

Search for high frequency gravitational waves in electromagnetic cavities

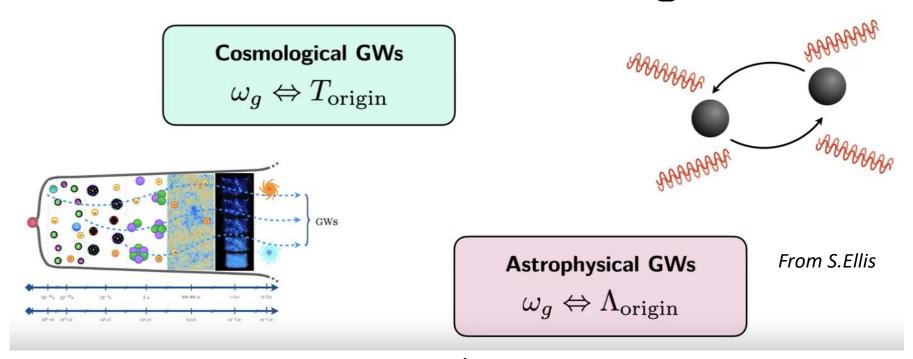
Jordan Gué

IFAE, Universitat Autonoma de Barcelona

In collaboration with T. Krokotsch (Universität Hamburg)

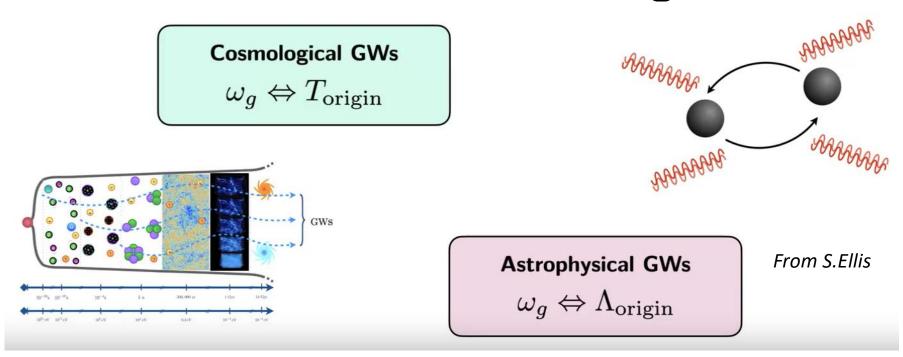
7th Barcelona Initiative for Gravitation

HFGW astro/cosmo signals



→ Higher GW frequency ⇔ Higher energy scale/Lower length scale we can probe

HFGW astro/cosmo signals



→ Higher GW frequency ⇔ Higher energy scale/Lower length scale we can probe

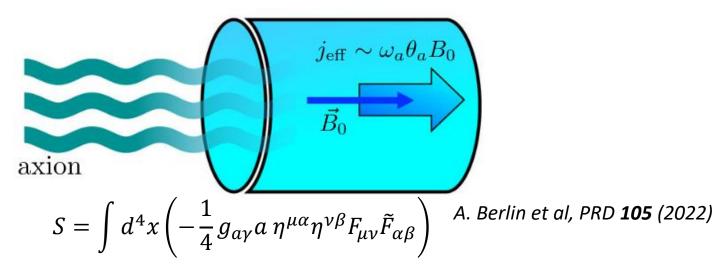
Some astrophysical sources:

- Mergers of PBH
- Mergers of ECO (boson stars,...)
- First order phase transition in neutron stars
- Superradiant boson clouds orbiting SMBH (monochromatic)

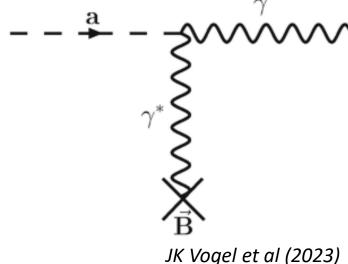
See N. Aggarwal et al, arXiv 2501.11723

→ Many of those sources are BSM

Analogies with axion dark matter



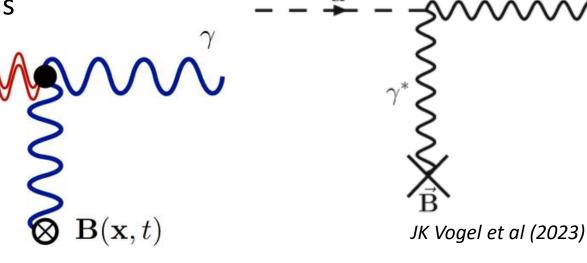
- Simple way of looking for axions coupled to EM is through inverse Primakoff effect
- → Use of microwave cavities to search for GHz axions



Analogies with axion dark matter

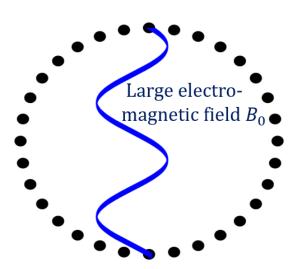
- Simple way of looking for axions coupled to EM is through inverse Primakoff effect
- → Use of microwave cavities to search for GHz axions

- GW analog: inverse Gertsenshtein effect
- → Same apparatus is sensitive to HFGW



Credit: S. Ellis

Expected GW signals

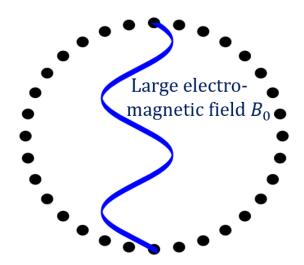


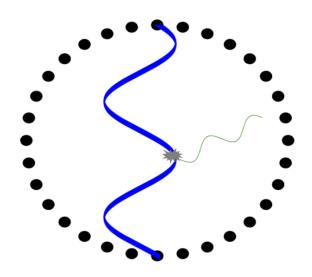
Expected GW signals

•
$$S = \int d^4x \sqrt{-g} \left(-\frac{1}{4} g^{\mu\alpha} g^{\nu\beta} F_{\mu\nu} F_{\alpha\beta} \right) \rightarrow \partial_{\nu} \delta F^{\mu\nu} \equiv j_{\rm eff}^{\mu} \propto \omega_g h B_0$$

→ GW couples to EM energy

A. Berlin et al, PRD **105** (2022) V. Domcke et al, PRL **129** (2022)





From T. Krokotsch

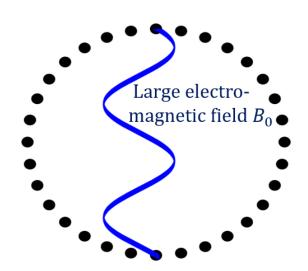
Expected GW signals

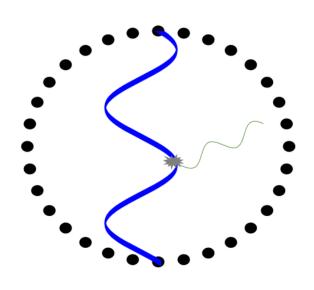
•
$$S = \int d^4x \sqrt{-g} \left(-\frac{1}{4} g^{\mu\alpha} g^{\nu\beta} F_{\mu\nu} F_{\alpha\beta} \right) \rightarrow \partial_{\nu} \delta F^{\mu\nu} \equiv j_{\rm eff}^{\mu} \propto \omega_g h B_0$$

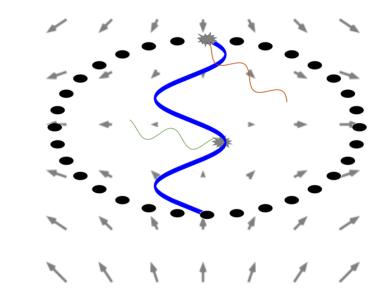
→ GW couples to EM energy

A. Berlin et al, PRD **105** (2022) V. Domcke et al, PRL **129** (2022)

- $\delta \ddot{x}_i \partial_j \sigma_{ij} = F_i^h$ M. Hudelist et al, CQG **40** (2023)
- → GW couples to mechanical energy



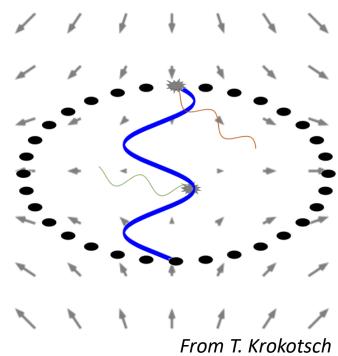




Observables

- $\partial_{\nu} \delta F^{\mu\nu} = j_{\text{eff}}^{\mu}$
- $\delta \ddot{x}_i \partial_j \sigma_{ij} = F_i^h$

In general, a dipole antenna measures \vec{E} at a point inside the cavity. How should we define \vec{E} ?



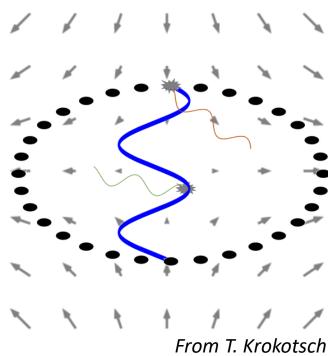
Observables

- $\partial_{\nu} \delta F^{\mu\nu} = j_{\text{eff}}^{\mu}$
- $\delta \ddot{x}_i \partial_i \sigma_{ij} = F_i^h$

In general, a dipole antenna measures \vec{E} at a point inside the cavity. How should we define \vec{E} ?

$$F'_{\mu\nu} = \frac{\partial x^{\alpha}}{\partial x'^{\mu}} \frac{\partial x^{\beta}}{\partial x'^{\nu}} F_{\alpha\beta}$$

- $\rightarrow F_{\alpha\beta}$ is covariant not invariant $\rightarrow E_i^{obs} \neq F_{i0}$. Instead,

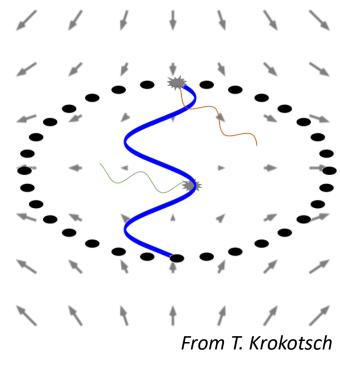


Observables

- $\partial_{\nu} \delta F^{\mu\nu} = j_{\text{eff}}^{\mu}$
- $\delta \ddot{x}_i \partial_i \sigma_{ii} = F_i^h$

In general, a dipole antenna measures \vec{E} at a point inside the cavity. How should we define \vec{E} ?

$$F'_{\mu\nu} = \frac{\partial x^{\alpha}}{\partial x'^{\mu}} \frac{\partial x^{\beta}}{\partial x'^{\nu}} F_{\alpha\beta}$$



- $\rightarrow F_{\alpha\beta}$ is covariant not invariant
- $\rightarrow E_i^{obs} \neq F_{i0}$. Instead,

$$E_{\underline{a}}^{obs} = F_{\mu\nu} u^{\nu} e_{\underline{a}}^{\mu} \qquad \qquad \text{Infinitesimal coord. system}$$

$$g_{\mu\nu} e_{\underline{a}}^{\mu} e_{\underline{b}}^{\nu} = \eta_{\underline{a}\underline{b}} \; ; e_{\underline{0}}^{\nu} = u^{\nu}$$

$$\Rightarrow \text{used to build a local Lorentz frame}$$
Observer's 4-velocity

Linearizing,
$$\delta E_{\underline{a}}^{obs} = \delta F_{\mu\nu} e_{\underline{a}}^{\mu} u^{\nu} + F_{\mu\nu} \delta e_{\underline{a}}^{\mu} u^{\nu} + F_{\mu\nu} e_{\underline{a}}^{\mu} \delta u^{\nu} + \delta x^{\rho} (\partial_{\rho} F_{\mu\nu}) e_{\underline{a}}^{\mu} u^{\nu}$$

 $\rightarrow \delta F_{a0}$ is **not** the observed field in curved spacetime

Frames

In general, to compute GW signals, choice between 2 frames: TT and PD

Frames

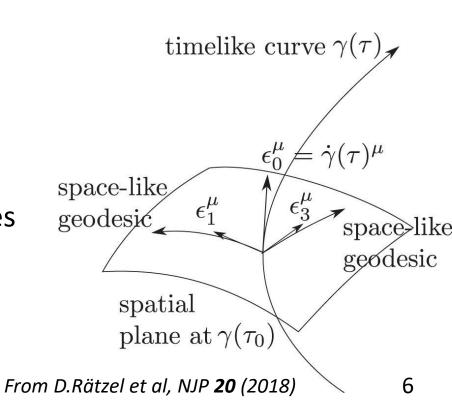
In general, to compute GW signals, choice between 2 frames: TT and PD

- Traceless-Transverse (TT) gauge : global coord. system set by freely falling test masses $h_{0\mu}=\partial_i h^{ij}=h=0$
- → Metric perturbation has a very simple form
- → Less intuitive for rigid bodies

Frames

In general, to compute GW signals, choice between 2 frames: TT and PD

- Traceless-Transverse (TT) gauge : global coord. system set by freely falling test masses $h_{0\mu}=\partial_i h^{ij}=h=0$
- → Metric perturbation has a very simple form
- → Less intuitive for rigid bodies
- Proper Detector (PD) Frame: coordinate system built by extending observer's tetrads into geodesics
- → More intuitive : GW acts as a Newtonian force on rigid bodies
- → Metric perturbation more involved



Which frame should we use?

Freely falling limit: $\omega_g \gg v_s/L$

- → High frequencies
- → Easier to describe in TT coordinates because no contribution from tidal forces

Which frame should we use?

Freely falling limit: $\omega_g \gg v_s/L$

- → High frequencies
- → Easier to describe in TT coordinates because no contribution from tidal forces

Rigid Limit: $\omega_g L \ll 1$, Long wavelength approximation

- → Low frequencies
- → Easier to describe in PD coordinates because contribution from tidal forces easy to implement

Which frame should we use?

Freely falling limit: $\omega_g \gg v_s/L$

- → High frequencies
- → Easier to describe in TT coordinates because no contribution from tidal forces

Rigid Limit: $\omega_g L \ll 1$, Long wavelength approximation

- → Low frequencies
- → Easier to describe in PD coordinates because contribution from tidal forces easy to implement

What about axion haloscopes?

In conductor, $v_{\rm S}\sim 10^{-5}$, i.e for a cavity with $L\sim 0.1$ m, and $\omega_{q}\sim {\rm GHz},~\omega_{q}L/v_{\rm S}\gg 1$

→ TT more convenient

$$\delta E_{\underline{a}}^{TT,FF} = \delta F_{a0} + F_{\mu 0} \delta e_{\underline{a}}^{\mu} + F_{av} \delta u^{v} + \delta x^{\rho} (\partial_{\rho} F_{a0}) = \delta F_{a0}$$

Signal power

 \rightarrow In TT, at high frequency, $\partial_{\nu}\delta F^{\mu\nu}=j^{\mu}_{\rm eff}$ solved by expanding δF_{a0} in cavity eigenmodes.

On resonance, the signal power in a mode \vec{E}_n is given by $P_{sig} = \frac{1}{2} Q \omega_g V \eta_g^2 h^2 \big| \vec{B} \big|^2$

$$P_{sig} = \frac{1}{2} Q \omega_g V \eta_g^2 h^2 |\vec{B}|^2$$

with the coupling

Adapted from A. Berlin et al, PRD 105 (2022)

$$\eta_g = \frac{\left| \int dV \, \vec{E}_n . \hat{J}_{\text{eff}} \right|}{\sqrt{V \int dV |\vec{E}_n|^2}}$$

Signal power

 \rightarrow In TT, at high frequency, $\partial_{\nu}\delta F^{\mu\nu}=j^{\mu}_{\rm eff}$ solved by expanding δF_{a0} in cavity eigenmodes.

On resonance, the signal power in a mode \vec{E}_n is given by $P_{sig} = \frac{1}{2} Q \omega_g V \eta_g^2 h^2 \big| \vec{B} \big|^2$

$$P_{sig} = \frac{1}{2} Q \omega_g V \eta_g^2 h^2 |\vec{B}|^2$$

with the coupling

$$\eta_g = \frac{\left| \int dV \, \vec{E}_n . \hat{j}_{\text{eff}} \right|}{\sqrt{V \int dV |\vec{E}_n|^2}}$$

The signal power from axion DM is $P_{sig}^a = \frac{1}{2}g_{a\gamma}^2Q\omega_aV\eta_a^2a^2\left|\vec{B}\right|^2$ with $\eta_a = \frac{|\text{J }avE_n.B|}{\sqrt{V\int dV\left|\vec{E}_n\right|^2}}$

 \rightarrow Up to $\mathcal{O}(0.1)$ couplings, we have $h=ag_{av}\sim 10^{-22}$

P. Sikivie, RMP 93 (2021)

Adapted from A. Berlin et al, PRD 105 (2022)

Gauge invariance

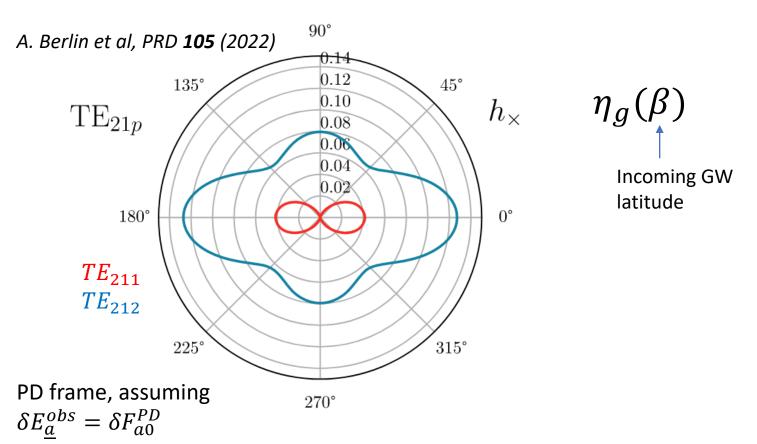
Considering $\omega_g \sim \mathcal{O}(\text{GHz})$, and background magnetostatic field, the observed electric field is

- In TT, $\delta E_{\underline{a}}^{obs} = \delta F_{a0}^{TT}$ and $\partial_{\nu} \delta F^{\mu\nu,TT} = j_{\mathrm{eff}}^{\mu,TT}$
- In PD, $\delta E_{\underline{a}}^{obs} = \delta F_{a0}^{PD} + F_{ai} \delta u_i^{PD}$ and $\partial_{\nu} \delta F^{\mu\nu,PD} = j_{\rm eff}^{\mu,PD}$

Gauge invariance

Considering $\omega_g \sim \mathcal{O}(\mathrm{GHz})$, and background magnetostatic field, the observed electric field is

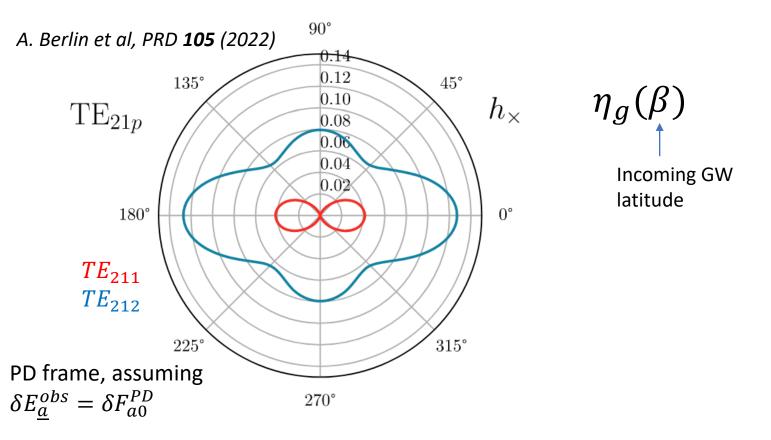
- In TT, $\delta E_{\underline{a}}^{obs} = \delta F_{a0}^{TT}$ and $\partial_{\nu} \delta F^{\mu\nu,TT} = j_{\mathrm{eff}}^{\mu,TT}$
- In PD, $\delta E_{\underline{a}}^{obs} = \delta F_{a0}^{PD} + F_{ai} \delta u_i^{PD}$ and $\partial_{\nu} \delta F^{\mu\nu,PD} = j_{\rm eff}^{\mu,PD}$



Gauge invariance

Considering $\omega_g \sim \mathcal{O}(\mathrm{GHz})$, and background magnetostatic field, the observed electric field is

- In TT, $\delta E_{\underline{a}}^{obs} = \delta F_{a0}^{TT}$ and $\partial_{\nu} \delta F^{\mu\nu,TT} = j_{\mathrm{eff}}^{\mu,TT}$
- In PD, $\delta E_{\underline{a}}^{obs} = \delta F_{a0}^{PD} + F_{ai} \delta u_i^{PD}$ and $\partial_{\nu} \delta F^{\mu\nu,PD} = j_{\rm eff}^{\mu,PD}$



T. Krokotsch, JG, in preparation

Mech. + EM (PD)

180°

Mech. (PD) EM (PD)

EM (TT)

90°

- EM signal $\delta E_{\underline{a}} = \delta F_{a0} + F_{\mu 0} \delta e^{\mu}_{\underline{a}} + F_{a\nu} \delta u^{\nu} + \delta x^{\rho} (\partial_{\rho} F_{a0})$ and $\partial_{\nu} \delta F^{\mu \nu} = j^{\mu}_{\rm eff}$
 - \rightarrow Easy eigenmode decomposition not possible for δF_{a0}
 - → Complete the basis with vector fields that do not vanish at the boundary

- EM signal $\delta E_{\underline{a}} = \delta F_{a0} + F_{\mu 0} \delta e^{\mu}_{\underline{a}} + F_{a\nu} \delta u^{\nu} + \delta x^{\rho} (\partial_{\rho} F_{a0})$ and $\partial_{\nu} \delta F^{\mu \nu} = j^{\mu}_{\rm eff}$
 - \rightarrow Easy eigenmode decomposition not possible for δF_{a0}
 - → Complete the basis with vector fields that do not vanish at the boundary
- Mechanical signal: perturbed BC as well
 - \rightarrow Easy eigenmode decomposition not possible for δx
 - → Complete the basis as well

- EM signal $\delta E_{\underline{a}} = \delta F_{a0} + F_{\mu 0} \delta e^{\mu}_{\underline{a}} + F_{a\nu} \delta u^{\nu} + \delta x^{\rho} (\partial_{\rho} F_{a0})$ and $\partial_{\nu} \delta F^{\mu \nu} = j^{\mu}_{\rm eff}$
 - \rightarrow Easy eigenmode decomposition not possible for δF_{a0}
 - → Complete the basis with vector fields that do not vanish at the boundary
- Mechanical signal: perturbed BC as well
 - \rightarrow Easy eigenmode decomposition not possible for δx
 - → Complete the basis as well
- Back-action effects : δx and δF_{a0} acts as external boundary source for the other

- EM signal $\delta E_{\underline{a}} = \delta F_{a0} + F_{\mu 0} \delta e^{\mu}_{\underline{a}} + F_{a\nu} \delta u^{\nu} + \delta x^{\rho} (\partial_{\rho} F_{a0})$ and $\partial_{\nu} \delta F^{\mu \nu} = j^{\mu}_{\rm eff}$
 - \rightarrow Easy eigenmode decomposition not possible for δF_{a0}
 - → Complete the basis with vector fields that do not vanish at the boundary
- Mechanical signal: perturbed BC as well
 - \rightarrow Easy eigenmode decomposition not possible for δx
 - → Complete the basis as well
- Back-action effects : δx and δF_{a0} acts as external boundary source for the other
- Heterodyne/Homodyne setups

Conclusion

• Microwave cavities are powerful probes of monochromatic HFGW ($h \sim 10^{-22}$)

GW couples to all types of energy,
 care must be taken to model all effects

- With current quantum technology, this is not enough to probe cosmological GW
- → Cross correlate multiple cavities : GravNet ERC
- → Use of Earth modulation for persistent signals
- → Quantum enhancement techniques (e.g. squeezing)

