ( <sup>24</sup> Mg) | C <sub>s</sub>                                                                    | Ne <sub>x</sub>                  |
| AI ( <sup>27</sup> AI) | C <sub>s</sub>                                                                    | Ne <sub>x</sub>                  |
| Si ( <sup>28</sup> Si) | Si <sub>ix</sub> O <sub>x</sub> Ne <sub>x</sub>                                   |                                  |
| P ( <sup>31</sup> P)   | Ne <sub>x</sub> C <sub>s</sub>                                                    | Ne <sub>x</sub>                  |
| S ( <sup>32</sup> S)   | Si <sub>ix</sub> O <sub>x</sub> Ne <sub>x</sub>                                   |                                  |
| Cl                     | <sup>35</sup> Cl O <sub>x</sub> Ne <sub>x</sub> - <sup>37</sup> Cl C <sub>s</sub> | <sup>37</sup> Cl Ne <sub>x</sub> |
| Ar ( <sup>36</sup> Ar) | Si <sub>ix</sub> O <sub>x</sub>                                                   |                                  |
| K ( <sup>39</sup> K)   | He C <sub>s</sub> O <sub>x</sub>                                                  | 0 <sub>x</sub>                   |
| Ca ( <sup>40</sup> Ca) | Si <sub>ix</sub> O <sub>x</sub>                                                   |                                  |

| Element                                                  | produced                                        | destroyed       |
|----------------------------------------------------------|-------------------------------------------------|-----------------|
| V ( <sup>51</sup> V)                                     | Si <sub>ix</sub>                                |                 |
| Cr ( <sup>52</sup> Fe)                                   | Si <sub>ix</sub>                                |                 |
| Mn (55Fe 55Co)                                           | Si <sub>ix</sub>                                |                 |
| Sc ( <sup>45</sup> Sc, <sup>45</sup> Ca)                 | He C <sub>s</sub> Si <sub>x</sub>               | Ne <sub>x</sub> |
| Ti ( <sup>48</sup> Cr)                                   | O <sub>x</sub> Si <sub>x</sub> Si <sub>ix</sub> |                 |
| Fe ( <sup>56</sup> Ni <sup>56</sup> Fe <sup>54</sup> Fe) | Si <sub>ix</sub> O <sub>x</sub>                 |                 |
| Co ( <sup>59</sup> Ni)                                   | He <sub>c</sub> Ne <sub>x</sub> Si <sub>x</sub> |                 |
| Ni ( <sup>58</sup> Ni)                                   | Si <sub>x</sub>                                 |                 |
| Cu( <sup>63</sup> Cu)                                    | He <sub>c</sub> Ne <sub>x</sub> Si <sub>x</sub> |                 |
| Zn( <sup>64</sup> Zn)                                    | He <sub>c</sub> Ne <sub>x</sub> Si <sub>x</sub> |                 |

## Solar metallicity



### **Production Factors produced by a generation of massive stars:**





Element

### Critical masses (model dependent)

| H ignition (4P => <sup>4</sup> He)                  | 0.07 M <sub>☉</sub>  | Low mass stars:                            |  |
|-----------------------------------------------------|----------------------|--------------------------------------------|--|
| He ignition (off center, degenerate)                | 0.5 M <sub>☉</sub> • | RGB<br>He white dwarfs                     |  |
| He ignition (central, not degenerate)               | 2.3 M <sub>o</sub>   | Intermediate mass stars:                   |  |
| C ignition (off center, degenerate)                 | 7.5 M <sub>☉</sub> ● | Thermally Pulsing stars<br>CO white dwarfs |  |
| C ignition (central, not degenerate)                | 8 M <sub>o</sub>     | ONe white dwarfs                           |  |
|                                                     |                      | top end of the TP stars                    |  |
| Ne ignition (off center)                            | 10 M <sub>o</sub>    | electron capture Supernovae ???            |  |
|                                                     | Ŭ                    |                                            |  |
| Ne ignition (central)                               | 11 M <sub>o</sub>    | Massive stars:<br>Core collapse supernovae |  |
| EOS dominated by $e^+-e^-$ pairs ( $\Gamma < 4/3$ ) | 140? M               |                                            |  |
|                                                     | <u> </u>             | (Pulsational) Pair instability supernovae  |  |
|                                                     | 260? M <sub>☉</sub>  |                                            |  |