

Nuclei in the Cosmos School 2025

BEAMS, TARGETS & DETECTORS Part II

Fairouz Hammache IJCLab Orsay, France

NASA/Space Telescope Science Institute

Layout of the lectures

Lecture I

I. Brief Introduction

II. Beams for Nuclear astrophysics

- 1. Requirements
- 2. How to accelerate an ion
 - Accelerator types & purpose of each type
- 3. Radioactive beams
 - production methods
 - examples

III. Targets for nuclear astrophysics

- 1. Requirements
- 2. Solid targets
 - Production
 - Characterization
- 3. Gas targets

<u>Lecture II</u>

IV. Detectors for nuclear astrophysics

- 1. Some general characteristics of detectors
- 2. Requirements
- 3. Detection systems for charged particles

 i) Silicons detectors
 ii) Magnetic spectrometers
 iii) Gas detectors
 iv) Active Gas targets

 3. Detection systems for charged particles

 Functioning principle
 What is measured
 Examples
- 4. Detection systems for gamma-rays
- 5. Recoils Separators for heavy recoils detection

Gas targets

Gas targets are important in nuclear astrophysics, especially for reactions involving gaseous elements (like He, Ne) and when using inverse kinematics.

Windowed Gas Cells: Chambers filled with gas, separated from the vacuum using thin entrance and exit windows made of thin foils (e.g., Havar, Mylar, Kapton, or titanium), usually a few micrometers thick.

Typical pressures of a few mbar to several hundred mbar.

- 🙂 Simple design.
- Easy to control gas pressure and target thickness.
- Window degradation under heavy beam irradiation.
- Energy loss and straggling in window foils
- Background reactions from the windows

Windowless Gas Targets: Use differential pumping systems to isolate a high-pressure gas region from the vacuum beamline

- gas is injected as a narrow jet into the beamline.
- Extended gas cells longer regions with gas $% \left({{{\mathbf{F}}_{{\mathbf{F}}}} \right)$
- © No energy loss from window foils.
- Require complex differential pumping.
- Beam energy loss and spread in gas must be carefully characterized.
- Target thickness may vary along the beam path.

Recirculating Gas Systems: used especially for expensive isotopically enriched gases like ¹⁵N,²²Ne,³He, etc. The Gas is continuously recirculated through the target and purification system. Used with windowless or closed gas cells.

- Saves rare/expensive gas.
- Maintains constant pressure
- Adds complexity (seals, valves, purifiers).

Targets for measurements in inverse kinematics when using radioactive beams

H targets for (p,γ) & (p,α) studies or D for (d,p), (d,n) transfer reactions

Solid CH₂ or CD₂ target: - easy to handle - dx ~ 50 - 1000 μ g/cm²

But: non uniformity, carbon and deuterium contaminations

<u>Cryogenic solid targets</u>: - no carbon contamination - more at/cm² for similar energy loss But: not easy to handle,

⁴He targets for (α, γ) studies & ³He targets for (³He,d) transfer reactions:

Window-confined gas target:

- high concentration (depending on pressure)

But: Background induced by reactions on entrance and exit windows

Solid implanted target:

- easy to handle

But: - low concentration $(10^{15} - 10^{17} \text{ at/cm}^2)$ & Sputtering (He loss under irradiation)

<u>Cryogenic solid or liquid targets</u> - more at/cm² for similar energy loss than in gas **But:** sophisticated cryogenics system (liquid helium supply, temperature control...), background from the windows

Windowless ultra jet gas target:

- -high concentration 10^{19} at/cm² (e.g JENSA)
- no contamination, no degradation

But: need of differential-pumping system with high pumping speed

Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target

Recirculating gas system

First direct measurement of cross-section using JENSA target, ORRUBA Si detectors & low energy & reaccelerated radioactive beam @ NSCL: ³⁴Ar(α,p)³⁷K for X-ray burst studies

Beam intensity \sim (2-8) \times 10³ pps

Detectors for Nuclear Astrophysics

Energy resolution FWHM

R = FWHM (Full With Half Maximum)/E= 2.35σ /E= Δ E/E

→ Two peaks are considered as resolved when d > FWHM→ Example: For a γ-ray with E=1 MeV NaI detector : R= 8-9% HpGe detector: R=0.1%

Response Function : Pulse height and shape observed from the detector when it is bombarded by a given radiation at a given energy

➤ Time Response: Time between the arrival of the radiation and the formation of an output signal
 GOOD timing: signal quickly formed in a sharp pulse almost vertical rising flank ⇒ a precise moment in time can be marked by the signal → important for Time-Of-Flight measurements

W. R Leo, Techniques for nuclear & particle physics

Some general characteristics of detectors

Detection requirements for Nuclear Astrophysics

In case of direct measurements with stable beams:

low cross sections \rightarrow low yields \rightarrow poor signal-to-noise ratio

⇒ Requirements: Improving the signal-to-noise ratio

⇒ High γ -ray, charged particle & neutron detection efficiency ⇒ Reducing background (noise) → perform coincidence measurements (LENA, STELLA,...), recoil mass separator (ERNA, DRAGON..., and/or go underground (LUNA)

In case of indirect measurements (e.g. transfer reactions) with stable beams:

 \Rightarrow **Requirements:** Energy resolution to disentangle the various populated states of interest

 \Rightarrow magnetic spectrometers

In case of direct or indirect measurements with radioactive beams: low beam intensities ($\leq 10^6$ pps)

 \Rightarrow **Requirements:** Increasing statistics while maintaining good energy resolution

 \Rightarrow large solid angle & efficient particle & γ -ray detection setups

→ for charged particles: - Large area, highly segmented silicon strip detector arrays: MUST2, ORRUBA, SHARC

- Solenoidal Spectrometers with ancilliaries (silicons) : **HELIOS** (ANL), ISS (Isolde)

- Active targets : MUSIC, ACTAR-TPC, ANASEN, AT-TPC

 \rightarrow for γ -rays: Need 4π coverage: **GRETINA/GRETA, AGATA**

→ for heavy recoils : recoil mass separators (DRAGON, SECAR,...)

Charged particles detection:

- Significant number of charge carriers are generated as a result of ionizing radiation. (3.6 eV/pair)
 => good energy resolution (< 1%)
- Widely used in nuclear physics for :
 - Particle identification
 - $\rightarrow \Delta E$ -E technique, E-ToF, Pulse Shape Analysis PSA
 - Energy measurement
 - Position measurement (e.g strip detectors)
- The energy loss of a charged particle through matter is given by the well-known Bethe-Bloch equation (for the stopping power):

$$\left\langle -\frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Fon non relativistic cases:
$$\left\langle -\frac{dE}{dx} \right\rangle \sim \frac{mz^2}{E}$$

The most important ingredients are: Z atomic number of absorber A atomic mass of absorber z charge number of incident particle m atomic mass of incident particle E ~ kinetic energy

Silicon detectors

Charged particles detection:

ΔE-E particle identification technique

• Two detection layers are required; particles must pass through the first layer and be stopped in the second

By plotting the energy loss (ΔE) measured in the first detection layer against the residual energy (E) measured in the second layer

→ Identification in charge & mass of the detected particles

E-ToF (Time of Flight) id technique

- Can be performed with a single detection layer
- For particles that stop within the detector, the measured energy $E = mv^2/2 =>$ E-ToF correlation is sensitive to the particle's mass.
- Achieving precise ToF measurement requires a long flight path

First layer: **DSSD** (double sided strip detector) (300 μ m, 128 strips in X & Y) Second layer : **SiLi** (4.5 mm)

→ Study of 60 Fe(n, γ) 61 Fe reaction via d(60 Fe,p) 61 Fe transfer reaction Giron et al, PRC2017

Silicon detectors:

- Particles with different Z & A induce different signal shapes in the detector => particle identification is obtained by correlating the deposited energy with one of the pulse shape parameter- such as the signal rise time, decay time or the amplitude of the current signal Imax)
- Will be used in the next generation silicon detector array GRIT (Granularity, Resolution, Identification, Transparency) for particle identification

- 2 rings of trapezoidal telescopess in the forward (1.5 mm thick DSSSD, 128 strips in X & Y) and backward direction (500 um thick, 32 strips in X & Y)
- 1 ring of square telescopes at 90 degrees

Highly Segmented Silicon detectors

- Useful for reaction studies with radioactive beams (low beam intensities) \geq
- Measurement of energy & ANGLE of the emitted particles in one experimental setting

Eg: transfer reaction ${}^{37}Ca + p \rightarrow d + {}^{36}Ca$; the detected particle is the deuteron

DSSD (300 µm, 128 strips in X & Y)

gs

20

 $\begin{array}{c} 40 & 60 \\ \theta_{cm} \ [deg] \end{array}$

al PRC2022

60

Silicon detectors in Solenoidal spectrometers:

HELIOS @ANL

Charged particles detection: Magnetic spectrometers for indirect studies (e.g. transfer reactions)

• From the transfer reaction $\mathbf{a}(=\mathbf{x}+\mathbf{b})+\mathbf{A} \longrightarrow \mathbf{C}^*(\mathbf{x}+\mathbf{A})+\mathbf{b}$, we can have access to important spectroscopic parameters (Ex, $\Gamma_{c,\gamma}$, ...) to calculate the reaction of interest $\mathbf{x}+\mathbf{A} \longrightarrow \mathbf{C}^* \underbrace{\overset{\mathbf{C}+\gamma}{\overset{\mathbf{C}+\gamma}{\mathbf{B}+\mathbf{c}}}_{\mathbf{B}+\mathbf{c}} \underbrace{(\mathbf{c}=\mathbf{p},\mathbf{n},\alpha,...)}_{\mathbf{B}+\mathbf{c}}$ (See Richard's lecture)

What do we measure by detecting b?

 $E_b, \theta_b \rightarrow \text{Excitation Level energies of } C^*: E_x \text{ (kinematics)}$

 $\text{Yield}_{b}(\theta) \rightarrow \text{Differential cross-sections of each state: } d\sigma/d\Omega$

- Particle **b** can be detected in **silicon detectors or** in a focal plane of a **magnetic spectrometer**.
- BUT: Better energy resolution (< 0.1%) with magnetic spectrometers</p>

Charged particles detection:

- Basic principle: gas ionization from radiation interaction;
 - electric signal originated by ion-electron pairs collected through an electric field
- **Working regimes**: Ionisation chambers, Proportional counters, Geiger-Müller
- Ionization chambers: the simplest gas detector

E = Cst

General constituents

- Container filled with gas
- Two isolated electrodes with opposite charge
- High Voltage

Choice of gas: Propane (C3H8) or **Ar** (more dense) to increase ionzation probability **Detection efficiency:** ~ 100% for charged particles

Signal outputs : small, need amplification

Proportional Counters:

- → In a high-field region near the wire, electrons gain enough energy to cause secondary ionizations ⇒ Avalanche Formation
- \Rightarrow signal output: High Pulse height \propto energy of the original ionization
- \rightarrow The applied V is high enough to create amplification via avalanches, but not so high as to cause continuous discharge (which would enter the Geiger-Müller region). Anode wire (+ ve)

Avalanches

gas detectors (the oldest detectors)

W. R Leo, Techniques for nuclear & particle physics

Gas detectors :

Position sensitive proportional gas counter *a* **Split-Pole (Orsay)**

Position measurement

- The charge avalanche near the anode wires induces a signal on a single cathode strip.
- Cathode strips are connected to a delay line
- ∆T between signal arrivals at both ends of the delay line is
 measured using a TAC (Time-to-Amplitude Converter)

 → Position of the particle on the focal plane ⇒ magnetic rigidity Bp

Energy loss measurement

- > The central anode wire works as a conventional proportional counter.
- \blacktriangleright Provides a measure of energy loss ΔE

Charged particles detection:

Active Gas targets

- \succ The gas acts as both the target material and the detection medium.
- > The key to their operation lies in tracking charged particles as they move through the gas via the ionization of the latter.
- Can reconstruct the entire reaction kinematics inside the gas volume (Time Projection Chamber (TPC)).
- Great for low-yield or exotic beam reactions
- Adjustable pressure for tuning thickness
- > Often used for inverse kinematics with radioactive beams. Examples: MUSIC, ACTAR TPC@GANIL, AT-TPC at NSCL/FRIB.

Functioning principle: It is all about ionization & drift

When a charged particle (from the beam or a reaction product) moves through the gas, it ionizes gas atoms along its path

- \rightarrow The particle creates free electrons and positive ions along its trajectory.
- → An applied electric field causes the free electrons to drift toward a readout plane (e.g., a pad array or wires) over microseconds.
- →The drifting electrons are amplified (using e.g., Gas Electron Multipliers [GEMs], Micromegas, or multi-wire proportional chambers) and then recorded, providing a 3D reconstruction of the particle track (TPC).

Challenges: Complex data analysis and reconstruction (TPC) & limited rate capabilities (10³-10⁴ pps).

Active targets example:

Multi-Sampling Ionization Chamber (MUSIC) @ ANL

- > For charged particle-induced reactions studies with radioactive ion beams & stable beams at low to intermediate energies.
- ➤ A large ionization chamber filled with a low-Z gas like helium or hydrogen.
- Unlike TPCs (which track full 3D particle paths), MUSIC detector is better at measuring energy loss (dE/dx) across multiple regions (sampling layers) as the beam or recoil moves through the gas.

Parallel Plate Avalanche Counter (PPAC)

- \rightarrow Beam trackers (timing, filled C_4H_{10}) Si detector
- \rightarrow Calibration of the beam energy loss
- \rightarrow Coincidence recoil light particle

- Reaction vertex position and particle identification
- ➢ Used extensively at ATLAS and CARIBU facilities.
- Often used for (α, n), (α,p), (α, γ) key astrophysics reactions & elastic scattering studies.
- ▶ Efficient for low-intensity beams (~ 10^3 pps) → ideal for rare isotopes.

MUSIC:

- \rightarrow Have impact on ²⁶Al nucleosynthesis in massive stars
- Direct measurement of ²³Na+α reactions in MUSIC @ two ²³Na beam incident energies: 51.5 & 57.4 MeV, Pressure= 403, 395 Torr
- Detection of the heavy recoils
- Two methods to identify & quantify ${}^{23}Na+\alpha$ reactions: with Traces & PID

 \rightarrow Better separation of the three reactions is obtained by averaging the ΔE values over the 4 strips after the interaction in strip 4

M.L. Avila et al., NIM A 85, 63 (2017)

Active target example:

➢ Key feature: High granularity & 3D tracking capability
 → 128×128 pads collection plane

Measures :

- Particle tracks in 3D → position, direction ⇒ emission angle
- Energy loss $(dE/dx) \rightarrow$ useful for particle identification
- Interaction vertex → can determine where the reaction occurred

pads plane	TPC principle	time sampling
(signal collection)		of signal
2D digitization	$z \Leftrightarrow t$	3D digitization

 $\Delta \mathbf{E}(\mathbf{x},\mathbf{y},z) \iff \Delta \mathbf{E}[\mathbf{x}_{\mathbf{i}},\mathbf{y}_{\mathbf{j}}](\mathbf{z}) \iff \Delta \mathbf{E}[\mathbf{x}_{\mathbf{i}},\mathbf{y}_{\mathbf{j}}](t) \iff \Delta \mathbf{E}[\mathbf{x}_{\mathbf{i}},\mathbf{y}_{\mathbf{j}},t_{\mathbf{k}}]$

- Excitation function measurement
- Angular distribution of reaction products

γ-rays detection

Used γ -rays detection setups:

Direct measurements with stable beams

E_{CM} [keV]

2187-

987

259

7297

E_x [keV]

9484

8284

7556

7276

 J^{π}

3/2+

3/2+

 $1/2^{+}$

7/2+

¹⁴N(p,γ)¹⁵O experiment @ LUNA 400 KV: CNO solar neutrino/globular cluster age

- \blacktriangleright Low energy protons: 70-230 keV $\rightarrow 4\pi$ BGO detector+gas target:
 - \rightarrow Measurement of total cross section; high E_{γ} efficiency $\epsilon \approx 70 \%$ (for $E_{\gamma}=7 \text{ MeV}$)
- \blacktriangleright High energy protons: 114 -367 keV \rightarrow HPGe detectors+ solid target
 - \rightarrow Measurement of all γ -transitions & branching ratios, high resolution

The new generation of γ-rays detection arrays

- Developped for reaction measurements at the radioactive beam facilities (FRIB, SPIRAL, SPES, FAIR,...)
- > The new generation: 4π array of segmented large-volume HPGe crystals

- Large Doppler broadening
- High background (natural & beam induced)
- High counting rates
- High γ-ray multiplicities

 $E_{T} = E_{1} + E_{2} + E_{3}$

- \rightarrow Track each gamma interaction through the crystal
- → Reconstruct the full energy by identifying and summing all the scattered interaction points ⇒ significantly improving the photopeak efficiency
- \rightarrow Reduce background and improve photopeak-to-total ratio
- → Provide **3D localization** for **precise Doppler correction**

Experiment with GRETINA @ FRIB:

Recoil separators

- > γ-ray detection can be combined with **recoil separators** to detect in coincidence the ejected recoils
- Well suited to measure radiative $(p,\gamma) \& (\alpha,\gamma)$ capture reactions in inverse kinematics (see Longland lecture)
- Recoil maximum angle:

$$\theta_{\text{max}} = \arctan \left[\frac{E_{\gamma}/c}{\sqrt{(2m_b E_b)}} \right] \implies \text{forward peaked}$$

Most of the beam does not interact

 \rightarrow recoil separator system needed to:

- Transport the recoil ions to a detection system (~100 % efficiency)
- Reject the incident beam

Requirements:

• high beam suppression factors (10¹⁰-10¹⁵)

Few examples of recoil separators:

- ERNA
- FMA (Fragment mass analyser) @ Argonne Nat. Lab.
- DRAGON @ TRIUMF

emission ($\theta \sim 1^{\circ}$)

• SECAR (FRIB)

DRAGON recoil spectrometer

BGO detectors

ISAC 1: RIBs / stable (OLIS)

- 0° spectrometer
- Time of flight: 21 m
- Beam rejection: $10^{12} 10^{15}$
- Angular acceptance: cone ±20 mrad

Target: windowless gas target

- Focal plane: MCP, DSSSD...
- BGO array: $\varepsilon = 40-80\%$

J.M. D'Auria et al., NPA 701, 625 (2002)

DRAGON:

ockenhuber et al PRC 2007

- ⁴⁴Ti produced in massive stars has been observed in supernovae remnant (Cas A)
- Direct measurement of resonance strength using thick target yield formalism ($\Gamma_{tot} <$ beam energy loss in the target) (See Richard's lecture)

$$\omega \gamma = \frac{2}{\lambda^2} \frac{m_t}{m_p + m_t} \left(\frac{dE}{dx}\right) Y$$

with dE/dx the stopping power of the projectile in the target

Selection of ⁴⁴Ti recoil events with the DRAGON

Strong resonance measurement @ $Ex \sim 9.2 \text{ MeV}$

SECAR recoil Separator for Capture Reactions *@* **FRIB**

> Dedicated for α and p capture reactions up to A=65 with proton rich nuclei (Classical Novae, X-ray bursts)

> Ions sources

- "The Physics and Technology of Ion Sources" Ian G. Brown
- > Neutrons beams

Detection systems for neutrons

- "Radiation Detection and Measurement" Glenn F. Knoll
- "Techniques for Nuclear and Particle Physics Experiments" William R. Leo
- Elements of Slow-Neutron Scattering: Basics, Techniques, and Applications ". Carpenter, J. M. & C. K. Loong.
- "Experimental Neutron Scattering "B. T. M. Willis and C. J. Carlile

> Storage Rings

- "RIB physics with storage rings" lecture of Yuri Litvinov https://ejc2015.sciencesconf.org/conference/ejc2015/pages/Skript_Litvinov.pdf
- "Low-energy nuclear reactions with stored ions: a new era of astrophysical experiments at heavy ion storage rings", J. Glorius, C. Bruno EPJA59,81 (2023)

THANK YOU FOR YOUR ATTENTION