Precision EW physics in the SMEFT

Ilaria Brivio

University of Zurich

Lectures 1 & 2 – theory

- SMEFT generalities
- SMEFT at d = 6: Warsaw basis
- EWSB, Field and couplings redefinitions
- Flavor structure
- EW input parameter schemes
- SMEFT corrections in propagators

Lectures 3 & 4 – phenomenology & more advanced aspects

- Basics of SMEFT predictions
- ▶ How is SMEFT probed in the EW sector? EWPO, diboson, Higgs etc
- Global fits: structure, status, examples
- The geometry of the scalar manifold

Material that will be provided

- List of useful references
- List of useful formulas
- Exercise sheets + solutions
- Slides

The Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

1	X^3	2	φ^6 and $\varphi^4 D^2$ 3		$\psi^2 \varphi^3$ 5
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_{p}u_{r}\widetilde{arphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	$Q_{d\varphi}$	$(arphi^\dagger arphi) (ar q_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
4	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$ 7
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu u} e_r) \tau^I \varphi W^I_{\mu u}$	$Q^{(1)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu u} e_r) \varphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{\varphi} G^A_{\mu u}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu \nu} T^A d_r) \varphi G^A_{\mu \nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu \nu} B^{\mu \nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu u} d_r) \tau^I \varphi W^I_{\mu u}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Ilaria Brivio (UZH)

The Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

	8a	$(\bar{L}L)(\bar{L}L)$	8b	$(\bar{R}R)(\bar{R}R)$		(<i>LL</i>)(<i>RR</i>) 8c
6	Qu	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
Ģ	$Q_{qq}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r)(ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$
Ģ	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$
Ģ	$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$
Ģ	$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{u}_s \gamma^\mu u_t)$
			$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
			$Q_{ud}^{(8)}$	$(ar{u}_p \gamma_\mu T^A u_r) (ar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
					$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
d $(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating				
Q	ledq	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(d_p^{lpha}) ight.$	$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$
Q_{i}	(1) quqd	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$		
Q_{i}	(8) quqd	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^TCq_r^{\beta k}\right]\left[(q_s^{\gamma m})^TCl_t^n\right]$		
Q	$_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^{lpha})^TCu_r^{eta} ight]\left[(u_s^{\gamma})^TCe_t ight]$		
Q	(3) lequ	$(\bar{l}_{p}^{j}\sigma_{\mu u}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu u}u_{t})$				

SMEFT: number of independent parameters

SMEFT: number of independent parameters

Ilaria Brivio (UZH)

A very large <u>flavorful</u> parameter space

Classification within Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

Class	СР	۶P	Total
<i>X</i> ³	2	2	4
$arphi^{6}+arphi^{4}D^{2}$	3	-	3
$arphi^2 X^2$	4	4	8
$\varphi^2 \psi^2$	27	27	54
$arphi X \psi^2$	72	72	144
$arphi^2 D \psi^2$	51	30	81
$(\bar{L}L)(\bar{L}L)$	171	126	297
$(\bar{R}R)(\bar{R}R)$	255	195	450
$(\bar{L}L)(\bar{R}R)$	360	288	648
$(\bar{L}R)(\bar{R}L)$	81	81	162
$(\bar{L}R)(\bar{L}R)$	324	324	648

most parameters from fermionic terms
 flavor has dramatic impact on counting

Examples:

$B_{\mu u}(ar{q}_i\sigma^{\mu u}d_j)arphi$	9 + 9
$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{i}\gamma^{\mu}u_{j})$	6 + 3
$(\bar{l}_i\gamma_\mu l_j)(\bar{l}_k\gamma^\mu l_l)$	27 + 18
$(\bar{e}_i\gamma_\mu e_j)(\bar{u}_k\gamma^\mu u_l)$	45 + 36
$(\bar{l}_i^I e_i)(\bar{d}_k q_i^I)$	81 + 81

Propagator corrections

Lectures 3 & 4

SMEFT effects: rescaling vs. shape change

Bellan, Boldrini, Brambilla, IB et al 2108.03199

parton level simulation of $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu$ with $\{m_W, m_Z, G_F\}$ inputs

Pure EW fit

Pure EW fit – correlations

 $\{m_W, m_Z, G_F\}$

SMEFT for EW and Higgs sectors

leading Warsaw basis operators in Higgs and EW processes: ~ 20

+ CP odd + flavor indices + others entering through loop corrections ...

Ilaria Brivio (UZH)

SMEFT in Higgs production

SMEFT in Higgs production

Simplified Template Cross Sections (STXS)

from: ATLAS H10 2207.00348 (stage 1.2)

Higgs + EW fit results

- typically: EWPO from LEP
 - + diboson measurements (LEP2/LHC)
 - + Higgs production/decay rates

HISZ basis

Hagiwara et al PRD48(1993)2182

Ilaria Brivio (UZH)

Higgs + EW fit results

typically: EWPO from LEP

- + diboson measurements (LEP2/LHC)
- + Higgs production/decay rates

Warsaw basis Grzadkowski et al 1008.4884

Top + EW + Higgs: global results

Ellis, Madigan, Mimasu, Sanz, You 2012.02779

Top + EW + Higgs: global results

Ethier, Maltoni, Mantani, Nocera, Rojo 2105.00006

49 param, linear+quadratic, NLO QCD

Ilaria Brivio (UZH)

Top + EW + Higgs: global results

Linear bounds

Ethier, Maltoni, Mantani, Nocera, Rojo 2105.00006

49 param, linear+quadratic, NLO QCD

Ilaria Brivio (UZH)

Top + EW + Higgs: correlation map

Principal Component Analysis

Fisher information

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, Vryonidou, Zhang 2105.00006

Fisher information

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, Vryonidou, Zhang 2105.00006

SMEFTsim () tutorial

Usage in Mathematica: Feynman rules

A Mathematica notebook with examples in the GitHub repository **Q**:

SMEFTsim_Mathematica_notebooks/SMEFTsim_usage_examples.nb

Instructions

- > load Feynrules
 \$FeynRulesPath = SetDirectory[''FEYNRULESPATH''];
 << FeynRules';</pre>
- > load SMEFTsim. Flavor and Scheme must be defined first! SetDirectory[''SMEFTSIM_FR_PATH'']; Flavor = U35; Scheme = MwScheme; LoadModel[''SMEFTsim_main.fr'']

accepted flavors: general, U35, MFV, top, topU31

accepted schemes: alphaScheme, MwScheme

 only the selected combination is loaded. information about other options cannot be accessed.

Obtaining Feynman rules

\bullet hVV vertices

frHVV = FeynmanRules[LHiggs + LSMloop + L6cl4, MaxParticles -> 3, Contains -> H];

● Zff vertices

frZfer = FeynmanRules[LFermions + L6cl7, MaxParticles -> 3, Contains -> Z];

```
♦ all vertices from bosonic op. eg. O<sub>HB</sub>
OHB // FeynmanRules
```

D all vertices from fermionic op. eg. \$\mathcal{O}_{HI}^{(1)}\$
Select[L6c17, !FreeQ[#, cH11] &] // FeynmanRules
or

OH11[1,1] // FeynmanRules specifying flavor indices

all FR are given in input scheme-independent form, containing dg1, dgw, dGf.... go to scheme-specific notation applying replacements:

.//MwShifts or .//alphaShifts

Available variables and functions

- LGauge. Gauge boson kin. terms.
- LHiggs. Higgs boson kin. term (incl hVV, hhVV)
- LFermions. Fermions kin. terms
- ▶ LSMloop. SM Higgs couplings to $hgg(ggg), h\gamma\gamma, hZ\gamma$
- ▶ L6cl1, ...L6cl7. Operators of class 1...7
- L6cl8a, ...L6cl8d. Operators of class 8a ...8d
- WCsimplify. Collects the Wilson coefficients in an expression one by one.
- SMlimit. Returns the SM limit of an expression.
- relativeVariation. Returns an expression normalized to its SM part
- MwShifts. Input shifts replacements for $\{m_W, m_Z, G_F\}$ scheme.
- ▶ alphaShifts. Input shifts replacements for $\{\alpha_{\rm em}, m_Z, G_F\}$ scheme.

Interactive tool

 $\label{eq:constraint} Download \ notebook + Working \ material \ from \ NotebookArchive$

initialize evaluating

SetDirectory[NotebookDirectory[]];
<< SMEFTsimFR'</pre>

Evaluate (ctrl + Enter) the commands

FRbyOperator and FRbyVertex

This activates the two interactive tools

in the FRbyOperator type a Wilson coefficient in SMEFTsim notation and hit Enter.

e.g. cHB, cHu, cuHRe...

use the options panel to refine the output. You can type more than one coefficient, separated by commas, and also use wildcards e.g. cHu*

in the FRbyVertex type one vertex.

The fields you can use are in a table that is called via fieldsTable Separate them by a comma.

SMEFTsim in MadGraph

```
download the Material.tar with
```

wget https://www.dropbox.com/s/nr1pm0ijxu1es5f/Material.tar

```
and extract: tar -xvf Material.tar
```

- download SMEFTsim_U35_MwScheme_UFO from GitHub, or, in MG5, type import model SMEFTsim_U35_MwScheme_UFO and it will be automatically downloaded and stored in the MG5/models/ directory.
- in SMEFTsim_U35_MwScheme_UFO/coupling_orders.py

```
change NPprop = CouplingOrder(name = 'NPprop',
expansion_order = 0,
```

```
into
    NPprop = CouplingOrder(name = 'NPprop',
    expansion_order = 99,
```

this enables propagator corrections.

put the restriction card restrict_ggF41.dat into the UFO directory

 \bigcirc the restriction has linearPropCorrections = 1. Also needed for propagators.

Exercise: $gg \rightarrow h \rightarrow e^+e^-\mu^+\mu^-$

- 1. generate in the SM
- compute SMEFT corrections for some operators via reweighting: pure interference, quadratics, linear corr. from h, Z propagators
- **3.** plot m_{12} , m_{34} to understand the impact of the different operators

1. SM $gg \rightarrow h \rightarrow e^+e^-\mu^+\mu^-$

- start Madgraph: MADGRAPHDIR/bin/mg5_aMC
- ▶ in MG: import model with restriction and generate process:

import model SMEFTsim_U35_MwScheme_UFO-ggF41
generate g g > h SMHLOOP==1, h > e+ e- mu+ mu- SMHLOOP=0 @O NP=0 NPprop=0
output gg_h_eemm
launch

- modify param_card: set to 0 all SMEFT parameters
- modify run_card: set False = use_syst

g g > h, h > ... only generates on-shell Higgs signal

9 SMHLOOP counts SM hgg, hggg, hgggg, $h\gamma\gamma$, $hZ\gamma$ vertices

- NP counts vertices with SMEFT insertions
- NPprop counts vertices of dummy particles carrying propagator corr.
- orders specified after @0 apply to the entire production+decay chain. orders to the left apply only to the corresponding subprocesses.

2. SMEFT corrections to $gg \rightarrow h \rightarrow e^+e^-\mu^+\mu^-$

- The reweighting commands are already provided in the reweight cards
- They are all launched at once by the shell script. Adjust the PROCNAME and RUNNAME variables inside the script to match yours.
- Launch and approve all questions:

./launch_reweighting.sh

order specifications

any interference	NP<=1 NP^2==1
specific interf.	NP<=1 NP^2==1 NPcHl1^2==1
any square	NP==1
specific mixed square	NP==1 NPcHl1^2==1 NPcHB^2==1
propagators interf.	NP=0 NPprop<=2 NPprop^2==2

NP counts vertices in amplitude, NP² counts vertices in squared amp.

g g > h, h > ... syntax does not allow amp² specifications. we use g g > h >... instead, that generally does not restrict to on-shell.

<=, = are the same</p>

3. Event analysis

- gunzip gg_h_eemm/Events/run_01/unweighted_events.lhe.gz
- analyze lhe file and create a .root with histograms

python lhe_analyzer.py gg_h_eemm/Events/run_01/unweighted_events.lhe lhe_events.root

you can visualize this in ROOT with root

new TBrowser()

create plots

python plot_histos.py lhe_events.root

> modify plot_histos.py to plot different sets of lines / ranges

Some physics to notice

- \bigcirc C_{HG} and operators in the Higgs propagators only give overall rescalings
- \mathcal{C}_{HG} correction is huge: formally **tree/loop** $\rightarrow \mathcal{O}(100)$
- C difference between $C_{HI}^{(1)}$, $C_{HI}^{(3)}$ purely due to $C_{HI}^{(3)}$ entering input shifts
- \bigcirc operators in the Z propagator only relevant for $m_{II} \simeq m_Z$
- Propagator corr. bring in new operators, that contribute to other h/Zdecays, eg. C_{dH} from h → bb̄, C⁽³⁾_{Hq} from Z → qq̄
- \mathcal{O}_{HB} modifies hZZ and introduces $hZ\gamma$ and $h\gamma\gamma$ vertices \rightarrow spectrum significantly distorted towards low m_{II} . the effect is even stronger at quadratic level.

 \bigcirc the square of $C_{HI}^{(1)}$ is suppressed