EW SMEFT – Exercise sheet 2

The W mass in SMEFT

- 1. Compute the correction to m_W^2 in the Warsaw basis, at tree level and up to Λ^{-4} corrections.
 - (a) Remember that, at LO, the W pole mass in the SMEFT Lagrangian is just $m_W^2 = g^2 v_T^2/4$, and leave the result written in terms of $\delta g/g$ etc.
 - (b) Using the shift formulas in the appendix, specialize the result to the input parameters set $\{\alpha, G_F, m_Z\}$ and write the correction to m_W in terms of the Wilson coefficients.
 - (c) Do the same for the input parameters set $\{m_W, G_F, m_Z\}$. Verify that the correction to m_W vanishes in this case, as expected for any input quantities,
- 2. Now we will relate the m_W correction to the ρ parameter.
 - (a) Compute the relative correction to $\cos^2 \theta$ (i.e. $\delta c_{\theta}^2/c_{\theta}^2$) in the Warsaw basis, again at LO and up to Λ^{-4} corrections.

Remember that the angle is defined by

$$\theta = \arctan\left[\frac{g'}{g} + \frac{1}{2}\frac{gg'}{g^2 + (g')^2}\bar{C}_{HWB}\right]$$
(1)

As above, leave the result in the inputs-independent form, as a function of $\delta g/g$ etc.

- (b) Write $\delta c_{\theta}^2/c_{\theta}^2$ in terms of Wilson coefficients, specializing to the $\{\alpha, G_F, m_Z\}$ and $\{m_W, G_F, m_Z\}$ input schemes.
- (c) By comparing with the result of the previous exercise, verify that the following relation holds in both schemes

$$\frac{\delta m_W^2}{m_W^2} = -\Delta m_Z^2 + \frac{\delta c_\theta^2}{c_\theta^2} + \frac{s_{4\theta}}{4c_\theta^2} \bar{c}_{HWB} \tag{2}$$

Can you give an intuitive interpretation of this formula?

(d) The ρ parameter can be defined à la Veltman, from the ratio of Z (neutral) and W (charged) currents, i.e.:

$$\rho \equiv \frac{g_Z^2}{g^2} \frac{m_W^2}{m_Z^2} \tag{3}$$

Where m_Z, m_W are the pole masses and g_Z is defined such that, in unitary gauge, the covariant derivative for a chiral fermionic field ψ contains the term

$$D_{\mu}\psi = -ig_Z Z_{\mu} \left(T_3 - Qs_{\theta}^2\right)\psi + \dots \tag{4}$$

being $T_3 = \pm 1/2$ and Q the isospin and electric charge of ψ respectively.

Compute ρ to order Λ^{-2} in the Warsaw basis.

Use the Lagrangian expression *before* defining the input parameters and write the result in terms of Wilson coefficients.

Hint: remember from lecture 1 that a generic covariant derivative contains the term

$$D_{\mu}\psi = -i\frac{g}{c_{\theta}}Z_{\mu}\left(T_{3} - Qs_{\theta}^{2}\right)\left[1 + \frac{t_{\theta}}{2}\bar{C}_{HWB}\right]\psi + \dots$$
(5)

having defined the angle θ as in (1).

- (e) Now repeat the calculation with the Lagrangian defined *after* defining inputs: write ρ as a function of hat quantities and $\delta g/g$ etc.
- (f) Write ρ in terms of Wilson coefficients, specializing to the $\{\alpha, G_F, m_Z\}$ and $\{m_W, G_F, m_Z\}$ input schemes. Verify that, in both cases, you get the same result and that this also coincides with the result found at point (a).
- (g) Deduce the relation between $\delta m_W^2/m_W^2$, $\delta c_{\theta}^2/c_{\theta}^2$ and $(\rho 1)$.

The W decay width in SMEFT

- 3. In this exercise we will compute the SMEFT correction to the total decay width of the W boson. We will ignore all fermion masses and mixings.
 - (a) Compute the squared amplitude for a decay $W^- \to e^- \nu_e$, averaged over the polarizations of the W boson, considering only one lepton flavor and expanding to linear order in the SMEFT. The relevant Feynman rule is

$$W^{-}_{\mu}\bar{e}\nu \qquad -\frac{ig}{\sqrt{2}}(\gamma^{\mu}P_{L})\left[1+\frac{\delta g}{g}+\bar{C}^{(3)}_{Hl}\right] \tag{6}$$

(b) Repeat for $W^- \to \bar{u}d$. The Feynman rule in this case is

$$W_{\mu}^{-}\bar{d}u \qquad -\frac{ig}{\sqrt{2}}(\gamma^{\mu}P_{L})\left[1+\frac{\delta g}{g}+\bar{C}_{Hq}^{(3)}\right]$$
(7)

(c) Compute the decay widths $\Gamma(W^- \to e^- \nu_e)$ and $\Gamma(W^- \to \bar{u}d)$. Remember that

$$\Gamma = \frac{|A|^2}{16\pi m_W} \tag{8}$$

(d) Compute the total decay width Γ_W and express it as $\Gamma_W^{SM} [1 + \delta \Gamma_W / \Gamma_W]$. Then specialize the result to the $\{\alpha, G_F, m_Z\}$ and $\{m_W, G_F, m_Z\}$ input schemes.

Jacobian formulation of input shifts

A For this exercise you will need Mathematica to invert matrices. One can ask whether there is a simple way to translate between different EW input schemes. In

fact, when working to $\mathcal{O}(\Lambda^{-2})$, the translation can be done quite easily using a Jacobian description of the whole inputs procedure:

Let's define the vector $\vec{G} = (g, g', v_T)$ of the 3 Lagrangian parameters in the EW sector of the SM. In order to fix their numerical values, we need to relate them to 3 observables, that we don't specify yet. We will call \vec{O} the vector formed by them.

Each of these observables can be computed in the SMEFT using the canonically normalized Lagrangian. The prediction for observable O_n has the form

$$O_n(\vec{G}, C_i) = O_n^{SM}(\vec{G}) + \Delta O_n(\vec{G}, C_i)$$
(9)

where the first term is the SM prediction and the second is the $\mathcal{O}(\Lambda^{-2})$ correction.

What we do when fixing the input scheme is solving the system $\vec{O}(\vec{G}, C_i) = \vec{\hat{O}}$ for \vec{G} , where $\vec{\hat{O}}$ are the measured values for \vec{O} . The solution can be written

$$\vec{G} = \vec{\hat{G}} - J^{-1} \Delta \vec{O} \tag{10}$$

where $\vec{\hat{G}}$ is the SM solution and J is a Jacobian matrix defined by

$$J_{nk} = \frac{\partial O_n^{SM}}{\partial G_k} \tag{11}$$

4. Choose the input observables $\vec{O}_{mW} = \{m_W^2, m_Z^2, G_F\}$ and re-derive the shifts presented in class (and given in the appendix) using the formula (10).

Remember the starting point:

$$m_W^2 = \frac{g^2 v_T^2}{4} \qquad m_Z^2 = \frac{(g^2 + (g')^2) v_T^2}{4} (1 + \Delta m_Z^2) \qquad G_F = \frac{1}{\sqrt{2} v_T^2} (1 + \Delta G_F)$$
(12)

You don't need to open the Δ 's at this stage.

5. Using Eq. (10) you can see that the solution for the scheme with $\vec{O}_a = \{\alpha, m_Z^2, G_F\}$ will be given by

$$\vec{G} = \vec{\hat{G}}_a - (J_\alpha^{-1})\Delta \vec{O}_\alpha \tag{13}$$

where $\vec{\hat{G}}_a$ is the new SM solution (which is trivial to find). More interestingly, deriving by parts:

$$J_{\alpha} = \frac{\partial \vec{O}_{\alpha}^{SM}}{\partial \vec{G}} = \frac{\partial \vec{O}_{\alpha}^{SM}}{\partial \vec{\mathcal{O}}_{mW}^{SM}} \frac{\partial \vec{O}_{mW}^{SM}}{\partial \vec{G}} = \frac{\partial \vec{O}_{\alpha}^{SM}}{\partial \vec{O}_{mW}^{SM}} J_{mW}$$
(14)

where trivially

$$\frac{\partial \vec{O}_{\alpha}^{SM}}{\partial \vec{O}_{mW}^{SM}} = \begin{pmatrix} \frac{\partial \alpha}{\partial m_W^2} & \frac{\partial \alpha}{\partial m_Z^2} & \frac{\partial \alpha}{\partial G_F} \\ & 1 & \\ & & 1 \end{pmatrix}$$
(15)

with all observable predictions computed in the SM. So the new Jacobian J_{α} in α scheme can be computed very easily, once the Jacobian J_{mW} in m_W scheme is known.

Do this computation and verify that eq. (13) gives the result presented in the lecture for the α scheme.

Hint: for the Jacobian, you will need to express α as a function of the \mathcal{O}_{mW} observables. To do this, take $\alpha = \frac{1}{4\pi} \frac{(gg')^2}{g^2 + (g')^2}$ and replace g, g' with the SM solutions in m_W scheme.

- 6. Let's use the Jacobian to define a new input scheme: $\vec{O}_{\text{new}} = \{m_W^2, m_Z^2, \alpha\}$. Start from the \vec{O}_{mW} set, and replace G_F with α .
 - (a) Compute the SM solutions $\vec{\hat{G}}$ in the new scheme.
 - (b) Compute the jacobian as $J_{\text{new}} = \frac{\partial \vec{O}_{\text{new}}^{SM}}{\partial \vec{O}_{mW}^{SM}} J_{mW}$.
 - (c) Put everything together in (10) to find the result for the parameters and their shfits.

A Input shift expressions

In the $\{\alpha, m_Z, G_F\}$ scheme:

$$\frac{\delta g}{g} = \frac{1}{2c_{2\theta}} \left[-c_{\theta}^2 \left(\Delta m_Z^2 + \Delta G_F \right) + s_{\theta}^2 \Delta \alpha \right]$$
(16)

$$\frac{\delta g'}{g'} = \frac{1}{2c_{2\theta}} \left[s_{\theta}^2 \left(\Delta m_Z^2 + \Delta G_F \right) - c_{\theta}^2 \Delta \alpha \right] \tag{17}$$

$$\frac{g}{v_T} = \frac{\Delta G_F}{2} \tag{18}$$

In the $\{m_W, m_Z, G_F\}$ scheme:

$$\frac{\delta g}{g} = -\frac{\Delta G_F}{2} \tag{19}$$

$$\frac{\delta g'}{g'} = -\frac{1}{2} \left[\Delta G_F + \frac{\Delta m_Z^2}{s_\theta^2} \right] \tag{20}$$

$$\frac{\delta v_T}{v_T} = \frac{\Delta G_F}{2} \tag{21}$$

And the Δ 's are

$$\Delta G_F = 2\bar{C}_{Hl}^{(3)} - \bar{C}_{ll}^{\prime} \tag{22}$$

$$\Delta m_Z^2 = \frac{2gg'}{g^2 + (g')^2} \bar{C}_{HWB} + \frac{\bar{C}_{HD}}{2}$$
(23)

$$\Delta \alpha = -\frac{2gg'}{g^2 + (g')^2} \bar{C}_{HWB} \tag{24}$$