
EW SMEFT – Exercise sheet 2

The W mass in SMEFT

1. Compute the correction to m2
W in the Warsaw basis, at tree level and up to Λ−4 corrections.

(a) Remember that, at LO, the W pole mass in the SMEFT Lagrangian is just m2
W =

g2v2T /4, and leave the result written in terms of δg/g etc.

(b) Using the shift formulas in the appendix, specialize the result to the input parameters
set {α,GF ,mZ} and write the correction to mW in terms of the Wilson coefficients.

(c) Do the same for the input parameters set {mW , GF ,mZ}. Verify that the correction to
mW vanishes in this case, as expected for any input quantities,

2. Now we will relate the mW correction to the ρ parameter.

(a) Compute the relative correction to cos2 θ (i.e. δc2θ/c
2
θ) in the Warsaw basis, again at LO

and up to Λ−4 corrections.

Remember that the angle is defined by

θ = arctan

[
g′

g
+

1

2

gg′

g2 + (g′)2
C̄HWB

]
(1)

As above, leave the result in the inputs-independent form, as a function of δg/g etc.

(b) Write δc2θ/c
2
θ in terms of Wilson coefficients, specializing to the {α,GF ,mZ} and {mW , GF ,mZ}

input schemes.

(c) By comparing with the result of the previous exercise, verify that the following relation
holds in both schemes

δm2
W

m2
W

= −∆m2
Z +

δc2θ
c2θ

+
s4θ
4c2θ

c̄HWB (2)

Can you give an intuitive interpretation of this formula?

(d) The ρ parameter can be defined à la Veltman, from the ratio of Z (neutral) and W
(charged) currents, i.e.:

ρ ≡
g2Z
g2
m2
W

m2
Z

(3)

Where mZ ,mW are the pole masses and gZ is defined such that, in unitary gauge, the
covariant derivative for a chiral fermionic field ψ contains the term

Dµψ = −igZZµ
(
T3 −Qs2θ

)
ψ + . . . (4)

being T3 = ±1/2 and Q the isospin and electric charge of ψ respectively.
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Compute ρ to order Λ−2 in the Warsaw basis.

Use the Lagrangian expression before defining the input parameters and write the result
in terms of Wilson coefficients.
Hint: remember from lecture 1 that a generic covariant derivative contains the term

Dµψ = −i g
cθ
Zµ
(
T3 −Qs2θ

) [
1 +

tθ
2
C̄HWB

]
ψ + . . . (5)

having defined the angle θ as in (1).

(e) Now repeat the calculation with the Lagrangian defined after defining inputs: write ρ
as a function of hat quantities and δg/g etc.

(f) Write ρ in terms of Wilson coefficients, specializing to the {α,GF ,mZ} and {mW , GF ,mZ}
input schemes. Verify that, in both cases, you get the same result and that this also
coincides with the result found at point (a).

(g) Deduce the relation between δm2
W /m

2
W , δc2θ/c

2
θ and (ρ− 1).

The W decay width in SMEFT

3. In this exercise we will compute the SMEFT correction to the total decay width of the W
boson. We will ignore all fermion masses and mixings.

(a) Compute the squared amplitude for a decay W− → e−νe, averaged over the polariza-
tions of the W boson, considering only one lepton flavor and expanding to linear order
in the SMEFT. The relevant Feynman rule is

W−µ ēν − ig√
2

(γµPL)

[
1 +

δg

g
+ C̄

(3)
Hl

]
(6)

(b) Repeat for W− → ūd. The Feynman rule in this case is

W−µ d̄u − ig√
2

(γµPL)

[
1 +

δg

g
+ C̄

(3)
Hq

]
(7)

(c) Compute the decay widths Γ(W− → e−νe) and Γ(W− → ūd).

Remember that

Γ =
|A|2

16πmW
(8)

(d) Compute the total decay width ΓW and express it as ΓSMW [1 + δΓW /ΓW ].

Then specialize the result to the {α,GF ,mZ} and {mW , GF ,mZ} input schemes.

Jacobian formulation of input shifts

o For this exercise you will need Mathematica to invert matrices.
One can ask whether there is a simple way to translate between different EW input schemes. In
fact, when working to O(Λ−2), the translation can be done quite easily using a Jacobian description
of the whole inputs procedure:
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Let’s define the vector ~G = (g, g′, vT ) of the 3 Lagrangian parameters in the EW sector of the
SM. In order to fix their numerical values, we need to relate them to 3 observables, that we don’t
specify yet. We will call ~O the vector formed by them.
Each of these observables can be computed in the SMEFT using the canonically normalized La-
grangian. The prediction for observable On has the form

On(~G,Ci) = OSMn (~G) + ∆On(~G,Ci) (9)

where the first term is the SM prediction and the second is the O(Λ−2) correction.

What we do when fixing the input scheme is solving the system ~O(~G,Ci) =
~̂
O for ~G, where

~̂
O are

the measured values for ~O. The solution can be written

~G =
~̂
G− J−1∆ ~O (10)

where
~̂
G is the SM solution and J is a Jacobian matrix defined by

Jnk =
∂OSMn
∂Gk

(11)

4. Choose the input observables ~OmW = {m2
W ,m

2
Z , GF } and re-derive the shifts presented in

class (and given in the appendix) using the formula (10).

Remember the starting point:

m2
W =

g2v2T
4

m2
Z =

(g2 + (g′)2)v2T
4

(1 + ∆m2
Z) GF =

1√
2v2T

(1 + ∆GF ) (12)

You don’t need to open the ∆’s at this stage.

5. Using Eq. (10) you can see that the solution for the scheme with ~Oa = {α,m2
Z , GF } will be

given by

~G =
~̂
Ga − (J−1α )∆ ~Oα (13)

where
~̂
Ga is the new SM solution (which is trivial to find). More interestingly, deriving by

parts:

Jα =
∂ ~OSMα

∂ ~G
=
∂ ~OSMα

∂ ~OSMmW

∂ ~OSMmW
∂ ~G

=
∂ ~OSMα

∂ ~OSMmW
JmW (14)

where trivially

∂ ~OSMα

∂ ~OSMmW
=

 ∂α
∂m2

W

∂α
∂m2

Z

∂α
∂GF

1
1

 (15)

with all observable predictions computed in the SM. So the new Jacobian Jα in α scheme
can be computed very easily, once the Jacobian JmW in mW scheme is known.

Do this computation and verify that eq. (13) gives the result presented in the lecture for the
α scheme.

Hint: for the Jacobian, you will need to express α as a function of the OmW observables. To

do this, take α = 1
4π

(gg′)2

g2+(g′)2 and replace g, g′ with the SM solutions in mW scheme.
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6. Let’s use the Jacobian to define a new input scheme: ~Onew = {m2
W ,m

2
Z , α}.

Start from the ~OmW set, and replace GF with α.

(a) Compute the SM solutions
~̂
G in the new scheme.

(b) Compute the jacobian as Jnew = ∂ ~OSM
new

∂ ~OSM
mW

JmW .

(c) Put everything together in (10) to find the result for the parameters and their shfits.

A Input shift expressions

In the {α,mZ , GF } scheme:

δg

g
=

1

2c2θ

[
−c2θ

(
∆m2

Z + ∆GF
)

+ s2θ∆α
]

(16)

δg′

g′
=

1

2c2θ

[
s2θ
(
∆m2

Z + ∆GF
)
− c2θ∆α

]
(17)

δvT
vT

=
∆GF

2
(18)

In the {mW ,mZ , GF } scheme:

δg

g
= −∆GF

2
(19)

δg′

g′
= −1

2

[
∆GF +

∆m2
Z

s2θ

]
(20)

δvT
vT

=
∆GF

2
(21)

And the ∆’s are

∆GF = 2C̄
(3)
Hl − C̄

′
ll (22)

∆m2
Z =

2gg′

g2 + (g′)2
C̄HWB +

C̄HD
2

(23)

∆α = − 2gg′

g2 + (g′)2
C̄HWB (24)
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