

Nuclei in the Cosmos School 2025

STELLAR EVOLUTION

Alessandro Chieffi INAF, Italy

The efficiency of the He burning shell increases with the mass of the CO core because it is NOT self-regulated.
 The growth of the CO core mass implies the increase of the temperature inside the core
 The power of the He burning shell forces the H rich mantle to expand and cool down: the border of the convective envelope penetrates inward (in mass)

4) Neutrino energy losses push the maximum teperature far from the center 5) Mass Loss becomes stronger and stronger $(10^{-7} - 10^{-4} M_{\odot}/yr)$

Η

He

CO

E-AGB lifetime ranges between 30 Myr (2 M_{\odot}) and 0.6 Myr (9 M_{\odot})

Stars that ignite Ne in electron degenerate conditions lift the degeneracy and evolve as massive stars

Scheme of a Thermal Pulse cycle

Stellar Evolution in Globular Clusters

Martin Schwarzschild

(George Darwin Lecture delivered in Burlington House on 1969 October 10)

Finally, I come to my last major problem, namely the impasse in which we find ourselves in our attempt to follow the evolution of a globular-cluster star all the way through the second red-giant phase and beyond. Our present situation is simply that we are stuck just a little beyond point E in our figure. You may counter me with the question: What can be the problem; since clearly the numerical techniques are in hand to cover the second red-giant phase by computing through flash cycle after flash cycle in detail, why don't you compute if you cannot think? The answer to this question can be derived with a short bit of arithmetic. If we estimate the second red-giant phase to last for, say, several times 10⁷ years, and if we accept that a typical flash cycle takes several times 10⁵ years, then one has to conclude that a star may undergo of the order of 100 flash cycles to get through its second red-giant phase. Next, one has to compute several hundred fairly complex models if one wants to follow through one flash cycle with reasonable reliability. Finally, I think we all agree that the whole computation should be done for several stars to cover the relevant ranges in mass and composition. Thus the whole computing job we are contemplating turns out to be of such a magnitude that, in spite of the speed and capacity of modern computers, I know of no institution which could and would assign the necessary computer time to such an undertaking. No, I feel we are once again forced to try to think.

Lugaro&Chieffi, Astronomy with radioactivities, 2010, Chapter III

(p,γ) (p,α) (p,n)

²²Ne is very abundant because it is the outcome of the initial CNO -> ¹⁴N -> ²²Ne

²²Ne(α ,n)²⁵Mg T > 300 MK M>5M_{\odot}

²²Ne is very abundant because it is the outcome of the initial CNO -> ¹⁴N -> ²²Ne

²²Ne(α ,n)²⁵Mg T > 300 MK M>5M_{\odot}

83Nb 4.1 S	84Nb 9.5 S	85Nb 20.9 S	86Nb 56 S	87Nb 3.75 M	88Nb 14.55 M	89Nb 2.03 H	90Nb 14.60 H	91Nb 6.8E+2 Y	92Nb 3.47E+7 Y	93Nb STABLE
€: 100.00%	ε: 100.00% €₽	e: 100.00%	¢	€: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	ε: 100.00% β− < 0.05%	100%
82Zr 32 S	832r 41.6 S	84Zr 25.9 M	852r 7.86 M	86Zr 16.5 H	872r 1.68 H	882r 83.4 D	89Zr 78.41 H	90Zr STABLE	91Zr STABLE	92Zr STABLE
€: 100.00%	е: 100.00% ер	e: 100.00%	e: 100.00%	€: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	51.45%	11.22%	17.15%
81¥ 70.4 S	82Y 8.30 S	83Y 7.08 M	84Y 4.6 S	85Y 2.68 H	86Y 14.74 H	87Y 79.8 H	88Y 106.626 D	89Y STABLE	90Y 64.053 H	91Y 58.51 D
€: 100.00%	e: 100.00%	€: 100.00%	e: 100.00%	€: 100.00%	€: 100.00%	e: 100.00%	e: 100.00%	100%	β-: 100.00%	β-: 100.00%
80Sr 106.3 M	81Sr 22.3 M	82Sr 25.55 D	83Sr 32.41 H	84Sr STABLE	85Sr 64.84 D	86Sr STABLE	87Sr STABLE	88Sr STABLE	895r 50.57 D	90Sr 28.90 Y
e: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	0.56%	e: 100.00%	9.00%	7.00%	02.50%	β-: 100.00%	β-: 100.00%
79Rb 22.9 M	80Rb 33.4 S	81Rb 4.570 H	82Rb 1.273 M	83Rb 86.2 D	84Rb 33.1 D	85Rb STABLE	86Rb 18.642 D	87Rb 4.81E+10 Y	88Rb 17.773 M	89Rb 15.15 M
e: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	ε: 96.20% β−: 3.80%	72.17%	β-: 99.99% ε: 5.2E-3%	27.03% β-: 100.00%	β-: 100.00%	β-: 100.00%
78Kr ≥2.3E+20 Y	79Kr 35.04 H	80Kr STABLE	81Kr 2.29E+5 Y	82Kr STABLE	83Kr STABLE	84Kr STABLE	85Kr 3916.8 D	86Kr STABLE	87Kr 76.3 M	88Kr 2.84 H
0.55% 2¢	e: 100.00%	2.28%	e: 100.00%	11.50%	11.49%	57.00%	β-: 100.00%	17.30%	β-: 100.00%	β-: 100.00%
77Br 57.036 H	78Br 6.46 M	79Br STABLE	80Br 17.68 M	81Br STABLE	82Br 35.282 H	83Br 2.40 H	84Br 31.80 M	85Br 2.90 M	86Br 55.1 S	87Br 55.65 S
e: 100.00%	ε≥ 99.99% β-≤ 0.01%	50.69%	β-: 91.70% ε: 8.30%	49.51%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 2.60%
76Se STABLE	77Se STABLE	78Se STABLE	79Se 2.95E+5 Y	80Se STABLE	81Se 18.45 M	82Se STABLE	83Se 22.3 M	84Se 3.10 M	85Se 31.7 S	86Se 15.3 S
9.37%	7.83%	23.17%	β-: 100.00%	49.01% 2β-	β-: 100.00%	0.73%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
75As STABLE	76As 1.0942 D	77As 38.83 H	78As 90.7 M	neu	itrons		82As 19.1 S	N=50	84As 3.24 S	85As 2.021 S
100%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β- 20.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% 8-1: 59.40%

83Nb 4.1 S	84Nb 9.5 S	85Nb 20.9 S	86Nb 56 S	87Nb 3.75 M	88Nb 14.55 M	89Nb 2.03 H	90Nb 14.60 H	91Nb 6.8E+2 Y	92Nb 3.47E+7 Y	93Nb STABLE
e: 100.00%	€: 100.00% €₽	e: 100.00%	¢	€: 100.00%	€: 100.00%	e: 100.00%	€: 100.00%	e: 100.00%	ε: 100.00% β− < 0.05%	100%
82Zr 32 S	832r 41.6 S	842r 25.9 M	852r 7 86 M	86Zr 16.5 H	872r 1.68 H	882r 83.4 D	89Zr 78.41 H	90Zr STABLE	91Zr STABLE	92Zr STABLE
e: 100.00%	$N_n \cdot <$	$N_A \sigma v >$	$ = \frac{\tau_{A}}{\tau_{i}}$	ε: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	51.45%	11.2270	17.15%
840 70 <mark>N</mark>	0.077	NA	[#	cm^{-31}	86Y 14.74 H	87Y 79.8 H	88¥ 106.626 D	89Y STABLE	90Y 64.053 H	91Y 58.51 D
e: 10	$< N_A $	$\sigma v >_{in} \cdot$	$ au_{\mathrm{i}}$ $^{\prime\prime\prime}$		€: 100.00%	e: 100.00%	€: 100.00%	100%	β-: 100.00%	β-: 100.00%
80Sr 106.3 M	81Sr 22.3 M	82\$r 25.55 D	83Sr 32.41 H	84Sr STABLE	85Sr 64.84 D	86Sr STABLE	87Sr STABLE	88Sr STABLE	895r 50.57 D	90Sr 28.90 Y
€: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	0.56%	€: 100.00%	9.00%	7.00%	02.50%	β-: 100.00%	β-: 100.00%
79Rb 22.9 M	80Rb 33.4 S	81Rb 4.570 H	82Rb 1.273 M	83Rb 86.2 D	84Rb 33.1 D	85Rb STABLE	86Rb 18.642 D	87Rb 4.81E+10 Y	88Rb 17.773 M	89Rb 15.15 M
€: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	ε: 96.20% β−: 3.80%	72.17%	N _n = 10 ¹⁰ 6:5.2E-3%	β-: 100.00%	β-: 100.00%	β-: 100.00%
78Kr ≥2.3E+20 ¥	79Kr 35.04 H	80Kr STABLE	81Kr 2.29E+5 Y	82Kr STABLE	83Kr STABLE	84Kr STABLE	85Kr 3916.8 D	86Kr STABLE	87Kr 76.3 M	88Kr 2.84 H
2¢	e: 100.00%	2.20%	e: 100.00%	11.50%	11.43%	37.00%	ν _η =2.2 10°	17.30%	β-: 100.00%	β-: 100.00%
77Br 57.036 H	78Br 6.46 M	79Br STABLE	80Br 17.68 M	81Br STABLE	82Br 35.282 H	83Br	84Br	85Br	86Br 55.1 S	87Br 55.65 S
e: 100.00%	ε≥ 99.99% β-≤ 0.01%	50.69%	β-: 91.70% ε: 8.30%	49.51%	β-: 100.00%	β.		, J%	β-: 100.00%	β-: 100.00% β-n: 2.60%
76Se STABLE	77Se STABLE	78Se STABLE	79Se 2.95E+5 Y	80Se STABLE	81Se 18.45 M	82Se STABLE	83Se 22.3 M	84Se 3.10 M	85Se 31.7 S	86Se 15.3 S
9.57%	7.83%	23.11%	β-: 100.00%	49.01% 2β-	β-: 100.00%	0.73%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
75As STABLE	76As 1.0942 D	77As 38.83 H	78As 90.7 M	neu	itrons		82As 19.1 S	N=50	84As 3.24 S	85As 2.021 S
100%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β- 20.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 0.28%	β-: 100.00% β-n: 59.40%

83Nb 4.1 S €: 100.00%	84Nb 9.5 S € 100.00%	85Nb 20.9 S €: 100.00%	86Nb 56 S 4	87Nb 3.75 M € 100.00%	88Nb 300	^{89Nb}	90Nb 14.60 H <: 100.00%	91Nb 6.8E+2 Y 6:100.00%	92Nb 3.47E+7 Y 6: 100.00% 8- < 0.05%	93Nb STABLE 100% 7.7
82Zr 32 S	832r 41.6.5	84Zr 25.9 M	85Zr 7.86 M	86Zr 16.5 H	872r 1.68 H	88Zr 83.4 D	89Zr 78.41 H	90Zr STABLE	91Zr STABLE	92Zr STABLE
€: 100.00%	$N_n \cdot <$	$N_A \sigma v >$	$ = \frac{1NA}{\tau_i}$	ε: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	6.4	7.1	6.8
847 76 <mark>N</mark>	007	NA	í	cm^{-31}	86Y 14.74 H	87Y 79.8 H	88¥ 106.626 D	89Y STABLE	90Y 64.053 H	91Y 58.51 D
e: 10	$< N_A$	$\sigma \mathrm{v} >_{\mathrm{in}} \cdot$	$ au_{i}$ $ u_{i''}$		e: 100.00%	e: 100.00%	e: 100.00%	6.6	β-: 100.00%	β-: 100.00%
80Sr 106.3 M	81Sr 22.3 M	82Sr 25.55 D	83Sr 32.41 H	84Sr STABLE	85Sr 64.84 D	86Sr STABLE	87Sr STABLE	88Sr STABLE	898r 50.57 D	90Sr 28.90 Y
e: 100.00%	€: 100.00%	€: 100.00%	e: 100.00%	0.56%	e: 100.00%	9.86% 7.1	7.00%	5.9	β-: 100.00%	β-: 100.00%
79Rb 22.9 M	80Rb 33.4 S	81Rb 4.570 H	82Rb 1.273 M	83Rb 86.2 D	84Rb 33.1 D	85Rb STABLE	86Rb 18.642 D	87Rb 4.81E+10 Y	88Rb 17.773 M	89Rb 15.15 M
€: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	ε: 96.20% β−: 3.80%	7.6	β- <mark>7.5</mark> ,9% ε: 7.5 ,3%	β-: <mark>6.3</mark> 0%	β-: 100.00%	β-: 100.00%
78Kr ≥2.3E+20 Y	79Kr 35.04 H	80Kr STABLE	81Kr 2.29E+5 Y	82Kr STABLE	83Kr STABLE	84Kr STABLE	85Kr 3916.8 D	86Kr STABLE	87Kr 76.3 M	88Kr 2.84 H
0.35% 2e	e: 100.00%	2.28%	e: 100.00%	7.0	7.7	6.8	^{β-:} <mark>6.9</mark> ^{00%}	5.3	β-: 100.00%	β-: 100.00%
77Br 57.036 H	78Br 6.46 M	79Br STABLE	80Br 17.68 M	81Br STABLE	82Br 35.282 H	83Br	84Br	85Br	86Br 55.1 S	87Br 55.65 S
e: 100.00%	ε≥ 99.99% β-≤ 0.01%	50.69%	β-: 91.70% ε: 8.30%	49.31% 7.6	β-: 100.00%	βBr	anching pol	nt ,	β-: 100.00%	β-: 100.00% β-n: 2.60%
76Se STABLE	77Se STABLE	78Se STABLE	79Se 2.95E+5 Y	80Se STABLE	81Se 18.45 M	82Se STABLE	83Se 22.3 M	84Se 3.10 M	85Se 31.7 S	86Se 15.3 S
9.57%	7.03%	25.77%	β-: 100.00%	49.61% 2β-	β-: 100.00%	0./3%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
75As STABLE	76As 1.0942 D	77As 38.83 H	78As 90.7 M	neu	itrons		82As 19.1 S	N=50	84As 3.24 S	85As 2.021 S
100%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β- 20.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 0.28%	β-: 100.00% β-n: 59.40%

 $\frac{Rb}{Y}$

FIG. 3.—Comparison of the observed [Rb/Sr, Y, Zr] ratios vs. [M/H] with different theoretical predictions for a 1.5 M_{\odot} TP-AGB star when the envelope reaches C/O \gtrsim 1. Note that again the data points for IY Hya, VX Gem, and V CrB are plotted with smaller symbols.

Pulse n

n+1

n+2

n+3

The evolution of the stars in the Thermally Pulsing phase is controlled by the competition between the growth of the electron degenerate core and the erosion of the mantle due to the mass loss

fully electron degenerate Fermi gas of M≈1.4 $\rm M_{\odot}$ has a Fermi energy $\rm E_{F}\approx 8~MeV$

electron capture on ²⁴Mg -> 6MeV

electron capture on ²⁰Ne -> 8MeV

 M/M_{\odot} - initial

83 4	3Nb 4.1 S	84Nb 9.5 S	85Nb 20.9 S	86Nb 56 S	87Nb 3.75 M	88Nb	89Nb	90Nb 14.60 H	91Nb 6.8E+2 Y	92Nb 3.47E+7 Y	93Nb STABLE
e: 10	00.00%	€: 100.00% €⊉	€: 100.00%	¢	€: 100.00%	3(00	€: 100.00%	e: 100.00%	ε: 100.00%β+ < 0.05%	7.7
81	2Zr 32 S	83Zr 41.6 S	84Zr 25.9 M	85Zr 7 86 M	86Zr 16.5 H	N	IK	89Zr 78.41 H	90Zr STABLE	91Zr STABLE	92Zr STABLE
e: 10	00.00%	$N_n \cdot <$	$N_A \sigma v >$	$\geq_{\rm in} = \frac{\pi r_{\rm A}}{\tau_{\rm i}}$	€: 100.00%	€: 100.00%	€: 100.00%	€: 100.00%	6.4	7.1	6.8
8 70		0.077	NA	[#	cm^{-31}	86Y 14.74 H	87¥ 79.8 H	88Y 106.626 D	89Y STABLE	90Y 64.053 H	91Y 58.51 D
e: 10	11	$< N_A$	$\sigma \mathrm{v} >_{\mathrm{in}} \cdot$	$ au_{ m i}$ "		€: 100.00%	€: 100.00%	€: 100.00%	6.6	β-: 100.00%	β-: 100.00%
8 100	0Sr 6.3 M	81Sr 22.3 M	82Sr 25.55 D	83Sr 32.41 H	84Sr STABLE 0.56%	85Sr 64.84 D	86Sr STABLE 9.86%	87Sr STABLE 7.00%	88Sr STABLE 82 58%	89Sr 50.57 D	90Sr 28.90 Y
e: 10	00.00%	e: 100.00%	€: 100.00%	e: 100.00%	0.30%	e: 100.00%	7.1	7.3	5.9	β-: 100.00%	β-: 100.00%
79 22	ərb 2.9 M	80Rb 33.4 S	81Rb 4.570 H	82Rb 1.273 M	83Rb 86.2 D	84Rb 33.1 D	85Rb STABLE	86Rb 18.642 D	87Rb 4.81E+10 Y	88Rb 17.773 M	89Rb 15.15 M
«: 10	00.00%	e: 100.00%	€: 100.00%	€: 100.00%	€: 100.00%	€: 96.20% β−: 3.80%	7.6	β- 7.5 ,9% ε: 7.5 ,3%	β-: <mark>6.3</mark> 0%	β-: 100.00%	β-: 100.00%
70 ≥2.3I	8Kr E+20 Y	79Kr 35.04 H	80Kr STABLE	81Kr 2.29E+5 Y	82Kr STABLE	83Kr STABLE	84Kr STABLE	85Kr 3916.8 D	86Kr STABLE	87Kr 76.3 M	88Kr 2.84 H
0	2¢	€: 100.00%	2.20%	€: 100.00%	7.0	7.7	6.8	^{β-:} <mark>6.9</mark> 00%	5.3	β-: 100.00%	β-: 100.00%
73 57.0	7Br 036 H	78Br 6.46 M	79Br STABLE	80Br 17.68 M	81Br STABLE	82Br 35.282 H	83Br	84Br	85Br	86Br 55.1 S	87Br 55.65 S
«: 10	00.00%	ε≥ 99.99% β-≤ 0.01%	50.69%	β-: 91.70% ε: 8.30%	^{49.31} %	β-: 100.00%	β.		, J%	β-: 100.00%	β-: 100.00% β-n: 2.60%
70 ST	6Se TABLE	77Se STABLE	78Se STABLE	79Se 2.95E+5 Y	80Se STABLE	81Se 18.45 M	82Se STABLE	83Se 22.3 M	84Se 3.10 M	85Se 31.7 S	86Se 15.3 S
9	.31%	7.03%	25.77%	β-: 100.00%	49.61% 2β-	β-: 100.00%	0.73%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
75 ST	5As TABLE	76As 1.0942 D	77As 38.83 H	78As 90.7 M	neu	itrons		82As 19.1 S	N=50	84As 3.24 S	85As 2.021 S
1	.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β- 20.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 0.28%	β-: 100.00% β-n: 59.40%

83Nb 4.1 S	84Nb 9.5 S	85Nb 20.9 S	86ND 56 S	87Nb 3.75 M	88Nb	89Nb	90Nb 14.60 H	91Nb 6.8E+2 Y	92Nb 3.47E+7 Y	93Nb STABLE
€: 100.00%	е: 100.00% ер	e: 100.00%	¢	€: 100.00%	3(00	€: 100.00%	e: 100.00%	ε: 100.00%β+ < 0.05%	100% 7.7
82Zr 32 S	832r 41.6.5	84Zr 25.9 M	85Zr 7 86 M	86Zr 16.5 H	N	IK	89Zr 78.41 H	90Zr STABLE	91Zr STABLE	92Zr STABLE
€: 100.00%	$N_n \cdot <$	$N_A \sigma v >$	$\geq_{\rm in} = \frac{\pi_A}{\tau_{\rm i}}$	ε: 100.00%	e: 100.00%	€: 100.00%	€: 100.00%	6.4	7.1	6.8
817 76 <mark>N., =</mark>	007	NA	í	cm^{-31}	86Y 14.74 H	87¥ 79.8 H	88¥ 106.626 D	89Y STABLE	90Y 64.053 H	91¥ 58.51 D
e: 10	$< N_A$	$\sigma \mathrm{v} >_{\mathrm{in}} \cdot$	τ_{i} $''$		e: 100.00%	e: 100.00%	€: 100.00%	6.6	β-: 100.00%	β-: 100.00%
80Sr 106.3 M	81Sr 22.3 M	82\$r 25.55 D	83Sr 32.41 H	84Sr STABLE	85Sr 64.84 D	86Sr STABLE	87Sr STABLE	88Sr STABLE	898r 50.57 D	90Sr 28.90 Y
€: 100.00%	€: 100.00%	€: 100.00%	e: 100.00%	0.56%	e: 100.00%	7.1	7.3	5.9	β-: 100.00%	β-: 100.00%
79Rb 22.9 M	80Rb 33.4 S	81Rb 4.570 H	82Rb 1.273 M	83Rb 86.2 D	84Rb 33.1 D	85Rb STABLE	86Rb 18.642 D	87Rb 4.81E+10 Y	88Rb 17.773 M	89Rb 15.15 M
e: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	e: 100.00%	ε: 96.20% β-: 3.80%	7.6	N _n = 10 ¹⁰ 7.5 _{3%}	β-: <mark>6.3</mark> 0%	β-: 100.00%	β-: 100.00%
78Kr ≥2.3E+20 Y	79Kr 35.04 H	80Kr STABLE	81Kr 2.29E+5 Y	82Kr STABLE	83Kr STABLE	84Kr STABLE	85Kr 3916.8 D	86Kr STABLE	87Kr 76.3 M	88Kr 2.84 H
0.35% 2e	ε: 100.00%	2.28%	e: 100.00%	7.0	7.7	6.8	N _n =2.2 10 ⁸ 6.9	5.3	β-: 100.00%	β-: 100.00%
77Br 57.036 H	78Br 6.46 M	79Br STABLE	80Br 17.68 M	81Br STABLE	82Br 35.282 H	83Br	84Br	85Br	86Br 55.1 S	87Br 55.65 S
€: 100.00%	ε≥ 99.99% β-≤ 0.01%	50.69%	β-: 91.70% ε: 8.30%	49.31% 7.6	β-: 100.00%	β		,	β-: 100.00%	β-: 100.00% β-n: 2.60%
76Se STABLE	77Se STABLE	78Se STABLE	79Se 2.95E+5 Y	80Se STABLE	81Se 18.45 M	82Se STABLE	83Se 22.3 M	84Se 3.10 M	85Se 31.7 S	86Se 15.3 S
9.37%	7.63%	23.11%	β-: 100.00%	49.61% 2β-	β-: 100.00%	8./3%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
75As STABLE	76As 1.0942 D	77As 38.83 H	78As 90.7 M	neu	itrons		82As 19.1 S	N=50	84As 3.24 S	85A <i>s</i> 2.021 S
100%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β- 20.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 0.28%	β-: 100.00% β-n: 59.40%

←			The	ermally Puls	sing stars -				>	<				Massiv	e Stars				
7.00	7.50	8.00	8.50	8.80	9.00	9.05	9.10	9.15	9.20	9.22	9.25	9.30	9.50	9.80	10.00	11.00	12.00	13.00	15.00
Ĩ									N.	C-ignitio	n								
						C	off-cente	r								cer	nter		
							2nd	-dup											
Start After He depl.	Start Before C ignition																		
End Before TP	d bre End After C burning																		
1		3rd-dup			l		LIR	CA		1									
						8	01	ich i	-										
													offic	Ne-ig	nition				tor
													011-0	Si-ig	nition			Cer	iter
													off-c	enter				cer	nter
co-wd	CONe WD	ONe- WD				ECSN								сс	SN				
				Figure	40. Sc	hematic	view o	f some	of the e	volution	ary prop	perties a	nd expe	cted	Limor	ngi+ 2	024 A	pJS 2	70,29

Convective envelope

H rich matter

He core

He core

He core

He core

He core