

Nuclei in the Cosmos School 2025

HIGH-ENERGY ASTROPHYSICS

Roland Diehl MPE Garching, Germany

NIC School 2025

Image Credit:NASA/Space Telescope Science Institute Roland Diehl

Nuclei in the Cosmos School 2025

HIGH-ENERGY ASTROPHYSICS

Roland Dieb

- MPE Garching, Germany
- Astrophysics at high energies
- Processes: radiation and particles
- Detectors for HE photons & particles
- Instruments and Missions
- Results in Nuclear Astrophysics
- other HE Astrophysics Results

Image Credit:NASA/Space Telescope Science Institute Roland Diehl • Introduction and Overview

Roland Diehl 3

(Thermal and) Non-Thermal Emission

non-thermal radiation is prominent in high-energy astronomy

Radiation Processes in High-Energy Astrophysics

Thermal Radiation

• Radiation from (Accelerated) Charges

- ✓ Bremsstrahlung
- \checkmark Synchrotron Radiation
- ✓ Curvature Radiation

• Electron - Photon Scattering

- ✓ (Thompson Scattering)
- ✓ Compton Scattering (inelastic)

• Transitions in QM Systems

✓ Atomic Transitions (partly-ionized atoms)

- ✓ Nuclear Transitions
- Positron Annihilation
- Pion Decay
- ...

Emission and Absorption Processes

Emission

Thermal emission Recombination Line de-excitation e-/e+ Annihilation Bremsstrahlung Inverse Compton Scattering Synchrotron Emission Nuclear De-Excitation Radioactive Decay Pion Decay

Absorption

Bolometric absorption Photoionization Line excitations (atomic; nuclear) e-/e+ pair production Scattering (electrons; ions; nuclei) Compton scattering Synchrotron self absorption

Inverse Beta decay, Electron capture

➤ radiation processes operate in both directions: energy transfers between d.o.f.'s

. . .

. . .

Basic Radiation Mechanisms in Astrophysics

- \rightarrow apparently, we need to look at
- forms of matter (\rightarrow complex systems; intrinsic energies)
- particle and field types, and their interactions and energies

Forms of cosmic matter

>(elementary) particles

☞electrons ☞nucleons (p,n) ☞neutrinos, ...

>compound particles

☞atomic nuclei ☞atoms, molecules ☞dust

≻plasma

relementary particles and atomic nuclei

matter in complex larger objects

meteorites, comets, planetsstars, stellar groups, galaxies

➢obscure / exotic

black holes
 dark matter
 quark stars, other exotica

Characteristics of cosmic matter

Density

- ✓ Interstellar medium
- ✓ Stars
- ✓ Compact stars

➢Phase

- ✓ plasma, gas
 ✓ (liquid
 ✓ solid, crystalised
- ✓ degenerate
- ≻Temperature
 - ✓ cold
 - ✓ hot

≻Energy

✓ non-relativistic✓ relativistic

~collisionless, waves & fields control couplings; 10⁻²⁵ g cm⁻³ collision-coupled multi-component matter; 10³ g cm⁻³ extremes: new phases, degeneracy, ...; 10¹⁴ g cm⁻³

independent particles of different types mutually-attracted but freely-moving particles) *particles bound in rigid structures; structural d.o.f. particles compressed into quantum-limited volume;*

particle energy small wrt. available energy levels, only thermal energy particle energy much larger than available energy level spacings; excitations

particle kinetic energy much below its rest-mass energy particle kinetic energy much larger than its rest-mass energy

Beyond Images: Characterising radiation from a Source

Intensity and its spectral distribution

- ✓ Black-body (Planckian; thermal) distributions
- ✓ Power-law distributions with cut-offs (low-energy, high-energy)
- ✓ Mixed components with breaks (linear, power law, Planckian,...)
- ✓ Spectral lines (Gaussian, Lorentzian; narrow, broadened)

• Time of arrival

- \checkmark photon propagation differs for different energies \rightarrow dispersion
- \checkmark light curves, rise and fall times
- ✓ periodicities, power spectra, oscillations
- Polarisation
 - ✓ Stokes parameters
- Angular distribution
 - \checkmark Dipole and multipole radiation
 - \checkmark Forward beaming, backscatter

Energy Scales

Rest-Mass Energy

✓ Energy Equivalent of Mass of Matter Constituents

➤Thermal Energy

- ✓ Kinetic-Energy Distribution with Mean
- Gravitational-Binding Energy
 - ✓ Gravitational Potential Energy (N particles)
- Atomic-Binding Energy
 - ✓ Electromagnetic Potential Energy (Coulomb Potential)
- Molecular-Binding Energy
 - ✓ Electromagnetic Energy (oscillations in potential well)
- Nuclear-Binding Energy
 - ✓ Nuclear Potential Energy (Nucleon Binding)

$E = mc^2$	$E_{tot} > mc^2 \Leftrightarrow relativistic$
$E = N \cdot m_i c^2$	$m_e c^2 \approx 0.5 [MeV] m_p c^2 \approx 1 [GeV]$
$\varepsilon \approx k_{B}T$	$k_B = 8.6132 \cdot 10^{-11} [MeV / K]$
$E_{grav} \approx \frac{G \cdot (Nm_i)^2}{R}$	$G = 6.6726 \cdot 10^{-8} [cm^3 g^{-1} s^{-2}]$ $E_{Grav,NS} \approx 200 \left[\frac{10km}{R} \right] \left[\frac{mc^2}{1GeV} \right] [MeV]$
$a_0 = \frac{\hbar^2}{m_e q^2} \qquad E_0$	$_{c} \approx \frac{m_{e} \cdot q^{4}}{2\hbar^{2}} \approx 13.6[eV]$
$E_{vib} \approx \left(\frac{m_e}{\mu}\right)^{\frac{V_2}{V_2}} \cdot E_C \approx 0.25 [eV$	$E_{rot} \approx \left(\frac{m_e}{\mu}\right) \cdot E_C \approx 10^{-2} [eV]$
$r_0 \approx 1 \mathrm{fm}$	$E_C \approx \frac{m_p \cdot q^2}{1 fm} \approx 1[MeV]$

Astronomy: a Multi-Messenger Enterprise

Astronomy: a Multi-Messenger Enterprise

Astronomical 'Windows'

• "New Astronomies" 1930+

Radio Astronomy >1930

UV & X-Ray Astronomy > 1970 (IUE, Uhuru)
 Gamma-Ray Astronomy >1970 (OSOIII,SASII)
 Infrared Astronomy >1980 (IRAS)
 TeV Astronomy >2000 (MAGIC, HESS)

• High-Energy Astronomy: > 100 eV ... TeV (range >10 decades!)

• Review/reminder of physical processes

Blackbody Radiation

Radiation from an accelerated charged particle (general case)

Evaluate the 'retarded' electric (scalar) and magnetic (vector) Potentials at observer... → Liénard,Wiecher ~1900 The information about the charge acceleration is transmitted as a pulse of electromagnetic radiation, with velocity c

t'=t-R/c

> The total radiation is approximated by the Larmor formula (1897)

- (p = dipole moment qr of charge q, a= **𝗨** = acceleration)
- The radiation pattern is of *dipolar form*, i.e. the power radiated varies as sin²O. There is no radiation along the acceleration direction
- The radiation is *polarized* with the electric field vector in the direction of the acceleration vector of the particle

Bremsstrahlung

Bremsstrahlung of Deflected Charge in Coulomb Fields of Nuclei in a Gas

Bremsstrahlung Cross Section

✓ High-energy e- on unshielded charge Ze -> 'cross section':

$$\sigma_{r} = 4Z^{2} \frac{e^{2}}{\hbar c} \left(\frac{e^{2}}{mc^{2}}\right)^{2} \frac{1}{\hbar \omega} \frac{1}{E_{i}^{2}} \left(\frac{E_{i}^{2} + E_{f}^{2} - \frac{2}{3}E_{i}E_{f}}{E_{i}^{2}}\right) \left[\ln\left(\frac{2E_{i}E_{f}}{mc^{2}\hbar \omega}\right) - \frac{1}{2}\right]$$

✓ In a plasma:

screening corrections

Gaunt factor (b_{max}/b_{min}) encodes properly-averaged collisional parameters

✓ Radiated Spectral Power:

$$P(v,v)dv = N_i v \frac{16Z^2 e^6}{3m^2 c^3 v^2} \int_{b_{\min}}^{b_{\max}} \frac{db}{b} \cdot dv = N_i v \frac{16Z^2 e^6}{3m^2 c^3 v^2} \cdot \ln\left(\frac{b_{\max}}{b_{\min}}\right) \cdot dv$$

see Bethe & Heitler (1964), Koch & Motz (1959)

$$\tan\frac{\Theta}{2} = \frac{Ze^2}{mv^2b}$$

Synchrotron Radiation

Fig. 3.2. A relativistic particle spiraling in a magnetic field emitting synchrotron radiation with the angular pattern as indicated.

Radiation Characteristics:

Power per solid angle:

 $\frac{dP}{d\Omega} = \frac{e^2 \dot{v}^2}{4\pi c^3} \frac{\sin^2 \vartheta}{(1 - \beta \cos \vartheta)^5}$

b=v/c, δ =angle v \leftarrow \rightarrow observer

Radiation Cone Opening Angle:

Radiation Spectrum of a Pulse Sweeping by an Observer: (e⁻ gyrating with orbit radius r) or expressed as

(with ψ pitch angle B-v) -> γ >10³ for X/ γ rays!

$$\alpha = \gamma^{-1} = \left[1 - \beta^2\right]^{\frac{1}{2}} = \frac{mc^2}{E} = 8.2 \cdot 10^{-7} E^{-1} rad$$

Particle in magnetic field **B**

 $\omega = eB/ymc = 1.8x10^7 B y^{-1}$

 \rightarrow Gyration

Gyration frequency:

with Lorentz factor y

=14.4 B/E [Hz]

 \rightarrow Acceleration perpendicular to B

$$2\pi v_{crit} = \frac{c\beta}{\rho} \approx 6.10^{28} \frac{E^3}{\rho} Hz$$

$$v_{crit} \approx 6.3 \cdot 10^{18} \sin \psi \frac{B}{\mu G} \frac{E^2}{GeV^2} Hz$$

Total Power of Synchrotron Radiation (a||v):

$$P_{\parallel} = \frac{2e^2}{3c^3} \dot{v}^2 \gamma$$

Compton Scattering

 $-\cos\theta$

 \succ E field of photon accelerates the charged electron \rightarrow photon emission

Momentum and energy transfer to e-

Compton Cross Section: $\sigma_c = \sigma_{KN} = \frac{3}{8}\sigma_T \frac{1}{\varepsilon}$ $\ln(2\varepsilon + 1)$

✓ Arthur Holly Compton (1892-1962), 1927 Nobel Prize (particle concept of em) ✓ Klein Nishina Cross Section, from Q.M. Corrections

ħα me

Inverse Compton Scattering

REST FRAME

✓ E_{γ} = γ^2 mc² for high (relativistic) energies

➤Total Power

(= Energy Loss of e⁻)

 \checkmark

 $-\frac{dE}{dx} = \int \sigma_c(E_\gamma, h\nu) N(h\nu) E_\gamma dE$

$$\sigma_c = \sigma_{Th}$$

- ✓ low-energy situation: Thompson scattering
- ✓ High energy (γhν>>mc²):
 Klein-Nishina, ~1/hν

$$\sigma_{c} \approx \frac{3}{8} \sigma_{Th} \left(\frac{mc^{2}}{\gamma hv} \right) \left[\ln \left(\frac{2\gamma hv}{mc^{2}} \right) + \frac{1}{2} \right]$$

✓ Energy spectrum ~ $h\nu$ N($h\nu$) ✓ Max Energy ~ 4 γ^2 E_{photons}

Figure 3. Coronal equilibrium spectra (arbitrary logarithmic intensity) of plasmas with solar abundances, in the energy bands (keV) containing Fe L- and Fe K-emission, as viewed with detectors having FWHM resolutions of 1, 10 and 100 eV (upper, middle and lower trace of each panel).

23

Atomic Nuclei: Potential Well for Nucleons

 $\hbar^3 = V_{state}$

► Nucleons ✓ Neutrons ✓ Protons ► Nuclear Radius ✓ From Rutherford Scattering ->~1 fm ► Nuclear Density ✓~10¹³ g cm⁻³ > Number of Nucleonic Levels: ✓ From above, plus Phase Space Considerations: $n = \int \frac{4\pi p^2}{h^3} V \cdot dp = \frac{p^3 V}{6\pi^2 \hbar^3}$ ->

⁴⁴Ti Decay and Transitions between Nuclear Energy Levels

Positron Annihilation

- Annihilations when merging with its anti-particle: e-
- → Directly, or forming an "atom" with e⁻ and e⁺ → Positronium
 > Relative Spin Orientations →
 ✓ Singlet State ¹S₀/ Para-Positronium
 ✓ Triplet State ³S₁/ Ortho-Positronium
 > 2-Photon Annihilation Only for Para-Ps:

2 γ at ~511 keV

➤ 3-Photon Annihilation from Ortho-Ps: s=1 to s=1

➤Annihilation Spectrum:

✓ Line/Continuum γ Ratio 1.45 ✓ 2.75 Annihilation γ 's per e⁺

Annihilation rate versus Temperature

NIC School 2025

Roland Diehl 26

Pion Decay

• Pion production occurs in hadronic collisions at high energies

|--|

π^0

$$I^{G}(J^{PC}) = 1^{-}(0^{-+})$$

 $\begin{array}{ll} \text{Mass } m = 134.9768 \pm 0.0005 \ \text{MeV} & (\text{S} = 1.1) \\ m_{\pi^{\pm}} - m_{\pi^{\text{C}}} = 4.5936 \pm 0.0005 \ \text{MeV} \\ \text{Mean life } \tau = (8.43 \pm 0.13) \times 10^{-17} \ \text{s} & (\text{S} = 1.2) \\ \end{array}$

$e^{-\nu_{\epsilon}\gamma}$	$[c]$ (7.39 ± 0.05) × 10 ⁻⁷	70
$e^+ \nu_e \pi^0$	(1.036 ± 0.006)) × 10 ⁻⁸	4
$e^+ \nu_e e^+ e^-$	(3.2 ±0.5) × 10 ⁻⁹	70
0		Scale factor/	p
T ^u DECAY MODES	Fraction (Г _ј /Г)	Confidence level	(MeV/c)
2γ	(98.823±0.034) 9	∕₀ S=1.5	67
$e^+e^-\gamma$	(1.174±0.035) §	√₀ S=1.5	67
γ positronium	(1.82 ±0.29)>	< 10 ^{—9}	67
e+e+e-e-	(3.34 ± 0.16) >	< 10 ^{—5}	67
$e^{+}e^{-}$	(6.46 ±0.33)	< 10 ^{—8}	67
	. ,		

Fraction (Γ_i/Γ)

[b] (99.98770 ± 0.00004) %

[c] (2.00 ± 0.25) $\times 10^{-4}$

[b] (1.230 \pm 0.004) imes 10⁻⁴

Confidence level (MeV/c)

30

30

70

Creation of Gamma-Ray Photons of ~67 MeV (in restframe of decay)

i.e. Doppler-broadened with cosmic-ray energies

Čerenkov radiation

- charged particle motion with v>c/n=c_{local_medium}
 → Čerenkov radiation
- photon flash emitted at angle θ wrt motion

 $\cos\Theta = \frac{c}{nv}$

• Energy emitted (per band):

 $\frac{dU(\omega)}{dx} = \frac{\omega e^2}{4\pi\varepsilon_0 c^3} \left(1 - \frac{c^2}{n^2 v^2}\right)$

→ determine radiation characteristics from integrating over path in the atmosphere

• HE-Processes beyond electromagnetic radiation

Cosmic Rays – rays of relativistic particles

Ρ	Proton	e	Electron
п	Neutron	μ	Muon
π	Pion	γ	Photon

Entering Earth Atmosphere, Cosmic Rays produce an avalanche of Secondaries, an "Air Shower"

Air showers consist of 3 components:

hadronic component

primary proton scatters off atmospheric nuclei, thereby producing protons, neutrons, pions, kaons, ...

myonic component

the decay of charged pions and kaons generates myons

electromagnetic component

the decay of neutral pions generates γ 's, which initiate electromagnetic cascade through pair creation and bremsstrahlung

Cosmic Particle-Acceleration Sites

• No electrostatic accelerators because of short-circuiting plasma currents

• Shocks provide a "Fermi accelerator"

Magnetic-field scatterings confine particle to bounce between regions before/behind shock

➢Need to Confine CRs within their Acceleration Regions

✓ Larmor Radius < Source Extent $\rightarrow E_{max} \propto \beta \cdot ZeB \cdot L$

NIC School 2025

Neutrinos from Cosmic Sources

• Weak Interaction Particle $\begin{array}{c} n \rightarrow p + e^- + \bar{\nu}_e \\ \pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu}) \end{array}$

Accretion: Modeling Conversion from Gravitational Energy to Photons

- Potential energy of infalling matter \rightarrow Heating
- Angular momentum → Accretion Disk
- Virial Theorem:

1/2 of Energy \rightarrow Radiation, 1/2 \rightarrow Heat of Gas

$$L = \frac{1}{2}\dot{U} = \frac{GM_{\bullet}\dot{M}_{\bullet}}{2r} = 2\pi r^2 \sigma T^4 \implies T = \left(\frac{GM_{\bullet}\dot{M}_{\bullet}}{4\pi\sigma r^3}\right)^{1/4}$$

• Temperature Distribution

$$T(r) \approx \left[\frac{3GM_{\bullet}\dot{M}_{\bullet}}{8\pi\sigma R_{\rm S}^3}\right]^{1/4} \left(\frac{r}{R_{\rm S}}\right)^{-3/4} = 6.3 \times 10^5 \,{\rm K} \,\left(\frac{\dot{M}_{\bullet}}{\dot{M}_{\rm E}}\right)^{1/4} M_8^{-1/4} \left(\frac{r}{R_{\rm S}}\right)^{-3/4}$$

log F_v

• 2 Regions:

Radiation Pressure > Gas Pressure inner Region; Torus-like Gas Pressure > Radiation pressure

optically-thin, geometrically-thick Disk

• Innermost radius = $6 R_g = 6 GM/c^2$

hakura&Sunyaev 1973)

 $v^{1/3}$

kTout /h

 $v^3 \exp(-hv/kT)$

kT_{in} /h

$$E_{Grav,NS} \approx 200 \left[\frac{10 km}{R} \right] \left[\frac{mc^2}{1 GeV} \right] [MeV]$$

Gravitational Waves

• Photon Propagation: Gravity Effects

Gravitational Redshift Gravitational Lensing

• Dynamical Space Distortions \rightarrow Gravitational Waves

illustration, though largely exaggerated

NIC School 2025

Roland Diehl 35